

October 24-26, 2021 - Virtual Edition

Automatic detection of pneumonia from signs and symptoms: a feasibility study to explore a machinelearning model suitable for incorporation with mobile phone apps and wearable sensors.

Katy Stokes, MRC DTP

Applied Biomedical Signal Processing and Intelligent Eheatlh (ABSPIE) lab

University of Warwick, UK

The Team / Workgroup

Katy Stokes PhD Student

Dr Rossana Castaldo **Research Associate**, A P BME

ABSPIE

University of Warwick

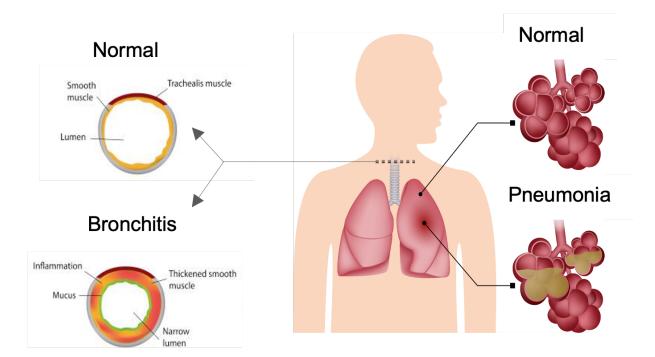
Prof Leandro Pecchia, PI, BME

WARWICK THE UNIVERSITY OF WARWICK

Dr Lejla Gurbeta **Pokvic Assistant Prof**, BME

Dr Almir Badnjevic Prof, BME

Clinical Engineering Division



Description

Pneumonia diagnosis is challenging due to:

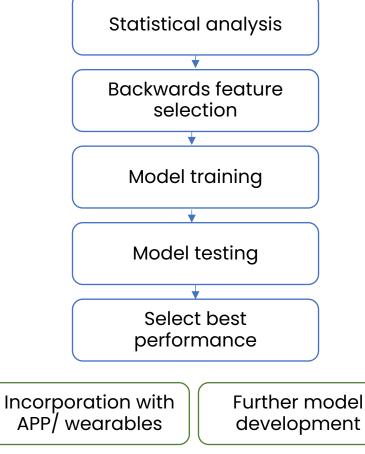
- low specificity of symptoms
- varied clinical presentation
- lack of accessible diagnostic tests

Machine Learning (ML) is a promising tool to overcome these challenges and to distinguish pneumonia from other respiratory diseases (i.e., bronchitis).

Aim: Investigate feasibility of a ML model to distinguish pneumonia Analysis workflow from bronchitis.

Dataset:

4500 patients

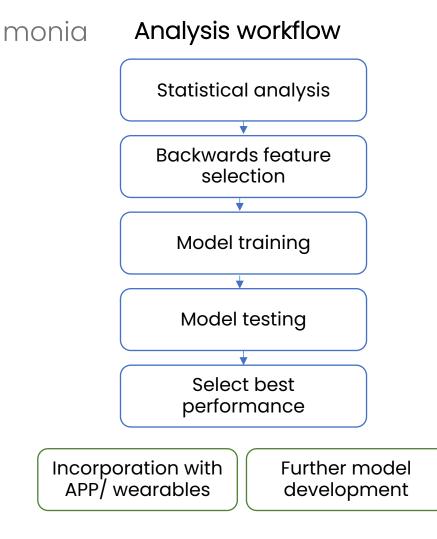

60% pneumonia

40% bronchitis

- Laboratory test results
- Population characteristics
- Symptoms and signs

Model criteria:

- Evidence based and interpretable
- Use easily recognised symptoms and signs as predictors
- Able to distinguish
 between patients with
 bronchitis and
 pneumonia

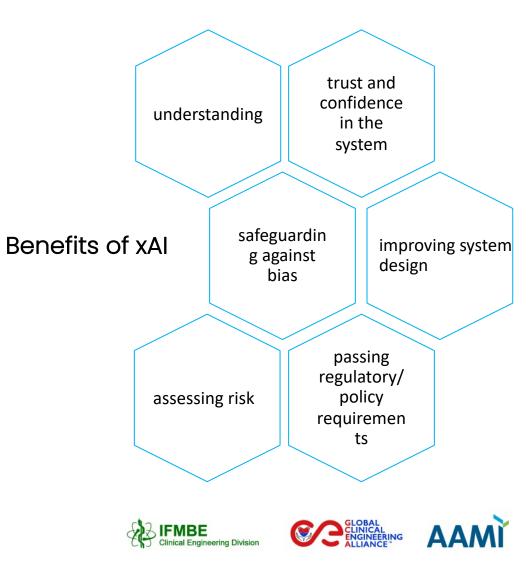

יחו: In from b

Original Research Article

- A machine learning model for 45(60: supporting symptom-based
- 40: referral and diagnosis of
- I bronchitis and pneumonia in
- limited resource settings

Katy Stokes ^a, Rossana Castaldo ^b $\stackrel{>}{\sim}$ ⊠, Monica Franzese ^b, Marco Salvatore ^b, Giuseppe Fico ^c, Lejla Gurbeta Pokvic ^d, Almir Badnjevic ^e, Leandro Pecchia ^a

https://doi.org/10.1016/j.bbe.2021.09.002



Goals of the project and final users that will benefit

Goal: Design of a predictive Machine Learning model to distinguish bronchitis and pneumonia, which is suitable for incorporation into a diagnostic mobile app or integration with wearable sensors.

Those who will benefit:

- Other researchers seeking to develop diagnostic tools for clinical use
- Decision makers selecting the best diagnostic tool to implement
- Healthcare workers, especially those working in remote areas
- Patients who will receive fast and accurate diagnosis Event Website: https://www.globalcea.org/icehtmc

Results

	Features: Cough Expectoral Dyspnoea Pleura pair				1 0.9 0.8 0.7				Fine Tre	e ROC T	rest data				
	Sputum Auscultatio	on			0.0 are bositive rate										
	Method	AUC	Sensitivity	Specificity											
•	Decision Tree	93%	81%	84%	- 0.3 -										
	SVM (linear)	93%	78%	86%	0.1										
	Logistic Regressi on	93%	73%	88%	0	0.1	0.2	0.3	0.4 False	0.5 e positive	0.6 e rate	0.7	0.8	0.9	1

Future work

- Verify model using other data sources data from lowincome countries
- Design of a user-friendly mobile phone app
 - Input symptoms -> output suggested disease condition
- Incorporate other frequently presenting respiratory diseases
- Expand scope to detection of severity and underlying cause of pneumonia
- Explore improvements in performance
 - Incorporation of sensor readings: cough sound, temperature reading

Event Website: https://www.globalcea.org/icehtmc

International Clinical Engineering & Health Technology Management Congress October 24-26, 2021 - Virtual Edition

Katy Stokes

Katy.Stokes@warwick.ac.uk University of Warwick, UK

