
WHITE PAPER
PAGE 1

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Deep Learning Programming at Scale
Justin Selig, Cerebras SDK Product Manager
Saumya Satish, Machine Learning Product Manager

Abstract
Deep learning has become one of the most important computational workloads of our generation,
but it is profoundly computationally intensive. Today, large neural networks are often trained using
large clusters of graphics processing units (GPUs). These clusters are expensive, complicated to
program, and can take weeks to train a network.

In this paper, we highlight some of the most painful steps involved with distributed deep learning
on GPU clusters and describe how Cerebras makes training even massive networks fast, simple
and accessible to every ML practitioner, without requiring cluster or parallel programming
expertise.

Contents
Introduction	 2
Traditional approach: distributed training with a GPU cluster	 3
 Model distribution and cluster orchestration	 3
 Device and cluster orchestration	 3
 Convergence and tuning	 3
The Cerebras Solution	 5
 Invisible Clustering with Weight Streaming	 5
 Weight Streaming Delivers Linear Performance Scaling	 5
Programming the CS-2	 7
 PyTorch Example	 7
 TensorFlow Example	 8
 Time-to-solution advantage	 9
Conclusion	 10

WHITE PAPER
PAGE 2

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Introduction
Deep learning has become one of the most important computational workloads of our generation,
advancing applications across industries from healthcare to autonomous driving. But it is also
profoundly computationally intensive.

To train today’s state-of-the-art neural networks, researchers often have to use large clusters of
dozens to hundreds of graphics processing units (GPUs). These clusters are expensive to build,
complicated to program for, and can still take days to weeks to train a network, dragging the pace
of innovation. We founded Cerebras Systems to solve this problem.

Most deep learning work begins in a prototype phase, when researchers want to experiment
quickly and iterate often. When an experiment is in its earliest stages and being run with a limited
subset of data, a small-scale hardware setup (a workstation with a single GPU, for example) can
suffice.

But as research scales up or models move into production, the increased complexity and larger
datasets require vastly more compute. At this point, researchers have historically turned to large,
scale-out GPU clusters. However, achieving good utilization across an enormous compute cluster
is complicated and time consuming. It requires distributing a workload across many small devices,
dealing with device memory sizes and memory bandwidth constraints, and carefully managing
communication and synchronization overheads. Researchers often find themselves needing to pull
in additional layers of software like Horovod and OpenMPI.

Furthermore, it is rare for massively distributed training setups to produce correct results right out
of the box. Scale-out efficiency relies on using very large batch sizes, which can affect how models
converge. To deal with accuracy drops, researchers run extensive experiment sweeps, tuning
learning rates and trying different optimizers, in order to find an optimal training configuration that
is then highly tailored to a specific hardware configuration.

So, while it is possible to bring more compute to neural network training by clustering large
numbers of GPUs, it is complicated, time-consuming, and difficult for the entire organization - from
machine learning (ML) researchers to production ML engineers, infrastructure, and IT teams.

At Cerebras Systems, we believe that state-of-the-art deep learning should be simple and
accessible to every ML practitioner, without requiring cluster or parallel programming expertise.
Powered by wafer-scale technology, the Cerebras CS-2 system densifies the compute and
memory of an entire cluster onto a single chip in a single device. This enables ML researchers and
practitioners to achieve cluster-scale performance with the programming ease of a single machine.
And for extreme-scale models, Cerebras systems can be clustered “invisibly”, meaning that
performance scales linearly with any code changes.

In the sections below, we highlight some of the most painful steps involved with distributed deep
learning on GPU clusters and describe an easier, faster way to achieve deep learning at scale on
Cerebras systems.

WHITE PAPER
PAGE 3

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Traditional approach: distributed training with a GPU cluster
What does it take today to scale training across a large cluster of GPUs?

Model distribution and cluster orchestration
ML Frameworks like PyTorch and TensorFlow have made it straightforward to build and run a
model on a single GPU. But eventually you hit a performance wall and need to scale out to
support full-scale experiments that use large amounts of data. At this point you are faced with the
challenge of figuring out how to distribute your model across many GPUs.

Multi-GPU workload distribution requires thinking beyond the scope of a single neural network
model and exploiting parallelism across devices. Typically, users start by changing their model
code to train data-parallel across one or many multi-GPU machines, and use framework
augmentations like Distributed TensorFlow or PyTorch Distributed for software configuration.

These frameworks make scaling out less painful than trying to manually implement data, or model-
parallel execution, but it still takes time to tune the setups for them, and for them to learn. And
getting the model running is just the first step – it is only rarely that a distributed model will run at
good utilization and target accuracy right out of the box.

Device and cluster orchestration
Trying to run distributed deep learning workload at higher device utilization becomes more
involved. It’s a complex challenge to harness maximum functional performance from many
individual small processors, each with specific device constraints, which all need to be carefully
managed and orchestrated.

Doing this involves figuring out how to allocate compute between devices, how to think about
device memory sizes and memory constraints, and how to deal with the communication and
synchronization overheads among them. This is the point at which many users bring in yet more
frameworks like Horovod and libraries like OpenMPI – additional software to help with workload
distribution, inter-process communication, and both inter- and intra-node communication.

But model parallelization is not deep learning research or engineering; it is supercomputer cluster
engineering, and a fundamentally complex parallel programming problem. Even with the best
tools, it is extremely time consuming, and often requires the expertise of supporting IT, HPC,
and ML engineering teams. While this work is meant to speed up training across more GPUs, it is
instead itself one of the main reasons why training state-of-the-art models remains such a slow and
difficult process.

Convergence and tuning
Successfully distributing a model across a cluster takes more than tuning the cluster setup and
orchestrating the software; it requires researchers to change their actual model implementations.

As GPU clusters scale to 10s to 100s to even 1,000s of individual GPUs over many multi-GPU
servers, researchers are often forced to use extremely large batch sizes to mitigate massive
communication overheads and to achieve device utilization. But extreme batch size training often
has significant impact on model convergence. It can cause the total number of epochs needed to
increase considerably and can even result in drops in model accuracy.

Achieving a fast, distributed model implementation that still converges to target accuracy can take
days, weeks, or even longer. Researchers often need to run dozens of experiments to find the right
combination of hyperparameters (e.g. batch size, learning rate and momentum), optimizers, and
more to achieve convergence and target accuracy at scale.

Meanwhile, wall-clock training time also scales very sub-linearly (Figure 1). For example, A single
DGX-A100 server equipped with eight A100 GPUs, completed the second phase on the MLPerf

WHITE PAPER
PAGE 4

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

benchmarking dataset in 20 minutes, while a massive cluster of 540 DGX-A100 servers took 13.5
seconds. In other words, a 540x increase in the number of GPUs only delivered 89x speed-up.1

As the need for compute grows, researchers running distributed GPU implementations must deal
with increasing software and model convergence complexities, all while getting diminishing returns
in performance.

And finally, the resulting distributed cluster implementation of a deep learning model is brittle.
Training time-to-accuracy on a cluster is a function of the model, data, batch size, learning rate,
and number of devices. This means that if a researcher needs to change their data dimensions,
dataset, model architecture, or neural network layer operations / optimizers, they need to reset
their work and re-do the functional hyperparameter tuning, debugging, and performance tuning
experiments.

In summary, scaling deep learning training on a GPU cluster is time-intensive, complex, and often
results in brittle, suboptimal solutions.

Figure 1. Non-linear scaling performance of GPU clusters (MLPerf
1.1 benchmark published results)

WHITE PAPER
PAGE 5

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

The Cerebras Solution
At Cerebras, we built our systems to eliminate the challenges associated with scaling deep
learning models across a GPU cluster.

Powered by the largest chip in the world (over 56x larger than the next-largest chip), the second-
generation wafer-scale engine (WSE-2), the CS-2 system densifies the compute power of 850,000
AI-optimized cores onto a single chip. Keeping everything together on silicon means the CS-2
delivers not only enormous compute and on-chip memory, but also orders of magnitude more
memory and interconnect bandwidth than a GPU. These purpose-built performance advantages
allow the CS-2 to accelerate deep learning models far beyond what processors optimized for other
applications, such as GPUs, are capable of.

A single CS-2 provides the wall-clock compute performance of an entire cluster of GPUs made up
of dozens to hundreds of individual processors, at a fraction of the space and power.

For organizations, this means faster insights at lower cost. For the ML researcher, this means
achieving cluster-scale performance with the programming ease of a single device. With the CS-2,
researchers can accelerate state-of-the-art models without spending the days to weeks on the
setup and tuning needed to run distributed training on large clusters of small devices.

Invisible Clustering with Weight Streaming
As we’ve seen, because we don’t split problems up to multiple small chips, we set developers
free from parallel programming and cluster tuning. Each Cerebras system provides cluster-scale AI
compute resource with the programming ease of a laptop.

And the gigantic models in our near future – impossible to train today – can be seamlessly spread
across multiple Cerebras systems by just changing a configuration file. Users simply compile the
neural network mapping for a single CS-2 system, and the Cerebras software takes care of the rest.

Cerebras makes training massive models practical. Our “weight streaming” execution mode
provides a seamless scaling path from BERTLARGE, to GPT-J, to GPT-3 and all the way up to models
with more than 100 trillion parameters! Weight streaming works by inverting our normal execution
mode: instead of storing weights on chip, we store activations on the wafer, one massive layer at a
time, streaming the weights layer-by-layer to and from the WSE (Figure 2).2

Figure 2. Weight streaming execution mode system diagram.

WHITE PAPER
PAGE 6

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Weight Streaming Delivers Linear Performance Scaling
We have demonstrated that the weight streaming architecture delivers linear performance scaling
as more CS-2 systems are added to the cluster (Figure 3). This is in stark contrast to the strongly
sub-linear scaling observed with conventional GPU-based systems (Figure 1).

As Figure 3 shows, the bigger the model, the further the linear trend persists to larger cluster
sizes. Note that the 10x in the legend indicates the speed up we achieve from a conservative 90%
sparsity. The multiple lines indicate results for models with different aspect ratios. This data shows
that it’s possible to train a model with a trillion parameters in just a few days.

This remarkable result shows that the simplicity of the Cerebras programming model ensures that
the expertise acquired today developing code for our architecture will pay dividends far into the
future.

Figure 3. Cerebras CS-2 cluster demonstrates linear scaling perfor-
mance with increasing model size

Learn more about
Cerebras weight
streaming technology

Scaling Up and Out: Training Massive
Models on Cerebras Systems using
Weight Streaming (technical blog)3

Training Giant Neural Networks Using
Weight Streaming on Cerebras Wafer-
Scale Systems (white paper)2

https://www.cerebras.net/blog/scaling-up-and-out-training-massive-models-on-cerebras-systems-using-weight-streaming/
https://www.cerebras.net/blog/scaling-up-and-out-training-massive-models-on-cerebras-systems-using-weight-streaming/
https://www.cerebras.net/blog/scaling-up-and-out-training-massive-models-on-cerebras-systems-using-weight-streaming/
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual Booth Docs/CS Weight Streaming White Paper 111521.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual Booth Docs/CS Weight Streaming White Paper 111521.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual Booth Docs/CS Weight Streaming White Paper 111521.pdf

WHITE PAPER
PAGE 7

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Programming the CS-2
Because the CS-2 delivers cluster-scale acceleration in a single device, users can scale up
performance and dramatically reduce time-to-solution, all while keeping their programming model
simple. Data scientists and ML researchers can focus on working with their data, model, and
application, rather than sinking time into addressing the challenges and idiosyncrasies of multi-
device cluster orchestration and optimization.

Researchers can program the CS-2 using familiar ML frameworks like TensorFlow and PyTorch.
After that, the Cerebras Graph Compiler (CGC) handles everything else to automatically translate
the user’s neural network graph into an optimized executable for the 850,000 cores of the CS-2
(Figure 4).

Bringing an application to life on the CS-2 is as simple as adding a few lines of code. Because the
CS-2 is such a powerful single system, no additional work is needed to scale the network across
multiple small devices or to deal with communication and synchronization issues. Users can quickly
experiment with alternative model architectures, hyperparameters, and different batch sizes by
changing just a few lines of code.

With a CS-2, end-to-end model development tasks such as model setup, hyperparameter
optimization, scaling, and performance optimization can be done in hours or days, as compared to
the weeks they can take on a traditional GPU cluster.

PyTorch Example
Our PyTorch interface library is a simple
wrapper for PyTorch program exposed
through API calls that is easy to add as few
extra lines of code for an existing PyTorch
implementation. The integration is via lazy
tensor backend with XLA to capture the full
graph of a model and map it optimally onto
the WSE-2.

This code snippet illustrates how easy it is for
a user to adapt their PyTorch code.

Figure 4. Diagram showing how the Cerebras Graph Compiler turns framework code into exe-
cutables for the Cerebras SC-2 system.

Learn more about
Cerebras PyTorch
integration

Supporting PyTorch on the Cerebras
Wafer-Scale Engine (technical blog)4

Getting Started with PyTorch BERT
Models on the Cerebras CS-2 System
(walkthrough)5

https://www.cerebras.net/blog/supporting-pytorch-on-the-cerebras-wafer-scale-engine/
https://www.cerebras.net/blog/supporting-pytorch-on-the-cerebras-wafer-scale-engine/
https://www.cerebras.net/blog/getting-started-with-pytorch-bert-models-on-the-cerebras-cs-2-system/
https://www.cerebras.net/blog/getting-started-with-pytorch-bert-models-on-the-cerebras-cs-2-system/

WHITE PAPER
PAGE 8

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

import torch
import cerebras.framework.torch as cbtorch

cbtorch.initialize(
 cs_ip=cs_ip,
 …)

model = cbtorch.module(model_fn())
dataloader = cbtorch.dataloader(data_fn())
optimizer = cbtorch.optimizer(optimizer)

with cbtorch.Session(data_loader, modes.TRAIN):
 super().train(data_loader)
with cbtorch.Session(data_loader, modes.EVAL):
 super().evaluate(data_loader)

TensorFlow Example
The CerebrasEstimator is a wrapper class developed by our team for TensorFlow. Users simply
import CerebrasEstimator, then define their model function, input function, relevant parameters,
and training script as usual, using standard TensorFlow semantics.

The entire process is captured below:

from cerebras.tf.cs_estimator import CerebrasEstimator
from cerebras.tf.run_config import CSRunConfig

 est_config = CSRunConfig(
 cs_ip=params[“cs_ip”],
 cs_config=cs_config,
)
 est = CerebrasEstimator(
 model_fn=model_fn,
 model_dir=`./out`
 config=est_config,
 params=params,
 use_cs=True
)
 est.train(input_fn, max_steps=100000, use_cs=True)

CerebrasEstimator is subclassed from the official TensorFlow Estimator class, to keep the
workflow easy and familiar. The user need only instantiate the CerebrasEstimator, provide an IP
address for their Cerebras system, and set a flag use_cs=True to direct training or inference to the
CS-2. At runtime, CerebrasEstimator.train() will automatically invoke the CGC and handle
the rest of what is needed to prepare a model for the CS-2.

WHITE PAPER
PAGE 9

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Time-to-solution advantage
The CS-2 system’s unique combination of tremendous performance and single-node simplicity not
only avoids parallel programming complexity, but also unlocks much faster time-to-solution, from
research concept to model-in-production.

In a typical GPU cluster setup, an ML engineer may spend days or weeks choosing and tuning
hyperparameters to achieve acceptable device utilization while maintaining model accuracy at
extreme batch sizes.

Because the CS-2 is a single powerful device, there is no such batch size requirement. On CS-
2, researchers can train models with high utilization at any batch size, avoiding the need to run
additional hyperparameter sweeps to avoid accuracy drops. This means that users can achieve
not only enormous acceleration right out of the box, but can also increase model convergence to
target accuracy.

In partnership with one of our life sciences customers, we compared the time-to-solution for a
domain-specific BERT NLP model development project from concept to production using a GPU
cluster versus using a Cerebras system (Figure 5).

We considered the same model and dataset,
and included steps for software setup: model
definition, functional debugging, performance
optimization, initial model training, and
subsequent experiments to develop a production-
ready implementation.

This work showed that the Cerebras solution
reduced end-to-end time to production solution
from 17 weeks on a GPU cluster to 3.5 weeks on
a Cerebras system. Programming and compute
time were reduced by more than three months,
saving our customer significant engineering
costs and allowing them to accelerate new AI
innovation.

Figure 5. Overall time-to-solution for a Cerebras system vs customer GPU clus-
ter. End-to-end development time was reduced by almost 5x.

Explore more
customer applications
and use cases

GlaxoSmithKline and Cerebras are
Advancing the State of the Art in AI for
Drug Discovery (joint customer blog)6

Accelerating NLP Model Training and
Enabling Higher Accuracy for Financial
Services Applications (case study)7

https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-discovery/
https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-discovery/
https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-discovery/
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf

WHITE PAPER
PAGE 10

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Conclusion
Deep Learning will continue to be one of the most important computational workloads of our time.
Today’s traditional systems are creating drag on the pace of innovation across countless industries.

 At Cerebras Systems, we believe that state-of-the-art deep learning should be simple and
accessible. We have been able to densify the compute and memory of an entire cluster’s worth
of compute onto a single chip in a single device. We have created an easier, faster way to achieve
deep learning at scale.

To learn more or to see a demo, please contact us at cerebras.net/get-demo.

References
1	 MLPerf training 1.1 results https://mlcommons.org/en/news/mlperf-training-v11/

2	 Stewart Hall, Rob Schreiber, Sean Lie, “Training Giant Neural Networks Using Weight Streaming on
Cerebras Wafer-Scale Systems”, Cerebras Systems, 2021 https://f.hubspotusercontent30.net/hubfs/8968533/
Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf

3	 Michael James, “Scaling Up and Out: Training Massive Models on Cerebras Systems using Weight
Streaming”, Cerebras Systems, 2021 https://www.cerebras.net/blog/scaling-up-and-out-training-massive-
models-on-cerebras-systems-using-weight-streaming/

4	 Emad Barsoum, “Supporting PyTorch on the Cerebras Wafer-Scale Engine”, Cerebras Systems, 2022
https://www.cerebras.net/blog/supporting-pytorch-on-the-cerebras-wafer-scale-engine/

5	 Antonio Kim, Ryan Reece, “Getting Started with PyTorch BERT Models on the Cerebras CS-2 System”,
Cerebras Systems, 2022 https://www.cerebras.net/blog/getting-started-with-pytorch-bert-models-on-the-
cerebras-cs-2-system/

6	 Kim Branson, Meredith Trotter, Stephen Young, Natalia Vassilieva, “GlaxoSmithKline and Cerebras are
Advancing the State of the Art in AI for Drug Discovery”, GlaxoSmithKline and Cerebras Systems, 2022
https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-
discovery/

7	 Sanjana Mallya, Cindy Orozco Bohorquez, Natalia Vassilieva, “Accelerating NLP Model Training
and Enabling Higher Accuracy for Financial Services Applications”, Cerebras Systems, 2022 https://f.
hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf

http://cerebras.net/get-demo
https://mlcommons.org/en/news/mlperf-training-v11/
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Virtual%20Booth%20Docs/CS%20Weight%20Streaming%20White%20Paper%20111521.pdf
https://www.cerebras.net/blog/scaling-up-and-out-training-massive-models-on-cerebras-systems-using-weight-streaming/
https://www.cerebras.net/blog/scaling-up-and-out-training-massive-models-on-cerebras-systems-using-weight-streaming/
https://www.cerebras.net/blog/supporting-pytorch-on-the-cerebras-wafer-scale-engine/
https://www.cerebras.net/blog/getting-started-with-pytorch-bert-models-on-the-cerebras-cs-2-system/
https://www.cerebras.net/blog/getting-started-with-pytorch-bert-models-on-the-cerebras-cs-2-system/
https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-discovery/
https://www.cerebras.net/blog/glaxosmithkline-and-cerebras-are-advancing-the-state-of-the-art-in-ai-for-drug-discovery/
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf
https://f.hubspotusercontent30.net/hubfs/8968533/Cerebras-Financial-Institution-NLP-case-study.pdf

	Introduction
	Traditional approach: distributed training with a GPU cluster
	Model distribution and cluster orchestration
	Device and cluster orchestration
	Convergence and tuning

	The Cerebras Solution
	Invisible Clustering with Weight Streaming
	Weight Streaming Delivers Linear Performance Scaling

	Programming the CS-2
	PyTorch Example
	TensorFlow Example

	Time-to-solution advantage
	Conclusion

