

October 24-26, 2021 - Virtual Edition

Multi-criteria decision analysis as an effective and reliable tool for integrating Hospital RWD from different data sources

Matteo Ritrovato, PhD

matteo.ritrovato@opbg.net, Bambino Gesù Children's Hospital, Rome, Italy

The Team

HTA UNIT Bambino Gesù Children's Hospital, Italy

Leandro Pecchia

School of Engineering, University of Warwick

Real World Data for Hospital-Based Health Technology Assessment

THE CLUE TO WHY RWD IS AN IMPORTANT COMPONENT OF ANY ESTIMATION OF COST-EFFECTIVENESS IS IN THE NAME: THE DEFINITION OF EFFECTIVENESS, AS OPPOSED TO EFFICACY, REFERS TO THE MEASUREMENT OF EFFECTS IN THE REAL-WORLD, RATHER THAN UNDER THE CONDITIONS OF EXPERIMENTATION REQUIRED FOR THE UNBIASED MEASUREMENT OF EFFICACY.

Real World Data relevance in Hospital Setting

RWD are relevant in Hospital to:

- Carry out Health technology Assessment Processes that are dependent on RWE when outcomes are not available from RCTs
- Conduct more precise economic analyses (Cost-effectiveness Analysis, Budget impact analysis,...)
- Evaluate health product implication on patient management in real-life setting

Hospital Real World Data

Variables	RCTs	RW studies	
STANDARD OF EVIDENCE	Gold standard	Supplementary to RCTs	
VALIDITY	High internal validity	High external validity (generalizability	
VALIDITT		to real-world practice)	
STUDY GROUP	Homogeneous highly selective population: patients are based on stringent inclusion and exclusion criteria	Preterogeneous population in clinical practice (patients at high risk of adverse	
		events, pregnant women, children and	
		comorbidities those who receive	
		different medications for other	
		morbidities)	
SAMPLE SIZE	Limited	Larger	
ADVERSE EVENTS	Reveal the more frequent adverse events	Can reveal less frequent adverse events	
		and those that can occurred after long	
		exposure	
	Designed, short period and highly controlled follow-up	In clincal pracrtice, long follow-up	
FOLLOW UP		period able to assess rare, long-term	
		adverse events	
DUDDOOF	Efficacy: identify the causal	Effectiveness: doesn't show whether	
PURPOSE	relationship between intervention	the technology works but if it can work	
SETTING	Experimental setting	In actual clinical practice	
SETTING	Experimental setting	Many alternatives intervention/non-	
COMPARATOR	Placebo	treatment users	
STUDY DESIGN	Prospective	Retrospective/Perspective	
TYPE OF STUDY	Experimental/Interventional	Observational/non-interventional	
OUTCOMES	Clear sequence	Wide range	
RANDOMIZATION	Yes	No	
BLINIDING	Yes	No	
COSTS	Expensive to develop and conduct	Low if the study is retrospective,	
		comparable to RCTs if the study is	
		perspective	
CONFOUNDERS	Standardized, controled	Bias: selection, information, recall,	
		detection	
	Gold standard, when feasible for	acconted for new device indications	
	new device approval	might ease nost-marketing surveillance	
PRODUCT	new device approval	of adverse events	
	Not considered	Could be controlled if it is konwn the	
LEARNING CURVE		intial physiscian experience	
EHICAL ISSUES	It is strictly required	Mostly regards patient's privacy	
	/ 1	, 0 1 1 1	

AAM

International Clinical Engineering & Health Technology Management Congress October 24-26, 2021 - Virtual Edition

Systems

ADMINISTRATIVE/CLAIMS DATA

Objective

The aim of this work is to show a new approach to integrate, throughout Multi Criteria Decision Analysis based, different kind of Hospital Real-World Data, to obtain univocal and reliable results about the introduction of a new technology in a hospital setting.

Decision oriented HTA (Do-HTA)

100,00%

90,00%

80,00%

70,00%

60,00%

50,00%

40,00%

30,00%

20,00%

10,00%

0,00%

Decision oriented HTA (Do-HTA)

SAFETY AND EFFECTIVENESS DATA

- Data from scientific literature
- Electronic Health Records
- Key Enabling Technologies (Wearables, IoT, etc..)

ORGANIZATIONAL AND ECONOMIC DATA

- Historical Time series from Hospital registries and databases (Administrative data)

PATIENTS PERSPECTIVE AND SOCIAL ASPECTS

- Surveys
- Quality of Life

Clinical Significance & Statistical Significance

- Statistical significance implies that the difference seen in the sample also exists in the population.
- Clinical significance implies that the difference between treatments in effectiveness is clinically important, and it is possible that clinical practice will change if such a difference is seen.

Clinical Significance & Statistical Significance

Evaluating Data Quality for Clinical Significance

Data from scientific literature

GRADE Approach Grading the Quality of Evidence

	Max	Standard
GRADE	probability	deviation
1	0,2	1,99
2	0,43	0,92
3	0,67	0,598
4	0,9	0,44

Standard Density Probability Functions: $\begin{cases}
\mu = \text{ performance value} \\
\sigma \propto (\text{Grade level})^{-1}
\end{cases}$

$$f(\mathbf{x}) = \frac{1}{\sigma \sqrt{2\pi}} e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Grade 1: Very low quality of evidence

Grade 3: Moderate quality of evidence

Grade 2: Low quality of evidence

Crade 4: High quality of evidence

Grade 4: High quality of evidence

Integrating Data Quality into decision-making processes

- Depending on the indicator's data quality, a proper GRADE level and, consequently, the related probability density function are associated to each performance indicator.
- Thanks to this approach it is possible to modulate the final performances values proportionally to their robustness.

Forecast Analysis

Inpatient Admission

Integrating Real World Data into Multicriteria Decision Analysis

18

Conclusions and Remarks

- Despite the promise RWD are bringing, there is still not a general agreement on the best way to maximize potentialities and benefits of using RWE in health care decision-making processes and which could be their proper use during the lifecycle of health technologies.
- Athematical elaborations of RWD in Hospital Based Health Technology Assessment, providing structured and reliable outcomes, drastically increase the reliability of previsions giving evidence of errors and uncertainty of results.
- RWD and RWE appear particularly suitable in supporting decision making processes at hospital level, where context analysis and the decision-makers expertise play a crucial role for the process.

International Clinical Engineering & Health Technology Management Congress October 24-26, 2021 - Virtual Edition

Thank you for your attention

Matteo Ritrovato, PhD

<u>Matteo.ritrovato@opbg.net</u>, Bambino Gesù Children's Hospital, Rome, Italy

