Accurate monitoring of moisture and impurity contamination

Moisture contamination in semiconductor manufacturing is a major cause of defects and process variations, significantly impacting yield.

This makes moisture analysis essential, both for cleanroom areas where semiconductor wafers are produced and stored, and for the ultra-high purity gases used in manufacturing processes.

A variety of methods are available for measuring moisture from high levels to trace amounts. Many manufacturing applications rely on trace measurements of water vapor to ensure process quality is maintained.

5910

MEASURES: H₂O

RANGE

0 to 150 ppbv Trend indication to 1000 ppbv

ACCURACY

 ± 100 ppbv or $\pm 10\%$ of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

5920

MEASURES: H₂O

RANGE

0 to 150 ppbv Trend indication to 1000 ppbv

PROCESS

Gas Purification

ACCURACY

±1 ppbv or ±10% of the reading, whichever is greater

APPLICATION Quality

TECHNOLOGY: QCM

ta7000

MEASURES: H₂, CO, CO₂, CH₄, NMHC

RANGE

0 to 199.9 ppbv

ACCURACY

 ± 1 x LDL or $\pm 10\%$ of reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

ta5000

Caboo

RANGE

RGD: 0-3 ppmv FID: 0-5 ppmv

ACCURACY

 ± 1 x LDL or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO, CO₂, H₂, CH₄, NMHC

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

5800

MEASURES: H₂O

RANGE

0.02 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±5% of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

5830

RANGE

0 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±10% of the reading, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

3050-AMS

RANGE

0.035 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

 ± 0.035 ppmv or $\pm 10\%$, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

3050-AM

RANGE

0.1 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

To find out more or request a quote, visit our website today

3050-RM

MEASURES: H₂O

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, Ib/mmscf, mg/Nm³, and dew point temperature in °C or °F

PROCESS

Gas Purification

APPLICATION

Quality

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$, whichever is greater

TECHNOLOGY: QCM

2850

MEASURES: H₂O

RANGE

0.1 to 1000 ppmv

ACCURACY

 ± 0.05 ppmv or $\pm 5\%$ of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

ta3000

RANGE

RGD: 0-3 ppmv FID: 0-5 ppmv

ACCURACY

 ± 10 ppbv or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO, CO₂, H₂, CH₄, NMHC

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

TM2000

RANGE

0.1 ppmv O_2 to $100\%\ O_2$

ACCURACY

 \pm 1% of reading or 0.02% absolute, whichever is greater

MEASURES: O₂

PROCESS

Air Separation, Inert Gas Purity (N₂, Ar, CO₂, He, etc.), Blanket/ Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/ Furnace Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and High Purity Streams

TECHNOLOGY: ZrO₂

LC-D

MEASURES: All components m/z 1-300

RANGE

Total Pressure ≤10⁻⁵ torr

ACCURACY

Source sensitivity (Faraday cup): 2 x 10-4 amps per Torr at detector (measured with nitrogen at mass 28) with peak width = 0.5 at 10% height and 1 x 10-3 amps emission current

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer

CG1000

RANGE

0.1 ppmv O₂ to 100% O₂

ACCURACY

±2% of reading or 0.05% absolute, whichever is greater

PROCESS

MEASURES: O₂

Rapid Thermal Processing (RTP), Air Separation, Inert Gas Purity (N₂, Ar, CO₂, He, etc.), Blanket/Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/Furnace Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and High Purity Streams

TECHNOLOGY: ZrO₂

Dymaxion

MEASURES: All components m/z 1-300

RANGE

1-100, 1-200, 1-300 AMU

ACCURACY

Source sensitivity (Faraday cup): 2 x 10-4 amps per Torr at detector (measured with nitrogen at mass 28) with peak width = 0.5 at 10% height and 1 x 10-3 amps emission current

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer