DREW TECHNOLOGIES, INC.

Page 1 of 30
October 22, 1999

Project Notebook Storage L ocation: Drew Technologies Corporate Library

A Coding Standard
for the
C Programming Language

Drew TechnologiesInc.
Copyright O 1996,1999

Contact:

DrewTechnologies, Inc.
41 Enterprise Drive
Ann Arbor, M1 48103
(734)623-8080
support@drewtech.com

DREW TECHNOLOGIES, INC. October 22, 1999

Revision History

DATE COMMENTS

04-Sep-96 | Find Draft

22-0ct-99 | English corrections, address update

Drew Technologies, Inc. Proprietary Page 2 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

TABLE OF CONTENTS

1. Introduction 5
11 Scope 5
1.2 References 5
2. Process Problem 5
3. Root Causes and Effects 6
3.1 Poor Maintainability 6
3.2 Poor Portability / Reusability 7
3.3 Argumentsfor Efficiency 7
4. Recommendations 8
4.1 General Naming Conventions 8
411 Naming Variables 8
412 Naming Functions 10
413 Naming Structures & Structure Members 10
414 Naming Constants Macros & Typedefs 10
4.2 Indentation 11
421 Indentation of Basic Flow Control Statements 11
4211 Simple If Statement 11
4212 Compound If Statement 12
4213 For Statement 13
4214 While Statement 13

422 Indentation of Switch Statements 14
423 Indentation of Structures and Unions 16
4.3 Parenthesis 17
4.4 Comments 18
4.5 Preprocessor Directives 18
4.6 Program Structure 18
46.1 Module Layout 19
4.7 Dead Code 20
4.8 Include Files 21
4.9 Module Header 23
4.10 Function Header 24
4.11 White Space 24
4.12 Low Level Data Abstraction 24
4.13 Compiler and Processor Dependence 25
4.14 Hardwar e Platform Dependence 25

Drew Technologies, Inc. Proprietary Page 3 of 30

DREW TECHNOLOGIES, INC.

October 22, 1999

4.15 Unit Test Code

27

4.16 Efficiency

28

5. Conclusions

28

6. Appendix A

29

7. Appendix B

30

Drew Technologies, Inc.

Proprietary

Page 4 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

1. Introduction

This document is proposed as the coding standard for dl C programs written by Drew
Technologies that are not required to follow an externa coding standard specified by the customer.

1.1 Scope

This document is a collection of rules and guidelines that include issues related not only to the C
language, but dso software engineering and program portability in generd.

The scope of this document is such that it is most effective when applied at the earliest stages of
coding. Mogt if ot dl of the concepts and practices proposed in this document can be applied to
the maintenance of code that does not conform to this standard.

1.2 References

Harbison, S.P.,1991, C A Reference Manual, Prentice Hall Inc.
ANSI,1989, American National Sandard X3.159-1989

Oudlineg, S.,1992, C Elements of Style, M& T Books Inc.

Libes, D.1993, Obfuscated C and Other Mysteries, John Wiley & SonsInc.

2. Process Problem

Without a coding standard in place, there is no framework through which we can:
Enforce good structured programming practices
Provide areference for code walkthroughs and inspections
Make code easier to understand and maintain

Drew Technologies, Inc. Proprietary Page 5 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

3. Root Causes and Effects

It is possible to write hopelessy obscure code in any language. The C programming language has
some very powerful features, which can be misused to make programs hard to understand, and do
things that are widdy recognized as bad software engineering. Any process put into place must
minimize the likelihood thet thiswill occur.

The effects of this problem can be broadly separated into the following categories:
Poor maintainability
Poor portability
Poor Reusability

3.1 Poor Maintainability

Understlanding is a the heart of maintainability. If apiece of code is difficult to undergtand, it is
difficult to mantain. Factors that contribute to making code hard to understand include the following:

No discernible naming conventions for identifiers
No discernible indenting conventions used
Poor use of parenthesis
Poor use of comments
Overuse of conditiona preprocessor directives
Poor program structure
Poor module layout
Excessvdy long functions
Excessvely optimized code
Inclusion of dead code
Overuse of nested includes
Lack of module header
Lack of function header
Poor use of white space

Drew Technologies, Inc. Proprietary Page 6 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

3.2 Poor Portability / Reusability

All software developers should be concerned with portability and reusability issues as they write
code. Factors contributing to alack of portability and reusability include the following:

Compiler dependence

Processor dependence

Hardware platform dependence

Lack of low level data abstraction

Lack of unit test code

Thislack of portability prevents us from:
Being able to unit test code on non-target platforms (SUN or IBM-PC)
Reacting quickly to changesin the market (New chips and compilers)
Using CASE tools to evauate/manage our code

3.3 Argumentsfor Efficiency

Arguments for efficiency are often used in defense of code that is not maintainable, portable or
reusable. Efficiency must be addressed in manner congistent with good engineering practices.

Drew Technologies, Inc. Proprietary Page 7 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4. Recommendations

4.1 General Naming Conventions
Naming conventions serve two purposes. Firdt, they provide consistency throughout the program.

Second, since identifiers are by far the bulk of any program, they should have an aesthetic quality
that makes them easy to read.

Words separated by underscores satisfy both of these requirements. Underscores can easily be
used in a condgent manner to separate the individuad words in an identifier. The use of the
underscore evolved from a desire to use a character that resembles a space, as closaly as possble.
People are comfortable with the aesthetics of using underscores between words because
underscores resemble spaces.

The ANSI C gpec requires that dl compilers permit a minimum of 31 ggnificant charactersin
identifiers. Most compiler vendors meet or exceed this limitation. While every atempt should be
made to impart meaning to identifiers by using long names, KNOW YOUR COMPILER! Due to
linker or system limitations extern or globd data may be limited to something less than a full 31
characters.

4.1.1 Naming Variables

The firg and foremost requirement of a variable name should be that it convey a leest some
meaningful information about the how the variable being declared is going to be used. Examples of
bad variable declarations include:

int i; /* Index into array */
int x; /* Sum of last 10 sanples */
int *ts; /* Pointer to tinmestanp */
In the preceding declarations, comments are used to help explain to the reader how these variables

will be used in the program. These comments would not be required if the variables were changed
to:

int index;
int sumof last 10;

int *ptr_to_tinestanp;

The chalenge is to pick variable names that help to make your code salf documenting without the
use of comments. Comments in the declaration do not necessarily “stay with” the reader as he

Drew Technologies, Inc. Proprietary Page 8 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

works his way through the rest of the function. A good variable name will continue to impart
information about the program’ s function to the reader each timeit is used.

Drew Technologies, Inc. Proprietary Page 9 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.1.2 Naming Functions

Function names should consst of a verb noun pair that when combined provide some meaningful
information about what the function does. Congder the following examples:

PRIVATE int find_next_prime(int number);

PUBLIC int calculate_checksum(char *data, int length);
PUBLIC int queue_data(int queue id, int data to_queue);
PRIVATE void start_motor(int motor);

4.1.3 Naming Structures & Structure Members

The naming of structures and structure members should follow the same basic rules that goply to
variables and functions. When naming structure members, one temptation that should be avoided is
the incdlusion of the Structure name in the member name.

4.1.4 Naming Constants Macros & Typedefs

All congtants, typedefs and macro names should bein upper case only. Without this ditinction it
becomes difficult to determine if you are:

Invoking a macro or making afunction call
Using a congant or avariable

This digtinction can be very important if your macros have sde effects due to things like auto
increment or auto decrement.

Drew Technologies, Inc. Proprietary Page 10 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.2 |Indentation

The purpose of indentation is to give the programmer an accurate picture of the control flow of a
function a a glance. A programmer should not have to struggle or ry on comments to find the
beginning and ending of a block. Curly braces should be use with every control structure even if
there is only one statement to a block. This practice helps baance the amount of white space and
prevents orphan statements due to indentation errors.

Tabs should be used as indentation characters. The use of spaces, while offering some benefits, is
subject to errors when blocks are nested two or three levels degp. Spaces are a so tediousto type.

A tab stop of four is a good trade off between adequate white space and code densty.
Programmers should atempt to limit there line length to 80 characters. If indentation of control
dructures is such that you are running out of space, then thisis probably an indication of alack of
aufficient functional decomposition (See Module Layout).

4.2.1 Indentation of Basic Flow Control Statements
Give example of: ifforwhile/do while

4211 Simplelf Statement
if (index == END OF_LIST)
{
/*
* Do sonet hi ng
*/

* Do sonet hing el se

Drew Technologies, Inc. Proprietary Page 11 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.2.1.2 Compound If Statement

The compound “if” statement has been the subject of much controversy. The most common method
for indenting compound “if” Satementsis

if (a==ONE_THNG)
do_son®et hing();

else if (a == ANOTHER THI NG)
do_sonet hi ng_el se();

else if (a == YET_ANOTHER)
do_yet _anot her

el se
do_l ast _thing();

This indentation style shows dl of the do_xxxx functions a the same indentation levd. With every
other example of indentation, this implies that they are not dependent on each other. Thisis clearly
not the case as demongtrated by the reformatted version below:

if (a==COETHNG)
{

}

el se

{

do_sonet hi ng

if (a == ANOTHER TH NG)
{

}

el se

{

do_sonet hi ng_el se

if (a == YET_ANOTHER)
{

do_yet _anot her ()

do_l ast _thing();

The revised method clearly shows a a glance that the function do_I ast _t hi ng isonly cdled from
within the dse clause of the i f (a == ONE_THI NG)” statement. This observation is not as
eadly made with the origind example. This determination is even more difficult to make if thereisa
sgnificant amount of code for each of the conditions that pushes the code across severa pages.

The origind example dso alows the complexity of the code to grow to high level of complexity
without the programmer being made aware of it. This missng check on the functions complexity can
lead to compound conditiond Statements that are well beyond the reasoning power of any
programmer. The modified example limits complexity by running programmer out of gpace on the
line before the code becomes to complex.

Drew Technologies, Inc. Proprietary Page 12 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.21.3 For Statement
The basic “for” loop is eegant in its smplicity, it should not be corrupted by stuffing things that
belong in the body of the loop.

All “for” loops should resemble the following:

for (index = 0; index < NUMITEMS; index++)
{

}

list[index] = NULL;

4.2.1.4 While Statement

Likethe “for” loop, the beauty of the “while’ loop liesin its smplicity. “While” loops should not be
stuffed with extraneous statements except for “priming read” type assgnments. The basic content of
the “for” loop should be alogical compare. The following shows a correctly formaited “while’ [oop:

while (ch = getchar() !'= NULL)
{

}

do_son®t hi ng(ch);

When complex looping conditions are required, parenthesis should be used to telegraph the intent of
the programmer. The follow shows the correct use of parenthesis:

while((a'!=Db) & ((c ==d) || (e ==1)))
{

}

do_sonet hi ng();

Drew Technologies, Inc. Proprietary Page 13 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.2.2 Indentation of Switch Statements

The switch statement is the most complex control statement in C. A consstent gpproach to using
switch statements must be achieved if code isto be rdigble and maintainable.

The fird rule of switch statements is brevity. Switch statements that go on for page after page with
individua cases that span pages is a sure Sign that the function needs further decompaosition. While
there is no effective way to limit the number of cases in a switch, the number of Satements in each
case should be limited to seven lines or less counting the bresk and a blank line after the bresk. In
other words, if the function of the case can not be handled in five lines, the case should probably be
afunction.

The following is an example of a correctly coded switch statement:

swi tch(acti on)
{
case | NVALI D_START:
state = | DLE;
br eak;

case VALID START:
state = RX_MSG
rx_buffer.depth = 0;
br eak;

case VALI D _DATA:
state = RX_MSG
enqueue_rx(rx_char);
br eak;

case ESC_FOUND:
state = ESC,
br eak;

case | NVALI D_ESCAPE:
state = | DLE;
rx_buffer.depth = 0;
enqueue_| oader (BAD_MESSAGE) ;
br eak;

case ESCAPE_SYNC.
state = RX_MSG
enqueue_r x(SYNC) ;
br eak;

case ESCAPE_ESCAPE:
state = RX_MSG
enqueue_r x(ESCAPE) ;
br eak;

defaul t:
enqueue_faul t (1 NVALI D_I NPUT) ;

Drew Technologies, Inc. Proprietary Page 14 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

br eak;

Drew Technologies, Inc. Proprietary Page 15 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.2.3 Indentation of Structures and Unions

In order to keep pointer casts as Smple as possble, structures and unions should aways be
declared with a typedef. The following indentation standard should be applied to structures and
unions:

typedef struct
{

U32 el enent _a;

U32 el enent _b;

Ul6 el enent _c;
} DEMO_STRUCTURE;

Notice that the structure tag is not used in the example above. The only time a structure tag should
be usad is when a Sructure or union will include a reference to itself. For example, if the Structure
above was going to be used on a doubly linked list, the structure would look like:

typedef struct deno_struct
{
U32 el enent _a;
U32 el enent _b;
Ul6 el enent c;
struct deno_struct *previous;
struct deno_struct *next;
} DEMO_STRUCTURE;

Notice that the Structure tag should aways be alower case verson of the typedef name,

Compound structures or structures that contain unions should be indented in the following manner:

typedef enum { DEMO NAME, DEMO VALUE, DEMD COUNT } DEMO TAG

typedef struct
{
DEMO TAG t ag;
uni on
{
U32 val ue;
U32 count;
us nanme[DEMO_NAME Sl ZE] ;
}
} DEMO_UNI ON,

The use of enumerated types for union tags provides a measure of protection, a no additional cost,
when using tagged unions. Only enumerated types should be used as union tags.

Drew Technologies, Inc. Proprietary Page 16 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.3 Parenthesis

The C language provides the programmer with arich set of operators. It dso burdens him with the
task of remembering 15 precedence rules. Congder the following:

result = x << 1+ 5

Which operator is performed first? Better yet, which operator did the programmer intend to be
performed first? The answer to the first question is easly determined by finding that binary operator
precedence chat in K&R. The second question is harder to determine without asking the
programmer who wrote the code, or completely reverse engineering te function that this line
gopearsin to fully underdand the task that it is trying to accomplish.

In order to save time and prevent frudtration, programmers should use parenthesis to help show
intent. The previous example could be transformed into:

result = x << (1 +5);

or
result = (x << 1) +5

These rules a so apply to Boolean operations such as:

while ((a'=b) & ((cl=d) || (e'=f)))
{

}

do_sonet hi ng();

Drew Technologies, Inc. Proprietary Page 17 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.4 Comments

Comments are a great tool. Unfortunately they are often used to compensate for bad programming
practices that otherwise would be unacceptable. Comments should be reserved to explain the
programmer’ s intent. Not to attempt to make poorly written code easier to understand.

Comments should convey useful information about the program and not attempt to teach C to the
programmer reading the code. The following are examples of comments that are essentially a waste
of keystrokes.

X X * x; [* Square x */

y -5, [/* subtract 5 fromy */

These comments are explaining the mechanics of what is being done not the intent. Put another way,
they are explaining the “how” and not the “why”.

The following example shows the proper use of comments:

/*

* Find the first data itemin the list that is greater than the
* itemwe have so that we can insert it into the list in order.
*/

cursor = head_of |ist;

while((cursor->data < itemto_insert) &% (cursor != NULL))

{
}

cursor = cursor->next;

4.5 Preprocessor Directives

A large number of conditional preprocessor directives (#if, #fdef, #else, #ifndef, etc.) can make
code that is not readable or maintainable.

Code that is unreadable due to complex (often nested) conditiona preprocessor directivesis usualy
the result of code that has been ported severa times. When #ifdefs and #ifs are nested, it can be
very difficult to determine whether a statement is used or not unless you examine many preceding
lines and smulate the execution of the preprocessor.

4.6 Program Structure

A module should be structured in a way that makes it easy to read and understand. The sections
that follow detail aframework that makes code easier to understand and maintain.

Drew Technologies, Inc. Proprietary Page 18 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.6.1 Module Layout

Before the issue of module layout is addressed, a review of the fundamentas of modular design are
in order to help clarify the requirements that need to be satisfied in order to achieve effective module
layout.

The fundamenta concept that drives the divison of a program into multiple modules is that most
problems can be decomposed into a series of smple tasks. Modular code is the end result of
applying the “Divide and Conquer” paradigm until the problem can be solved by implementing a
number of individud functions.

The coding standard helps programmers make the determination of when this process of “Divide
and Conquer” is complete by establishing alimit on the maximum length that a function should have.
Functions should be limited to one to three pages. Large control blocks should not span more than
one page.

Functiond decomposition progresses from the genera to the specific. Functions within modules
should dso progress from the generd to the specific. A module should contain only one mgor
function and any subordinate or worker functions that are loca to that module. Any worker or
subordinate function that is common to severa modules should be placed into its own module.*

All worker or subordinate functions should be declared gtatic or PRIVATE. The mgor function
within amodule should be declared PUBLIC. All datalocd to the module should be declared satic
or PRIVATE. Datathat is shared between multiple modules should be declared in the module that
initidizes it. There should be a header file for each module in the system. This header file should
contain the function prototype of the mgor function as well as any external declarations for data that
will be shared between modules.

The module should dso contain unit test functions that can be conditionaly compiled when a
module is undergoing unit test. These unit test functions should be placed &t the end of the module.

Appendix A contains examples of both modules and module headers.

! Thisis actually adefect in the design that is detected while coding. A function common to several modules
should have been identified as a separate modul e during the functional decomposition.

Drew Technologies, Inc. Proprietary Page 19 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.7 Dead Code

Dead code often results from programmers leaving old code around in functions as a sort of ad-hoc
CM or archive of old functions that have been rewritten or otherwise replaced. This sort of
hitorica archiving isa CM function and should be addressed with CM toals like SCCSRCS.

Nothing is more frugtrating than spending time looking a and trying to understand a function only to
find out latter that thisfunction is no longer called. Don't leave dead code in modules.

Drew Technologies, Inc. Proprietary Page 20 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.8 IncludeFiles

If a system has been correctly decomposed into subsystems and subsystems have been correctly
decomposed further into modules and if header files have been produced that contain interfaces to
each nmodule then only the subsystem header files should include heeder files. Consider the following
example

Assume that we have a sysem composed of the following:
buffer management subsystem
hegp module
partition module
serid device subsystem
serid device driver module
user interface subsystem
user interface module

The following heeder files would be required:
buffer_user.h
seria_user.h

Since the only users of the “user interface subsystem” are humans, there is no need for a
public heeder file for the user interface.

The header file for the buffer management subsystem (buffer_user.h) would include the
following:

heap_user.h

partition_user.h

The header file for the serid device subsystem (serid_user.h) would not include any header
files. Since the seria subsystem is composed of only one module.

Since the user interface is a user of both the serid device subsystem and the serid device
subsystem, the user interface code modules would include both buffer user.h and
serid_user.h.

As the serid device driver is a user of the buffer management subsystem, it would include
buffer_user.h.

The tradeoff being made is one that potentidly could lead to large numbers of headers being
included by modules that belong to subsystems that interface to many different subsystems. This
tradeoff is not unreasonable given that during the design phase the subsystem headers are probably
the best reference to consult prior to writing any code.

Drew Technologies, Inc. Proprietary Page 21 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

Due to the fact that the incluson of a header for a specific subsystem implies an interface to the
subsystemn, an attempt should be made to prevent unused/unrelated header files from being included.

Drew Technologies, Inc. Proprietary Page 22 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.9 Module Header

The following header is for use with systems that use RCS. It uses various RCS keywords to
convey information to about the files current version and modification higtory. If RCSis not available
or if the project dictates the use of another source code control system the following items should be
replaced with equivdents. If no equivadents exig, the information should be updated by hand to
resemble the RCS equivaents.

/* $1ds */

/*************************************/ /*************************************/
/* CONFI DENTI AL PROPRI ETARY X[I* CONFI DENTI AL PROPRI ETARY */
/* UNPUBLI SHED SQURCE CODE []* UNPUBLI SHED SOURCE CCDE */
/* Copyright 1996, Drew Technol ogies */ /* Copyright 1996, Drew Technol ogi es */
/* ALL R GHTS RESERVED [* ALL R GHTS RESERVED */

/*************************************/

/*************************************/

/*
* %

* %

MODULE AUTHOR(S) :
M chael Drew

* %
* %
** MODULE TI TLE:

* %

* %

MODULE FUNCTI O\
This is nmodul e functions as a denonstrati on header.
Each nodul e shoul d begin with one.

* %
* %
* %

* %

H story
* Log

khkkkkhkhkhhkhkhhkhkhkhkhhhhhkhkhhhhhhhhhdhhhhkhkhkhhhdkhhhhhhhhhhhhdhhhhhkhhdddddkdxkhkhk,* *,x*x*x

*/

The following are descriptions of the RCS keywords used in the header:
ld
A dandard header containing the filename of the RCS file, the revison
number, the date and time, the author, the state, and the locker (if locked).

$Logh
The log message supplied during checkin, preceded by a header
containing the RCS filename, the revison number, the author, and the
date and time. Exigting log messages are not replaced. Ingead, the new
log message is inserted after $Log:..$. Thisisuseful for accumulating a
complete change log in asourcefile.

Drew Technologies, Inc. Proprietary Page 23 of 30

DREW TECHNOLOGIES, INC.

October 22, 1999

4.10 Function Header

The function header need not contain revison information. Revision information should kept & the
top of the file in the module header where it isimmediately visible to someone ingpecting the code
for changes. The following function header should be found before each function.

/*

R S I S S S I S S S S R S o R S

* %

** FUNCTI ON AUTHOR(S) :
* % M chael Drew

* %

** FUNCTI ON NAME:

* %

** FUNCTI ON | NPUTS:
* % Vari abl es that contain useful information

* %

** FUNCTI ON DESCRI PTI ON

* % This is a function header.

* % Each function shoul d have one

* %

** FUNCTI ON QUTPUTS:

i Returns a val ue that has neaning

* %

EEEEEEEEEEEEEEEEEEEEEEEEREEEESEE

*/

4.11 White Space

English uses white space (blank lines) to help separate one idea from another when idess are
expressed in paragraphs. Likewise code should be broken up using white space to help show the

breakdown of tasks within afunction.

4.12 Low Level Data Abstraction

In order to help insure code portability the use of standard (but ambiguous) data types should be
avoided. The following should be included in aninclude file caled ctypesh:

t ypedef
t ypedef
t ypedef
t ypedef
t ypedef
t ypedef

unsi gned char
unsi gned short
unsi gned int
si gned char

si gned short
si gned int

us;

U16;
u3z;

S16
S32

S8;

These vaues are for example only. The sze of scdar data types varies greetly from machine to
machine and from compiler to compiler with the same target. The best defense againg this sort of
thing isto KNOW Y OUR COMPILER. Once you know your compiler, codify this knowledge into
the ctypes.h file so that it is documented.

Drew Technologies, Inc.

Proprietary Page 24 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.13 Compiler and Processor Dependence

In order to achieve reasonably portable code, dl processor and compiler dependencies need to be
codified and isolated in a uniform manner.

Just as every system should contain a ctypes.h heaeder file that provides abstraction of low level data
types, every system should contain a cpu.h file that abstracts processor and compiler dependencies.
For example, compiler vendors that cater to the 68XX family of processors often provide nor+
ANSl extensons that dlow variables to be placed in page zero (fast access) memory. This
extension takes the following form:

@ir int x;

This vauable feature can be used and the code 4ill remain portable by placing the following line in
cpu.h:

#defi ne FAST @ir /* Place variable in page zero for fast access */

This technique has the added benefit of giving an arguably better name to this extenson as wdll.
Now, whenever as programmer wantsto use afast variable he smply declaresit as

FAST U8 i ndex;

When and if the code moves to a compiler or platform that does not support this feature, the cpu.h
header fileisthe only file that needs to change.

All other nonrANS festures that a programmer wishes to use must be codified in the cpu.h file.
Extreme care should be taken when using any non-rANS! feature. Thought should be given to how
this festure can be implemented on a drictly ANSI compiler. If a festure can not be essly
duplicated or removed, both portability and non-tar get unit test capability WILL BE LOST.

4.14 Hardware Platform Dependence

Abstraction of the hardware platform is best achieved through the use of a header file, hardware.h,
that isolates and codifies the hardware platform. Thisfile should contain congtants that define the
fallowing:
Peripherds
Addresses
Interrupt vectors or levels
Specia Access macros (upper byte only etc)
Memory
Type (FLASH, RAM, EPROM)
Start Address

Drew Technologies, Inc. Proprietary Page 25 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

End Address
Size (Byte, Word, LONG)

Drew Technologies, Inc. Proprietary Page 26 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.15 Unit Test Code

The incluson of unit test code within a module can be an invaduable aide to programmers involved
with the maintenance or enhancement of software modules. Unit test code can be used to
regresson test a module once a modification has been made to it. Without unit test code, the
software developer mugt rely on integration or system testing to uncover defects.

It is notorioudy difficult to exercise dl criticd paths and edge conditions during integration or
systlems test.

Unit test code should be located at the end of the module. 1t should be “ sat off” from the rest of the
code by some attention grabbing mechaniam like the following:

/**/
/* */
/* WARNI NG WARNI NG WARNI NG WARNI NG */
/* UNIT TEST CCDE FOLLOWG */
/* */

/**/

The unit test code and any functions that it employs to exercise the main function contained in this
module should be contained within conditiona compile directives such as:

#i fdef UNIT_TEST_FOR TH S_MODULE

#endi f /* UNIT_TEST_FOR TH'S_MODULE */

Where“THIS MODULE” is replaced with the module€' s name in upper case.

The unit test code should contain any stub functions that may be required to smulate externa
interfaces required to test this module dong with a main function that will dlow the unit test code to
be compiled and linked to a stand aone executable image.

Drew Technologies, Inc. Proprietary Page 27 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

4.16 Efficiency
All software developers should strive to achieve the Smplest solution to the problem at hand.

“More computing sins have been committed in the name of
efficiency (without necessarily achieving it) than any

other reason -- including blind stupidity.”
(W.A. Wulf, Proceedings of the 25th National ACM Conference)

The following philosophy of optimization should be kept in mind when designing or coding a system:

It is eeser to make aworking system efficient than it isto get an efficient
system working.

Optimize a system only if it fals a peformance test. It is futile to
optimize asystem, if that optimization brings no practical benefit.

Simplicity isavirtue that bears its own rewards.

Optimize only those parts of the system that need optimizing.

Efficiency is more likely to be achieved by sdecting the gppropriate dgorithm than by trying to
Sgueeze out microseconds by tricky coding. Tricky coding is much harder to understand and more
difficult to get right than smple, Sraight forward code.

5. Conclusions

A coding standard can not magicaly convert bad programmers into good programmers. A coding
standard can not make up for abad design or alack of design review. A coding standard can help a
programmer identify when a desgn has gone astray only if it is used. A coding standard without a
rigorous code walk-through or ingpection process will yield only margind improvements in the
quaity of software that an organization produces.

Drew Technologies, Inc. Proprietary Page 28 of 30

DREW TECHNOLOGIES, INC.

October 22, 1999

6. Appendix A
Example of header file ctypesh

#define PRIVATE static
#define PUBLIC

#define TRUE (1)
#define FALSE (0)

/*

* The foll owing are processor/ Conpi |l er dependent

*/
t ypedef unsi gned char us;

typedef unsigned short U16;
t ypedef unsigned int u3z;

typedef signed char

typedef signed short S16;
typedef signed int S32;

S8;

Drew Technologies, Inc.

Proprietary

Page 29 of 30

DREW TECHNOLOGIES, INC.

October 22, 1999

7. Appendix B

Example of typica module layout

/* $1d$ */
/*************************************/
/* CONFI DENTI AL PROPRI ETARY */
/* UNPUBLI SHED SCOURCE CODE */
/* Copyright 1996, Drew Technol ogi es */
/* ALL RI GHTS RESERVED */

/*************************************/
/*
* %
** MODULE AUTHOR(S):
M chael Drew

* %
* %

* %

MODULE Tl TLE:
appendi x_a. ¢

* %
* %
** MODULE FUNCTI O\
* %
** appendi x_a.
* %

* %

H story
* Log

/*************************************/

/* CONFI DENTI AL PROPRI ETARY */
/* UNPUBLI SHED SCOURCE CODE */
/* Copyright 1996, Drew Technol ogi es */
/* ALL RI GHTS RESERVED */

/*************************************/

This is modul e functions as a conpl ete exanpl e of a nodule for

EEE

*/

#i ncl ude <ctypes. h>
#i ncl ude <cpu. h>

/*

* I nclude any xxx_user.h type files that this nodul e needs here.

*/
#i ncl ude <appendi x_a_user. h>

/*
* Decl are PUBLI C vari abl es here
*/

PUBLI C U32 appendi x_a_publ i c_dat a;

/*

* Pl ace PRI VATE data structures | ocal
*/

t ypedef struct

{
U32 data;
} TYPE_APPENDI X_A;

/*
* Decl are PRI VATE vari abl es here
*/

PRI VATE U32 appendi x_a_pri vat e_dat a;

/*

to this nodul e here

* Pl ace PRI VATE Function prototypes here

*/

PRI VATE U32 appendi x_a_function_2(U32 paraneter);

Drew Technologies, Inc.

Proprietary

Page 30 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

/*

IR RS EEEEEEE R R R R R R EEEEEEEEEEE R R R R
* %

** FUNCTI ON AUTHOR(S) :

* % M chael Drew

* %

** FUNCTI ON NAME:
i appendi x_a_function_1

* %

** FUNCTI ON | NPUTS:
** None

* %

** FUNCTI ON DESCRI PTI ON

** This is one of the main functions for this nodul e.

** This function is known to the outside world through the
i appendi x_a_user. h header file

* %

* %

** FUNCTI ON QUTPUTS:
** None

* %

EE R R I S R I S R S R S R I I R S I R
*/
PUBLI C voi d
appendi x_a_function_1(void)
/*
* Due some work here
*/
appendi x_a_function_2();

Drew Technologies, Inc. Proprietary Page 31 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

/*

IR RS EEEEEEE R R R R R R EEEEEEEEEEE R R R R
* %

** FUNCTI ON AUTHOR(S) :

* % M chael Drew

* %

** FUNCTI ON NAME:
i appendi x_a_function_2

* %

** FUNCTI ON | NPUTS:
** None

* %

** FUNCTI ON DESCRI PTI ON
* % This is one of the worker functions for this nodul e.
*x This function is not known to the outside world.

* %

** FUNCTI ON QUTPUTS:
** None

* %

IR RS E R SRS R SR EE SR SR EEEREEESEEEEEEEES
*/
PRI VATE voi d
appendi x_a_function_2(void)
/*
* Due some work here
*/

Drew Technologies, Inc. Proprietary Page 32 of 30

DREW TECHNOLOGIES, INC. October 22, 1999

/**/

/* */
/* WARNI NG WARNI NG WARNI NG WARNI NG */
/* UNI T TEST CODE FOLLONG */
/* */

/**/

#i fdef UNIT_TEST_APPENDI X_A

/*

R R R R R R R R R R R R R R RS E R R R R R R R RS EEEEEEEEEE R EEEEEEEEEEEEE R R R R
* %

** FUNCTI ON AUTHOR(S) :
* % M chael Drew

* %

** FUNCTI ON NAME:

*x mai n

* %

** FUNCTI ON | NPUTS:

*x None

* %

** FUNCTI ON DESCRI PTI ON
** This is main function for unit testing this nodul e.

* %

** FUNCTI ON QUTPUTS:
** None

* %

LR R R R S S S R S O R S

*/
voi d
mai n()

{
/*
* Code to exercise appendix a
*/
appendi x_a_function_1();
printf(“lt worked!\n");

#endi f /* UNIT_TEST_APPENDI X_A */

Drew Technologies, Inc. Proprietary Page 33 of 30

