
WHITE PAPER
PAGE 1

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

The Cerebras Software Development Kit:
A Technical Overview
Justin Selig, Cerebras SDK Product Manager

Abstract
The Cerebras CS-2 system is the world’s largest and most powerful HPC and AI accelerator. It
excels on workloads that are constrained by the limitations of conventional computers: poor
parallel efficiency, bandwidth constraints in the face of heavy local or global communication, long
memory access latency, and imbalances between various compute and communication resources.
Sparse linear algebra and tensor workloads, stencil-based partial differential equation (PDE)
solvers, n-body problems, and signal processing algorithms such as the Fast Fourier Transform,
are workloads where Cerebras systems have demonstrated superior performance compared to
conventional scale-out solutions. We expect to find many more use cases that are well-suited for
wafer-scale computing using the Cerebras architecture.

Cerebras has introduced a new software development kit (SDK) which allows anyone to take
advantage of the strengths of the CS-2 system. Developers can use the Cerebras SDK to create
custom kernels for their standalone applications or modify the kernel libraries provided for their
unique use cases. The SDK enables developers to harness the power of wafer-scale computing
with the tools and software used by the Cerebras development team.

WHITE PAPER
PAGE 2

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Removing Data Access and Scaling Constraints
A distributed problem
There is a growing realization in the high-performance computing (HPC) field that the traditional
scale-out approach of hundreds or thousands of identical compute nodes loaded up with GPUs
or other accelerators has limitations. The efficiency of algorithms tends to decrease as they are
split, or “sharded” across many nodes, because moving data between those nodes is such a slow
process. Writing code for massively parallel systems is a difficult and time consuming.

A far better solution is to scale up the power of individual compute nodes, that is to add very
powerful accelerators to the network as complete, independent compute nodes that are capable
of fitting problems of interest within a single chip. The Cerebras CS-2 system is the world’s most
powerful network-attached accelerator.

Why is the Cerebras system so fast?
At the heart of the Cerebras CS-2 is the second-generation Wafer-Scale Engine (WSE-2). The specs
are impressive: the WSE-2 is a massive parallel processor built from a single 300mm wafer. It offers
850,000 cores, optimized for sparse linear algebra with support for FP16, FP32, and INT16 data
types. It contains 40GB of onboard SRAM divided between its cores, with 220Pb/s of interconnect
bandwidth and 20PB/s of memory bandwidth, ensuring that each core can access its local memory
in a single clock cycle.

All of these numbers are orders of magnitude greater than those of conventional architectures.
But how do they translate to the kind of real-world performance that makes HPC developers so
excited?

First, wafer-scale integration collapses time by collapsing space. By putting a roomful of cores on
one chip, data spends less time in flight. The wires are short – millimeters or less, instead of tens of
meters. And moreover, we eliminate all the hardware and layers of software in between: no DDR,
no PCIe, no InfiniBand or Ethernet.

Second, the architecture was designed expressly to excel at workloads that demand high-speed
memory access and data transfer:

We don’t waste time accessing data – the entirety of each
core’s memory is one clock cycle away.

We don’t waste time waiting for data to crawl between nodes
– even the fastest external network is a thousand times slower
than the single clock cycle it takes to move from core to core
on the WSE-2.

We don’t have to split data objects, such as graphs and
arrays, across nodes at the wrong end of a tiny, long, I/O
pipe.

These attributes allow unequaled acceleration for sparse
linear algebra, the math underlying neural networks and
some HPC algorithms, as well as dense linear algebra and
spectral algorithms.

In the remainder of this paper, we’ll take a detailed look at
the programming model and introduce the key concepts
that enable developers to harness the power of the Cerebras
architecture.

WHITE PAPER
PAGE 3

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Programming Model
While the CS-2 system already supports frameworks like PyTorch and TensorFlow, the Cerebras
SDK allows programmers to write lower-level code that targets the WSE’s microarchitecture directly
using a domain-specific programming language called the Cerebras Software Language, or CSL.

In CSL, the cores on the WSE-2 are referred to as Processing Elements (PEs). The programmer
can write code that targets every PE of the wafer such that compute and memory are optimally
utilized. The programmer communicates to the device via a set of runtime APIs executed on one
or more host computers.

The CS-2 system is programmed similarly to most accelerators today. A host system is used to
load programs on to the CS-2 system for execution. The host is capable of targeting either an
actual CS-2 system or a software simulator for testing and debugging. Programs intended for the
CS-2 system are written in the CSL programming language.

In addition to its focus on programming the individual PE, CSL also allows the developer to specify
a group of PEs that each run a copy of a single PE program, and to then arrange several such
groups, with different programs running in different groups. It allows the programmer to specify
the communication paths through the on-wafer network for data communication within each
group and between the groups. This additional flexibility helps CS-2 system programmers take full
advantage of what the platform has to offer.

Instruction Set Architecture: Hardware and Data Structures
The 850,000 PEs on the WSE-2 are structured in a 2D grid. Each PE contains a general-purpose
compute element (CE), a fabric router, and 48kB of local SRAM memory with single-cycle read/
write access latency. PE-to-PE communication latency is also one cycle. The PE contains a network
router with links to the CE and to the routers of the four nearest PEs in the north, south, east,
and west directions. Communication is integrated into the instruction set, at single 32-bit word
granularity, and is accordingly as fast as arithmetic.

WHITE PAPER
PAGE 4

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

The CE’s instruction set supports FP32, FP16, and INT16 data types. The Cerebras ISA supports
optimized vector operations for processing tensors as well as general-purpose control instructions.
A CE can execute vector instructions that perform up to eight operations per clock for FP16
operands.

Data moves from PE to PE in 32-bit packets called wavelets. Software tags each wavelet with a 5
bit virtual channel identifier called a color. Every router is configured to route each of the colors
to any subset of its five outgoing links. In this way, for every color a path through the network can
be set up to send data from any source to any set of destinations. The router can be statically
configured at compile time, or dynamically reconfigured at runtime. The figure below shows how a
routing table in each PE maps colors to directions.

For communicating sparse data, a wavelet can be formed from a 16-bit index and a 16-bit data
field containing the index i and the value x(i) of a nonzero element of a sparse vector.

Programming the CS-2 using CSL
CSL is designed for writing high-performance programs for PEs on the WSE. CSL is a medium-level
language, in that it exposes both low and high-level programming features. CSL is low-level in
that it exposes the capabilities of the instruction set and some of the hardware structures that the
ISA controls. On the other hand, CSL is a high-level language in that it supports structured control
flow, loops, if-then-else constructs, and hides processor registers, performing automatic register
allocation. CSL allows for compile time execution of code blocks that take compile-time constant
objects as input, a powerful feature it inherits from Zig, on which CSL is based. CSL will be largely
familiar to anyone who is comfortable with C/C++, but there are some new capabilities on top of
the C-derived basics.

CSL is a statically typed language with syntax similar to languages like C/C++. It supports signed
and unsigned integers (16 and 32-bit), half-precision and single-precision floating point operations,
and booleans. Functions are supported. CSL also contains built-ins for accessing special compiler
features, including type checking, compile-time directives, and pseudo-random number
generators. Common control structures like if/else, case/switch, and while are also supported.

WHITE PAPER
PAGE 5

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

CSL supports the use of modules. Modules allow one CSL file to include another CSL file. Using
modules, programmers can invoke functions or refer to constants within the imported module.
Modules can also invoke library functions.

One major new capability of CSL is the introduction of tasks, which are special functions used to
implement dataflow programs. Tasks are mapped to colors. When a wavelet arrives, an associated
task can be automatically executed. This function operates similarly to a conventional interrupt,
with one important difference: we don’t suspend running tasks to handle the interrupt, which
means we don’t have to save and restore states.

Instructions work on tensors whose operands are specified in data structure descriptors or DSDs.
Registers called Data Structure Registers (DSRs) are used at runtime to hold DSDs so that DSDs
may be used as operands in any instruction. An instruction such as add or move can take one or
more DSD operands, and when it has one, the instruction runs for multiple cycles to complete
operations on all of the data referenced in the DSD. Thus, a single instruction can access and
work on an in-memory data array. This allows hardware to reduce the runtime cost of address
generation and loop control and can be used to encode complex indexing patterns.

A DSD may also describe a vector of data elements arriving (or departing) as a sequence of
wavelets of a certain color. Thus, in addition to triggering tasks, incoming data can be directly
consumed or produced by the CE as data operands for an operation that runs while that data
arrive. A fabric vector operation of this kind may be run as a background thread, allowing other
work to be done while waiting for more data to arrive or depart.

WHITE PAPER
PAGE 6

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Offered in the SDK
The Cerebras SDK includes code samples, tutorials, getting started guides, a language guide, and
information on how to use tools like the included debugger. There are examples of basic tasks and
colors, how to use multi-PE kernels, and best practices when programming the CS-2 system for
specific workloads.

One important feature of the SDK is a simulator and debugging tool. This allows developers to
debug code intended to run on the CS-2 system even when the hardware platform is not available.
This simulator is cycle-accurate and can run on most platforms.

WHITE PAPER
PAGE 7

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Code Examples

Device Side
This code snippet is an example of a program intended to run on a single PE, written in standard
Python. This is the code that would execute on the CS-2 system itself. In this example, the
program defines both a global variable and a color. At compile time, main_task and main_color
are bound together before main_color is activated. The code runs on a reserved 1x1 PE grid. At
runtime, the main_task thread assigns the variable “global” a value of 42.

Define variable named global, initializing it to
0.Define a color main_color, using id 0.

Define a task, executed at runtime, which writes
the value 42 to global.

At compile-time, bind main_task to main_
color. Then, activate main_color so that

main_task runs when execution at runtime
begins.

Reserve a 1x1 rectangular region of PEs.At
the upper-left-hand corner of the rectangular

region (x=0, y=0), place the device.csl code
(i.e., current code file)

Host side
This code snippet shows the complimentary host-side code. The host-side program provides
a path to the binaries created by the CSL compiler and specifies the name of the (simulated)
core that should be written to post simulation. Once the application has finished running
on the simulator, the host reads the result from the core. The result is then compared to the
aforementioned reference value “42” to confirm its accuracy.

SDK uses numpy data types on the
host.

Provide path to binaries.Specify
name of core generated by

simulator.

Load the binary onto the simulator
(or CS-2) and start execution.

Read the result of the program
by loading the variable named
global written on the device.

Compare the result with a
reference value 42.

WHITE PAPER
PAGE 8

CEREBRAS SYSTEMS, INC. 1237 E. ARQUES AVE, SUNNYVALE, CA 94085 USA CEREBRAS.NET
© 2022 Cerebras Systems Inc. All rights reserved.

Starting Your Collaboration with Cerebras
If you are curious about programming for wafer-scale or want to evaluate whether the CS-2 system
would be a good fit for your organization, we encourage you to get in touch.

The following data points will help us answer your questions most effectively:

1. What limits your performance today? Arithmetic? Memory latency or bandwidth?
Communication latency or bandwidth? Something else?

2. Can you give us specific algorithms or example code and data?

3. How do you develop code today?

4. In what languages?

5. What libraries do you use?

6. What floating point precision do you need? What integer word length?

7. Are any open benchmarks of interest to you?

www.cerebras.net/sdk

http://www.cerebras.net/sdk

