

ANALYZER GUIDE

ABOUT US

AMETEK Process Instruments is a worldwide manufacturer of process analyzers and instrumentation.

At AMETEK Process Instruments, we focus our experience on designing innovative analyzers that help our customers reach higher levels of productivity and quality. We achieve this by finding ways to overcome the limitations of current methods of process monitoring, control and quality assurance. Through this focus we have created some of the most capable technologies in the world.

Our primary focus in analyzer design is reliability. We understand that you must have confidence that the analyzer will provide the correct information when you need it. It is a documented fact that many of our analyzers have been in service for well over 20 years.

Markets Served:

Core Competencies

- Analysis of moisture in hydrocarbon gases and high purity gases
- · Burner air/fuel mixing control
- Chemical composition analysis of gases and liquids
- Coal fired power generation
- · Combustion and furnace atmosphere control
- Combustion/process heating
- Contamination monitoring of high and ultra-high purity gases
- Heat treating atmosphere monitoring/control
- · Natural gas processing and transmission
- Pharmaceutical solvent drying processes
- · Emissions monitoring
- Quality monitoring of gas and liquid feedstocks
- · Refining and petrochemical processes
- Sulfur recovery processes
- Trace analysis
- Vacuum analysis/residual gas analysis

Analyzer Technologies

- Gas chromatographs (GC)
- Gas gravitometers
- Manual and online chilled-mirror dew point analyzers
- Process mass spectrometers
- Quartz crystal microbalance (QCM) and electrolytic moisture analyzers
- · Residual gas analyzers
- Tunable diode laser absorption spectroscopy (TDLAS)
- Ultraviolet and visible (UV-VIS) and infrared (IR) process analyzers
- X-ray transmission (XRT)
- · Zirconium oxide analyzers

Unique Solutions – Custom Designs

No single solution fits all applications or processes. If a pre-engineered product does not meet your needs, we will work with you to custom-design an analyzer suited to your specific application. We pride ourselves on our ability, and willingness, to produce unique analyzers and solutions for our customers.

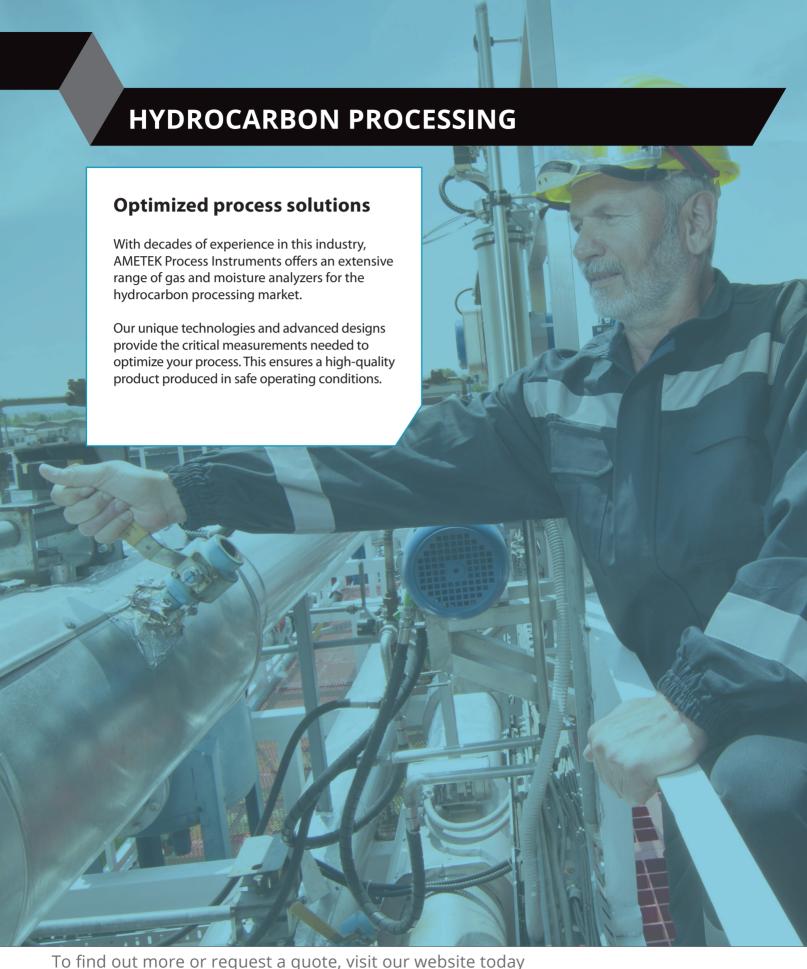
Service Commitment

With more than 100 factory-trained service technicians worldwide, our customer commitment continues well beyond start-up and commissioning. We offer a wide variety of service plans and resources to support our customers' installations anywhere in the world.

USER GUIDE

Find the right analyzer for your application. We've made it simple with our at-a-glance listings, separated into the key markets we supply.

GLOSSARY


ABBREVIATION	DESCRIPTION
AMU	Atomic mass unit
BTU	British thermal unit
CCR	Continuous catalyst regeneration
CEM	Continuous emission monitoring
GC-FID	Gas chromatography with flame ionization detector
GC-RGD	Gas chromatography with reduction gas detector
IR	Infrared
LNG	Liquefied natural gas
LPG	Liquefied petroleum gas
MAU	Milli-absorbance unit
NDIR	Nondispersive infrared
NGL	Natural gas liquids
P ₂ O ₅	Phosphorus pentoxide
ppb	Parts per billion
ppbv	Parts per billion by volume
ppm	Parts per million
ppmv	Parts per million by volume
ppmw	Parts per million by weight
QCM	Quartz crystal microbalance
TCD	Thermal conductivity detector
TDLAS	Tunable diode laser absorption spectroscopy
TGTU	Tail gas treating unit
TRS	Total reduced sulfur
UV	Ultraviolet
ZrO ₂	Zirconium oxide

1. MODEL - Analyzer name	
2. RANGE - Valid measurement concentrations	
3. ACCURACY - Degree of measurement precision	
4. TECHNOLOGY - Measurement technology used	
5. MEASURES - Elements or compound detected	
6. PROCESS - Chemical operation/operating unit	
7. APPLICATION - Particular function	

CONTENTS

	PAGE
HYDROCARBON PROCESSING	6
METALS & MINING	13
NATURAL GAS	16
PHARMACEUTICAL	21
POWER & STEAM GENERATION	24
PULP & PAPER, GLASS, CEMENT & LIME	27
SEMICONDUCTOR, LCD/OLED DISPLAY MANUFACTURING & INDUSTRIAL GASES	30
OTHER APPLICATIONS	35

To find out more or request a quote, visit our website today

IPS-4

MEASURES: NH₃, H₂O, CO₂, SO₂, H₂S, NO, NO₂, NOx, THC, ASTM color standards, Ethylene Glycol

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Sulfur Recovery, Emission Compliance, Ethylene Oxide, Sour Gas Treatment, SO₂ Recovery/H₂SO₄

APPLICATION

Feed Forward, Emissions, Ethylene Glycol QA/QC, Amine Efficiency, SO₂ Removal Efficiency

MEASURES: H₂O

Continuous Catalyst Regeneration

PROCESS

APPLICATION

Hydrogen Recycle Gas

TECHNOLOGY: UV/NDIR

WDG-V

RANGE

O₂: From 0-1% to 0-100% Combustibles: 0-500 ppmv to 0-10,000 ppmv, 0-2% to 0-5% Hydrocarbon: 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or ±0.05%, whichever is greater Combustibles: ±2% of full-scale output range

Hydrocarbon: ±5% of full scale output range

Reformers, Steam Boilers, Process Heaters, Thermal Oxidizers

Combustion Control in Ethane

Fired Heaters, Power Generation

MEASURES: O₂, Combustibles,

PROCESS

APPLICATION

TECHNOLOGY: ZrO₂, Catalytic Sensor

5000

RANGE

0 to 1000 ppmv, trend indication above 1000 ppmv Output capability in lb./mmscf and dew point temperature (requires sample line pressure as analog input; single point systems only)

ACCURACY

±1 ppmv or ±5% of reading, whichever is greater

TECHNOLOGY: QCM

888

RANGE

Standard: 0 to 1% SO₂: 0 to 2% H₂S High Range: 0 to 2% SO₂; 0 to 4% H₂S

ACCURACY

±1% of full scale

MEASURES: H₂S, SO₂

PROCESS

Sulfur Recovery

APPLICATION

Tail Gas/Air Demand Ratio, Sulfur Pit Safety Monitoring

TECHNOLOGY: UV

900

MEASURES: H₂S, SO₂, COS, CS₂

RANGE

Species measured	Minimum full scale	Maximum full scale
H ₂ S	5000 ppm	100%
SO ₂	2500 ppm	100%
CS_2	5000 ppm	100%
COS	5000 ppm	100%

ACCURACY

 SO_2 and H_2S : $\pm 1\%$ of full scale of standard ranges COS and CS_2 : $\pm 10\%$ of full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

Tail Gas/Air Demand Ratio

909

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Minimum full scale	Maximum full scale
250 ppm	100%
300 ppm	100%
300 ppm	100%
125 ppm	100%
500 ppm	100%
500 ppm	100%
	full scale 250 ppm 300 ppm 300 ppm 125 ppm 500 ppm

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEMS, Mass Flow Single Gas

TECHNOLOGY: UV

TECHNOLOGY: UV

910

 $\begin{array}{l} \textbf{MEASURES:} \ H_2S, \ SO_2, \ NO, \\ NO_2, \ NOx, \ NH_3, Optional \ O_2 \end{array}$

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	300 ppm	100%
NO ₂	300 ppm	100%
NOx	300 ppm	100%
H₂S	125 ppm	100%
NH ₃	500 ppm	100%
Cl ₂	500 ppm	100%

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEMS, Mass Flow Multi Gas

TECHNOLOGY: UV

914

MEASURES: H₂S, SO₂, NO, NO₂, NOx, CO₂, O₂

Designed to meet regulatory reporting requirements for CEM

ACCURACY

Designed to meet customer specifications

PROCESS

Emissions Control

APPLICATION

Continuous Emission Monitoring System (cold-dry)

TECHNOLOGY: UV, NDIR, Paramagnetic

919

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Species measured	Minimum full scale	Maximum full scale
SO ₂	250 ppm	100%
NO	300 ppm	100%
NO ₂	300 ppm	100%
H₂S	125 ppm	100%
NH ₃	500 ppm	100%
Cl ₂	500 ppm	100%

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

CEMS Single Gas (no mass flow)

TECHNOLOGY: UV

920

MEASURES: H₂S, SO₂, NO, NO₂, NOx, NH₃, Optional O₂

RANGE

Minimum full scale	Maximum full scale
250 ppm	100%
300 ppm	100%
300 ppm	100%
300 ppm	100%
125 ppm	100%
500 ppm	100%
500 ppm	100%
	full scale 250 ppm 300 ppm 300 ppm 300 ppm 125 ppm 500 ppm

ACCURACY

 $\pm 1\%$ full scale of standard ranges $\pm 2.0\%$ full scale of standard ranges for H_2S+NH_3 application

PROCESS

Sulfur Recovery

APPLICATION

CEMS Multi Gas (no mass flow)

TECHNOLOGY: UV

930

MEASURES: H₂S, SO₂

RANGE

Species measured	Maximum full scale
H ₂ S	0-4%
SO ₂	0-2%

(other ranges available on request)

ACCURACY

±1% full scale of standard ranges

PROCESS

Sulfur Recovery

APPLICATION

Sulfur Pit

TECHNOLOGY: UV

931/932

RANGE

 H_2S : ppm ranges to high percent levels H_2 : 0 to 5% or 0 to 10% Other components and ranges are available upon request

ACCURACY

Standard range (UV): $\pm 1\%$ of full scale of standard ranges Optional (TCD) H_2 sensor for TGTU applications: $\pm 2\%$ on a 0 to 10% range

MEASURES: H_2S , Optional COS, CS_2 , NH_3 , SO_2 , H_2 , CO_2

PROCESS

Sulfur Recovery

APPLICATION

Feed Forward/TGTU

TECHNOLOGY: UV/TCD

934

MEASURES: H₂

RANGE

0 to 5% or 0 to 10%

ACCURACY

±2% on a 0-10% range ±4% on a 0-5% range PROCESS

Sulfur Recovery

APPLICATIONTGTU Efficiency

TECHNOLOGY: TCD

9900 RM/WM

MEASURES: H₂S, SO₂, NO, NO₂, ClO₂, NOx, NH₃, Optional O₂

RANGE

Species Measured	Single Species Minimum Full Scale	Multi-Species Minimum Full Scale
SO ₂	10 ppm	20 ppm
H ₂ S	25 ppm	100 ppm
NO	50 ppm	50 ppm
NO ₂	100 ppm	100 ppm
NOx	n/a	100 ppm
O ₂	0%	25%

ACCURACY

Better than $\pm 1.0\%$ of standard full scale range O_2 : $\pm 0.1\%$

PROCESS

Emissions Control

APPLICATION

Continuous Emission Monitoring System

TECHNOLOGY: UV (opt. Paramagnetic/ZrO₂)

3050-OLV

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, Ib/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$ of reading, whichever is greater

MEASURES: H₂O

PROCESS

Continuous Catalyst Regeneration

APPLICATION

Hydrogen Recycle Gas

ta3000R

RANGE

0 to 3 ppmv

ACCURACY

 ± 10 ppbv or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO

PROCESS

PE/PP Production, Ethylene/ Propylene Feedstock

APPLICATION

Catalyst Protection

TECHNOLOGY: QCM

TECHNOLOGY: GC-RGD

To find out more or request a quote, visit our website today

ProLine

MEASURES: BTU values, H₂, C1-C7 alkanes, CO₂, CO, N₂, O₂, and other components m/z 1-200

RANGE

1 ppmv-100%

ACCURACY

 $\pm 0.5\%$ of measured value for argon in air

PROCESS

Emission Flare Compliance

APPLICATION

Flare BTU Monitor

TECHNOLOGY: Mass Spectrometer

WDG-IV UOP

RANGE

From 0-1% to 0-100%

ACCURACY

 $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater

PROCESS

Catalytic Reforming/Platforming, Continuous Catalyst Regeneration (CCR)

MEASURES: 02

APPLICATION

Oxygen Monitoring in CCR

TECHNOLOGY: ZrO₂

ProMaxion

MEASURES: BTU values, H₂, C1-C7 alkanes, CO₂, CO, N₂, O₂, and other components m/z 1-200

RANGE

1 ppmv-100%

ACCURACY

 $\pm 0.5\%$ of measured value for argon in air

PROCESS

Emission Flare Compliance

APPLICATION

Flare BTU Monitor

TECHNOLOGY: Mass Spectrometer

682T-HP

RANGE

Analysis range for sulfur of 0.02-6.0%

ACCURACY

Repeatability: Typical 1 sigma precision for (100 sec.): 10% relative at 0.04 wt. % sulfur 5% relative at 0.1 wt. % sulfur 0.1% relative at 3.24 wt. % sulfur

MEASURES: Sulfur

PROCESS

Blending Operations, Marine Fuel

APPLICATION

Sulfur Concentration in Crude Oil, Blending Operations, Marine Bunker Fuel

TECHNOLOGY: X-Ray Transmission

WDG Insitu

MEASURES: O₂

RANGE

0-1% to 0-100%

ACCURACY

 $\pm 1\%$ of measured value or $\pm 0.05\%$, whichever is greater

PROCESS

Fired Heaters, Power Generation

APPLICATION

Oxygen Monitoring in Power and Steam Boilers, Process Heaters, Thermal Oxidizers

TECHNOLOGY: ZrO₂

FlarePro

MEASURES: BTU values, H₂, C1-C7 alkanes, CO₂, CO, N₂, O₂, and other components m/z 1-200

RANGE

1 ppmv-100%

ACCURACY

±0.5% of measured value for argon in air

PROCESS

Emission Flare Compliance

APPLICATION

Flare BTU Monitor

TECHNOLOGY: Mass Spectrometer

5100HD

RANGE

ppmv to % level, application dependent

ACCURACY

 $\pm 2\%$ of reading (typical)

PROCESS

Ethylene Production, Refining, Emission Compliance

MEASURES: CO, CO₂, O₂, H_2O , H_2S

APPLICATION

Acetylene Conversion Rate, CO and CO₂ Levels in Furnace Decoking, Moisture in Continuous Catalyst Regeneration, Moisture in Hydrogen Recycle Gas, Moisture in Olefins (UOP Catalytic Regeneration), H₂S in Flare and Refinery Fuel Gas

Consult AMETEK for more potential applications

TECHNOLOGY: TDLAS

ProMaxion

MEASURES: H₂, O₂, CO, CO₂, N₂, Ar, CH₄, and other components m/z 1-200

RANGE

1 ppmv-100%

ACCURACY

±0.5% of measured value for argon in air

PROCESS

Steel Production

APPLICATION

Basic Oxygen, Electric Arc Furnace, Blast Furnace, VD

TECHNOLOGY: UV, Mass Spectrometer

ProLine

MEASURES: H₂, O₂, CO, CO₂, N₂, Ar, CH₄, and other components m/z 1-200

RANGE

1 ppmv-100%

ACCURACY

 $\pm 0.5\%$ of measured value for argon in air

PROCESS

Steel Production

APPLICATION

Basic Oxygen, Electric Arc Furnace, Blast Furnace, VD

TECHNOLOGY: Mass Spectrometer

WDG-HPII

MEASURES: O₂, Combustibles

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range

PROCESS

Foundry/Metals Production Furnaces, Kilns

APPLICATION

Combustion Control and Oxygen Monitoring in Blast Furnace Stoves, Reheat Furnaces and Lime Kilns; Excess Fuel Monitoring of Graphite Electrodes in Electric Arc Furnaces (with Excess Fuel Option)

TECHNOLOGY: ZrO₂, Catalytic Sensor

9900RM

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

Better than ±1.0% of standard full scale range

MEASURES: SO₂, F₂, Uranium

PROCESS

Emissions Compliance

APPLICATION

Emissions

TECHNOLOGY: UV

To find out more or request a quote, visit our website today

METALS & MINING

IPS-4

MEASURES: SO₂, F₂, Uranium

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Emission Compliance

APPLICATION

Emissions

TECHNOLOGY: UV/NDIR

5100HD

MEASURES: CO, CO₂, O₂, H₂O, CH₄, H₂S

RANGE

ppmv to % level, application dependent

ACCURACY

±2% of reading (typical)

PROCESS

Operations

APPLICATION

Safety, Emissions, Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

WDG Insitu

MEASURES: 02

RANGE

0-1% to 0-100%

ACCURACY

±1% of measured value or ±0.05%, whichever is greater

PROCESS

Coke Ovens, Power Generation

APPLICATION

Process Oxygen Monitoring in Coke Ovens and Power and Steam Boilers

TECHNOLOGY: ZrO₂

WDG-V

MEASURES: O₂, Combustibles,

RANGE

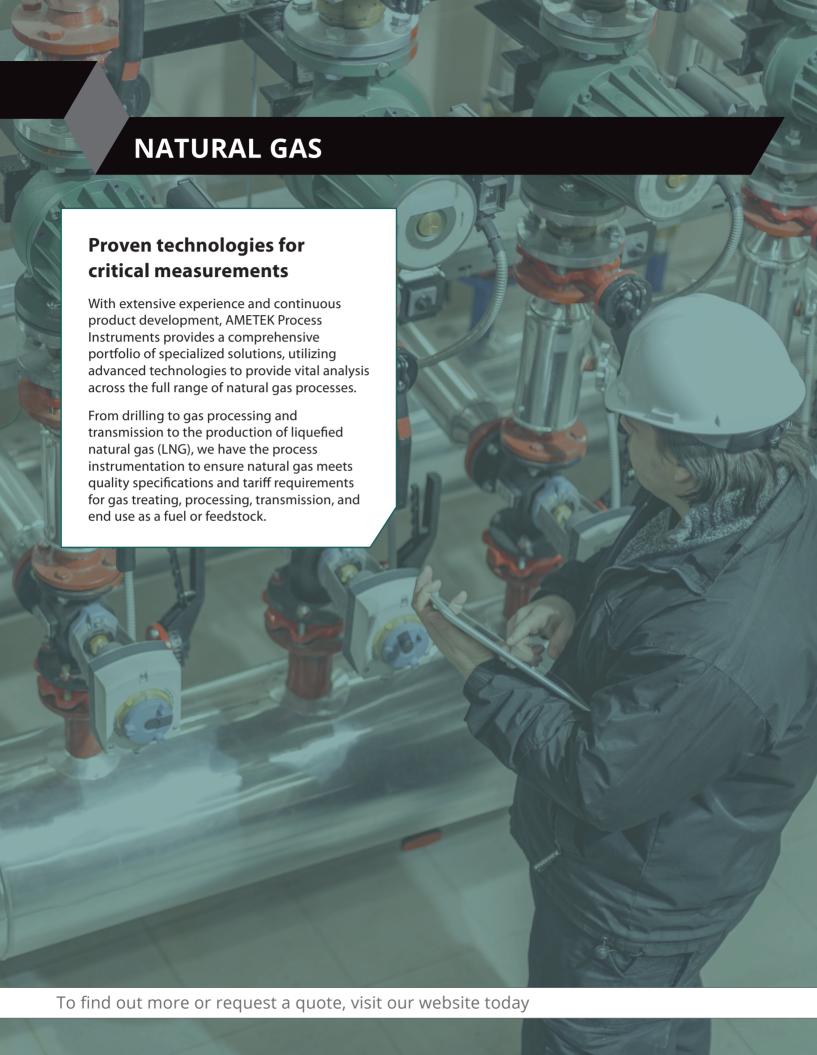
 O_2 : From 0-1 to 0-100% Combustibles: 0-1000 ppmv with overrange 0-2,000 ppmv; 0-10,000 ppm; 0-2 to 0-5% Hydrocarbon: 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range Hydrocarbon: $\pm 5\%$ of full scale output range

PROCESS

Foundry/Metals Production Furnaces, Power Generation


APPLICATION

Combustion Control and Oxygen Monitoring in Reheat Furnaces and Power and Steam Boilers

TECHNOLOGY: ZrO₂, Catalytic Sensor

931/932

MEASURES: H₂S, Optional COS, CS₂, NH₃, SO₂, H₂, CO₂

RANGE

 H_2S : ppmv ranges to high percent levels H_2 : 0 to 5% or 0 to 10% Other components and ranges are available upon request

ACCURACY

Standard range (UV): $\pm 1\%$ of full scale Optional (TCD) H_2 sensor for TGTU applications: $\pm 2\%$ on a 0 to 10% range; $\pm 4\%$ on a 0 to 5% range Optional (IR) sensor for THC, CO_2 : application specific, consult factory

PROCESS

Drilling Wells, Sweetening, Transmission Pipelines, Underground Storage, LNG

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: UV/TCD/IR

933

RANGE

 $H_2S\colon 0$ to 3 ppmv min.; 0 to 100 ppmv max. COS: 0 to 15 ppmv min.; 0 to 500 ppmv max. MeSH: 0 to 9 ppmv min.; 0 to 250 ppmv max.

ACCURACY

Standard range: ±2% of full scale Low range: ±5% of full scale

$\textbf{MEASURES:}\ H_2S,\ COS,\ CH_3SH$

PROCESS

Sweetening, Transmission Pipelines, LNG, Underground Storage

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: UV/IR

5100P

MEASURES: Moisture

RANGE

0 to 2500 ppmv

ACCURACY

 ± 4 ppmv, or $\pm 2\%$ of reading, whichever is greater

PROCESS

Dehydration, Transmission Pipelines, Underground Storage

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits

TECHNOLOGY: TDLAS

5100HD

RANGE

 H_2O : 0.25 to 60 lbs CO_2 : 0-50 ppmv to 0-100% H_2S : 0-300 ppmv to 0-100%

ACCURACY

 H_2O : ± 4 ppmv or $\pm 2\%$ of reading, whichever is greater CO_2 : range dependent H_2S : range dependent

PROCESS

H₂O, H₂S

Dehydration, Sweetening, Transmission Pipelines, Underground Storage, LNG

MEASURES: CO, CO₂, O₂,

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: TDLAS

5100

MEASURES: CO₂, H₂O, H₂S

RANGE

0.25-60 lb/MMscf/4-1900 mg/m³ (5 to 2500 ppmv) Other ranges available

ACCURACY

±4 ppmv or ±2% of reading, whichever is greater

PROCESS

Sweetening, Dehydration, Transmission Pipelines, Underground Storage

APPLICATION

Amine and Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits

TECHNOLOGY: TDLAS

241CE II

MEASURES: Hydrocarbon Dew Point Temperature

RANGE

Cooling capability: Typically 60°C below the temperature at the analyzer installation
Highest measurable dew point:
Application dependent, typically 15°C below the temperature at the analyzer installation

ACCURACY

Hydrocarbon dew point temperature $\pm 1^{\circ}C$

PROCESS

Dehydration, Drilling/Wells, Transmission Pipelines, LPG & NGL Fractionation

APPLICATION

Glycol Contactor Efficiency, Dryer Efficiency & Breakthrough, Custody Transfer Tariff Limits, Liquids Separation

TECHNOLOGY: Chilled Mirror

Chanscope II

RANGE

Dew point temperature ranges: -29°C to ambient, with liquid propane; -62°C to ambient, with liquid carbon dioxide; -129°C to ambient, with optional liquid nitrogen chiller

ACCURACY

 $\pm 0.2^{\circ}\text{C}$ at 40°C to -90°C

MEASURES: H₂O and Hydrocarbon Dew Point Temperature

PROCESS

Dehydration, Transmission Pipelines, LPG & NGL Fractionation, Underground Storage, Drilling/Wells

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Liquids Separation

TECHNOLOGY: Chilled Mirror

Model 13

MEASURES: H₂O and Hydrocarbon Dew Point Temperature

RANGE

Dew point temperature range dependent on which thermometer is chosen

ACCURACY

±0.25°C

PROCESS

Dehydration, Transmission Pipelines, LPG & NGL Fractionation, Underground Storage, Drilling/Wells

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Liquids Separation

TECHNOLOGY: Chilled Mirror

3050-OLV

MEASURES: H₂O

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$ or reading, whichever is greater

PROCESS

Dehydration, Transmission Pipelines, Underground Storage

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits

TECHNOLOGY: QCM

3050-SLR

RANGE

0.1 to 100 ppmv. Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.03 ppmv or $\pm 10\%$ of reading, whichever is greater

MEASURES: H₂O

PROCESS

Dehydration, Transmission Pipelines, LNG

APPLICATION

Glycol Contactor Efficiency, Dryer Efficiency & Breakthrough, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: QCM

3050-DO

RANGE

0.02 to 100 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.02 ppmv or $\pm 10\%$ of reading, whichever is greater

MEASURES: H₂O

PROCESS

Dehydration, LPG & NGL Fractionation, LNG

APPLICATION

Dryer Efficiency and Breakthrough

3050-TE

RANGE

0.01 to 100 ppmv Readout capability in ppmw, lb/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.01 ppmv or $\pm 10\%$ of reading, whichever is greater

MEASURES: H₂O

PROCESS

LNG, LPG & NGL Fractionation

APPLICATION

Feed Gas Quality to Turbo Expander

TECHNOLOGY: QCM

TECHNOLOGY: QCM

NATURAL GAS

303B

MEASURES: H₂O

RANGE

0 to 1000 ppmv (0-2000 ppmv range with reduced sample flow)

ACCURACY

 ± 0.5 ppmv or $\pm 5.0\%$ of reading, whichever is greater

PROCESS

Dehydration, Transmission Pipelines, Underground Storage, LNG

APPLICATION

Glycol Contactor Efficiency, Transmission Sales Gas Quality, Custody Transfer Tariff Limits, Feed Gas Quality for LNG Liquefaction

TECHNOLOGY: P₂O₅

IPS-4

MEASURES: HC, NH₃, H₂O, CO₂, Cl₂, FeCl₃, CH₃l, SO₂, H₂S, NO, NO₂, ClO₂, NOx, H₂S in rich amine, ASTM color standards, Bisphenol-A, Ethylene Glycol

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Gas Sweetening

APPLICATION

Rich Amine

TECHNOLOGY: UV/NDIR

WDG-V

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5% Hydrocarbon: From 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range Hydrocarbon: $\pm 5\%$ of full scale output range

MEASURES: O₂, Combustibles,

PROCESS

Fired Heaters, Power and Steam Generation

APPLICATION

Combustion Control in Process Heaters, Power and Steam Boilers, Thermal Oxidizers

TECHNOLOGY: ZrO₂, Catalytic sensor

5100HD

RANGE

H₂O: ppmv to % level, application dependent O₂: 0-5%; 0-25%

ACCURACY

O₂: ±0.2%

MEASURES: O₂, H₂O

PROCESS

Drying Operations

APPLICATION

Moisture in Final Product, Oxygen Concentration in Dryers

TECHNOLOGY: TDLAS

WDG-HPII

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range

MEASURES: O₂, Combustibles

PROCESS

Lime Kilns

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂

ProMaxion

RANGE 1 ppmv-100%; 25 ppbv to 10 ppmv with membrane inlet

ACCURACY

 $\pm 0.5\%$ of measured value for argon in air

PROCESS

Safety-Health, Endpoint Detection

MEASURES: N₂, O₂, CO₂, CO, Argon, Methanol, Ethanol,

Organic Solvents, VOCs, and other

APPLICATION

components m/z 1-200

Ambient Air, Solvent Drying, Reaction Monitoring

TECHNOLOGY: Mass Spectrometer

PHARMACEUTICAL

ProLine

MEASURES: N₂, O₂, CO₂, CO, Argon, Methanol, Ethanol, Organic Solvents, VOCs, and other components m/z 1-200

RANGE

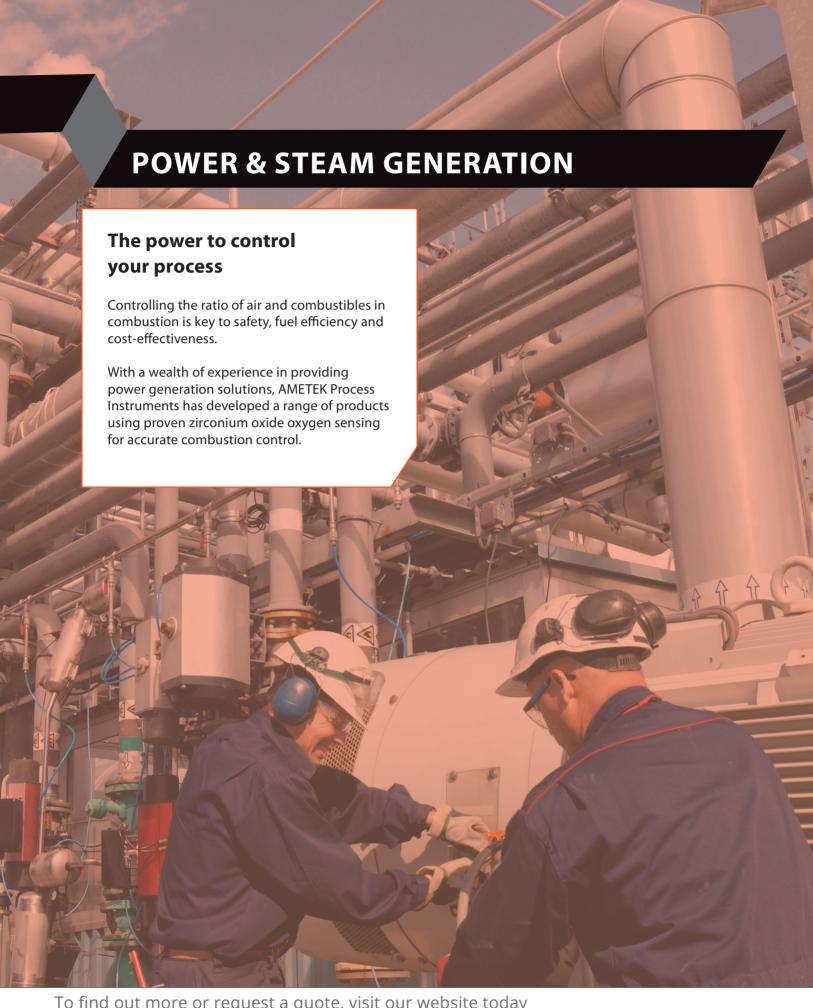
1 ppm-100%

PROCESS

Safety-Health, Endpoint Detection

ACCURACY

 $\pm 0.5\%$ of measured value for argon in air


APPLICATION

Ambient Air, Solvent Drying, Reaction Monitoring

TECHNOLOGY: Mass Spectrometer

To find out more or request a quote, visit our website today

POWER & STEAM GENERATION

WDG-V Blowback

MEASURES: O₂, Combustibles,

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: 0-1000 ppmv with overrange 0-2,000 ppmv to 0-10,000 ppmv, 0-2 to 0-5% Hydrocarbon: 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range Hydrocarbon: $\pm 5\%$ of full scale output range

PROCESS

Coal Fired Boilers, High Particulate/Dusty Processes

APPLICATION

Combustion Control for Boilers

TECHNOLOGY: ZrO₂, Catalytic Sensor

WDG Insitu

MEASURES: O₂

RANGE

From 0-1% to 0-100% O₂

ACCURACY

 $\pm 1\%$ of measured value or $\pm 0.05\%$, whichever is greater

PROCESS

Power and Steam Boilers, Recovery Boilers

APPLICATION

Oxygen Monitoring in Boilers, Stratification

TECHNOLOGY: ZrO₂

WDG 1200/1210 Insitu

MEASURES: O₂

RANGE

0-1% up to 0-25% v/v O_2

ACCURACY

Accuracy: $\pm 1\%$ of measured value or $\pm 0.05\%$, whichever is greater

PROCESS

Power and Steam Boilers

APPLICATION

Oxygen Monitoring in Boilers

TECHNOLOGY: ZrO₂

WDG-HPII

MEASURES: O₂, Combustibles

RANGE

 O_2 : from 0-1% to 0-100% Combustibles: from 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full

scale output range

PROCESS

Coal Fired Boilers, Waste Wood Boilers, Biofuel Boilers, Recovery Boilers, High Particulate/Dusty Processes

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensor

POWER & STEAM GENERATION

WDG-V

MEASURES: O₂, Combustibles,

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: 0-1000 ppmv with overrange 0-2,000 ppmv to 0-10,000 ppmv, 0-2 to 0-5% Hydrocarbon: 0-5%

ACCURACY

O₂: ±0.75% of measured value or ±0.05%, whichever is greater
Combustibles: ±2% of full scale output range
Hydrocarbon: ±5% of full scale output range

PROCESS

Power and Steam Boilers

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensor

5100HD

MEASURES: CO, CH₄, O₂

RANGE

ppmv to % level, application dependent

ACCURACY

 CH_4 and CO: $\pm 2\%$ of reading O_2 : $\pm 0.2\%$

PROCESS

Combustion

APPLICATION

Safety and Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

3050-OLV

MEASURES: H₂O

PROCESS

Generators

APPLICATION

Moisture Control

Hydrogen Cooled Electric

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, Ib/mmscf, mg/Nm³, and dew point temperature in °C or °F (requires process pressure as an input)

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$ of reading, whichever is greater

TECHNOLOGY: QCM

PULP & PAPER, GLASS, CEMENT & LIME

CMFA-P2000

MEASURES: Excess O₂ or Excess Fuel

RANGE

100% to 0.1% excess O_2 and 0.1% to 50% excess fuel

ACCURACY

range, natural gas

Excess O_2 : $\pm 2\%$ of measured value or $\pm 0.1\%$, whichever is greater Excess Fuel: $\pm 5\%$ of measured value or $\pm 0.25\%$, whichever is greater Specifications based on 0-15%

PROCESS

Fiberglass Strand and Glass Container Melt Tanks/Forehearths, Ribbon Burners on Flame Treating Lines, Brazing Machines (pre-heat, flux, and braze)

APPLICATION

Portable Oxygen and Air/Fuel Mixture Monitoring to Control Product Quality in Glass & Fiber Manufacturing

TECHNOLOGY: ZrO₂

5100HD

RANGE

ppmv to % level, application dependent

ACCURACY

±2% of reading

MEASURES: CO, CH₄, O₂

PROCESS

Combustion

APPLICATION

Safety and Operational Efficiency Monitoring

TECHNOLOGY: TDLAS

PreMix 2000

MEASURES: Excess O₂ or Excess Fuel

RANGE

All or selected portions of the range from 100% to 0.1% excess O_2 and 0.1% to 50% excess fuel

ACCURACY

Excess O₂: ±2% of measured value or ±0.1%, whichever is greater
Excess Fuel: ±5% of measured value or 0.25%, whichever is greater

PROCESS

Fiberglass Spinner Blowers/Day Pots, Technical Glass Forming Furnaces

APPLICATION

Control of Product Quality via Oxygen and Air/Fuel Mixture Monitoring in Glass and Fiber Manufacturing

TECHNOLOGY: ZrO₂

WDG-HPII

MEASURES: O₂, Combustibles

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: From 0-2,000 ppmv to 0-10,000 ppmv or from 0-1% to 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full

scale output range

PROCESS

Kilns, Power Generation, Process Furnaces

APPLICATION

Combustion Control and Oxygen Monitoring in Rotary Kilns, Power and Steam Boilers, Black Liquor Recovery Boilers, Multiple Hearth Furnaces, Glass Melting Tank Exhaust

TECHNOLOGY: ZrO₂, Catalytic Sensor

To find out more or request a quote, visit our website today

PULP & PAPER, GLASS, CEMENT & LIME

IPS-4

MEASURES: SO₂, NOx, ClO₂, CO

RANGE

ppmv to 100%

ACCURACY

UV: ±1% of full scale range IR: ±2% of full scale range Dual Bench: ±2% of full scale typical

PROCESS

Emission Compliance

APPLICATION

Pulp Bleaching, Emissions Compliance

TECHNOLOGY: UV/NDIR

9900RM

MEASURES: SO₂, NOx, ClO₂

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY


Better than ±1.0% of standard full scale range

PROCESS

Emission Compliance

APPLICATION

Emissions

TECHNOLOGY: UV

9900WM

MEASURES: SO₂, TRS, CIO₂

RANGE

ppmv/ppmw to 100%, application dependent

ACCURACY

Better than $\pm 1.0\%$ of standard full scale range

PROCESS

Emission Compliance

APPLICATION

Emissions

TECHNOLOGY: UV

WDG-V Blowback

RANGE

 O_2 : From 0-1% to 0-100% Combustibles: 0-1000 ppmv with overrange 0-2,000 ppmv to 0-10,000 ppmv, 0-2 to 0-5% Hydrocarbon: 0-5%

ACCURACY

 O_2 : $\pm 0.75\%$ of measured value or $\pm 0.05\%$, whichever is greater Combustibles: $\pm 2\%$ of full scale output range Hydrocarbon: $\pm 5\%$ of full scale output range

PROCESS

Fired Heaters, Process Generation, Process Furnaces, Kilns

MEASURES: O2, Combustibles,

APPLICATION

Combustion Control

TECHNOLOGY: ZrO₂, Catalytic Sensor

Accurate monitoring of moisture and impurity contamination

Moisture contamination in semiconductor manufacturing is a major cause of defects and process variations, significantly impacting yield.

This makes moisture analysis essential, both for cleanroom areas where semiconductor wafers are produced and stored, and for the ultra-high purity gases used in manufacturing processes.

A variety of methods are available for measuring moisture from high levels to trace amounts. Many manufacturing applications rely on trace measurements of water vapor to ensure process quality is maintained.

5910

MEASURES: H₂O

RANGE

0 to 150 ppbv Trend indication to 1000 ppbv

ACCURACY

±100 ppbv or ±10% of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

5920

MEASURES: H₂O

RANGE

ACCURACY

0 to 150 ppbv Trend indication to 1000 ppbv

PROCESS Gas Purification

APPLICATION

Quality

 ± 1 ppbv or $\pm 10\%$ of the reading, whichever is greater

TECHNOLOGY: QCM

ta7000

RANGE

0 to 199.9 ppbv

ACCURACY

 ± 1 x LDL or $\pm 10\%$ of reading, whichever is greater

MEASURES: H₂, CO, CO₂, CH₄, NMHC

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

ta5000

RANGE

RGD: 0-3 ppmv FID: 0-5 ppmv

ACCURACY

 $\pm 1 \times LDL$ or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO, CO₂, H₂, CH₄, NMHC

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

5800

MEASURES: H₂O

RANGE

0.02 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±5% of the reading, whichever is greater

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

5830

RANGE

0 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

±20 ppbv or ±10% of the reading, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

3050-AMS

RANGE

0.035 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

 ± 0.035 ppmv or $\pm 10\%$, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

3050-AM

RANGE

0.1 to 100 ppmv Indicates trend to 1000 ppmv

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

To find out more or request a quote, visit our website today

3050-RM

MEASURES: H₂O

RANGE

0.1 to 2,500 ppmv Readout capability in ppmw, Ib/mmscf, mg/Nm³, and dew point temperature in °C or °F

PROCESS

Gas Purification

APPLICATION

Quality

ACCURACY

 ± 0.1 ppmv or $\pm 10\%$, whichever is greater

TECHNOLOGY: QCM

2850

RANGE

0.1 to 1000 ppmv

ACCURACY

 ± 0.05 ppmv or $\pm 5\%$ of the reading, whichever is greater

MEASURES: H₂O

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: QCM

ta3000

RANGE

RGD: 0-3 ppmv FID: 0-5 ppmv

ACCURACY

 ± 10 ppbv or $\pm 10\%$ of reading, whichever is greater

MEASURES: CO, CO₂, H₂, CH₄, NMHC

PROCESS

Gas Purification

APPLICATION

Quality

TECHNOLOGY: GC-RGD/FID

TM2000

RANGE

0.1 ppmv O_2 to $100\%\ O_2$

ACCURACY

± 1% of reading or 0.02% absolute, whichever is greater

MEASURES: O₂

PROCESS

Air Separation, Inert Gas Purity (N₂, Ar, CO₂, He, etc.), Blanket/ Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/ Furnace Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and High Purity Streams

TECHNOLOGY: ZrO₂

LC-D

MEASURES: All components m/z 1-300

RANGE

Total Pressure ≤10⁻⁵ torr

ACCURACY

Source sensitivity (Faraday cup): 2 x 10-4 amps per Torr at detector (measured with nitrogen at mass 28) with peak width = 0.5 at 10% height and 1 x 10-3 amps emission current

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer

CG1000

RANGE

0.1 ppmv O₂ to 100% O₂

ACCURACY

±2% of reading or 0.05% absolute, whichever is greater

PROCESS

MEASURES: O₂

Rapid Thermal Processing (RTP), Air Separation, Inert Gas Purity (N_2 , Ar, CO_2 , He, etc.), Blanket/Purge Gases, Glove Box Applications, Cryogenic Gas Generation, Atmospheric Oven/Furnace Control, UV Curing Ovens

APPLICATION

Trace Oxygen Monitoring for Quality Control of Inert Gas and High Purity Streams

TECHNOLOGY: ZrO₂

Dymaxion

MEASURES: All components m/z 1-300

RANGE

1-100, 1-200, 1-300 AMU

ACCURACY

Source sensitivity (Faraday cup): 2 x 10-4 amps per Torr at detector (measured with nitrogen at mass 28) with peak width = 0.5 at 10% height and 1 x 10-3 amps emission current

PROCESS

Chemical Vapor Deposition, Physical Vapor Deposition, Rapid Thermal Processing

APPLICATION

Quality

TECHNOLOGY: Mass Spectrometer

OTHER APPLICATIONS

Versatile, customized solutions

Our expertise and industry-leading technologies can be used in a range of applications across a variety of industries. If your process demands accurate, high-quality gas analysis, backed by global support and servicing, AMETEK Process Instruments delivers.

Additionally, to ensure accurate and reliable process measurements, a representative sample of the process fluid must be delivered to the analyzer. A well-designed sample conditioning system will consider filtration, temperature, pressure, flow rate and environmental conditions. Installations may require a full analyzer shelter including analyzers, sample systems, calibration gases, HVAC controls, and power distribution.

Contact AMETEK Process Instruments or your local AMETEK representative for more information on our analyzers.

WellPro

MEASURES: Components m/z 1-200 AMU

RANGE

1 ppmv-100%

ACCURACY

±0.5% of measured value for argon in air

PROCESS

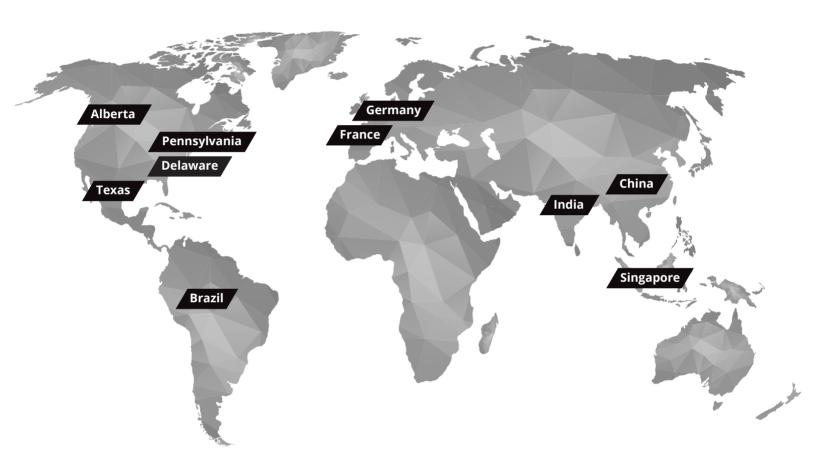
Well Logging

APPLICATION

Well Logging/Drilling

TECHNOLOGY: Mass Spectrometer

CABINETS, SHELTERS & HOUSES



AMETEK Process Instruments delivers worldwide sales and service support through a network of direct and factory-trained global distribution channels.

AMETEK Service Assistance Program plans offer coverage up to 24 hours a day, 365 days of the year.

As worldwide experts in the manufacture of process analyzers and instrumentation, we have supplied solutions to industry since 1962, providing the widest range of analysis technology available.

Through process application consulting, we create custom-designed solutions that meet the needs of your specific application or process.

SALES, SERVICE & MANUFACTURING

USA - Pennsylvania

150 Freeport Road Pittsburgh PA 15238 Tel: +1 412 828 9040

Fax: +1 412 826 0399

USA - Delaware

455 Corporate Blvd. Newark DE 19702 Tel: +1 302 456 4400

Fax: +1 302 456 4444

Canada - Alberta

2876 Sunridge Way NE Calgary AB T1Y 7H9 Tel: +1 403 235 8400

Fax: +1 403 248 3550

Tel: +1 713 466 4900 Fax: +1 713 849 1924

Brazil

USA

Tel: +55 19 2107 4100

France

Tel: +33 1 30 68 89 20 Fax: +33 1 30 68 89 99

Germany

Tel: +49 2159 9136 0 Fax: +49 2159 9136 39

India

WORLDWIDE SALES AND SERVICE LOCATIONS

Tel: +91 80 6782 3200 Fax: +91 80 6780 3232

Singapore

Tel: +65 6484 2388 Fax: +65 6481 6588

China

Beijing

Tel: +86 10 8526 2111 Fax: +86 10 8526 2141

Chengdu

Tel: +86 28 8675 8111 Fax: +86 28 8675 8141

Shanghai

Tel: +86 21 5868 5111 Fax: +86 21 5866 0969

© 2019, by AMETEK, Inc. All rights reserved. Printed in the U.S.A. F-0393 (0419) One of a family of innovative process analyzer solutions from AMETEK Process Instruments. Specifications subject to change without notice.

