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OUTLINE

§ PART I: “Knowing” EV charging session behavior
• Quantitative analysis of real-world EV charging data
• Flexibility potential quantification
• Flexibility exploitation quantification

§ PART II: “Controlling” EV charging sessions
• Reinforcement learning model
• Experimental evaluation through simulations
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PART I: DATA ANALYTICS
“Knowing” EV charging session behavior
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Characterization of real-world
EV charging sessions
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DATASETS: IMOVE (BE) AND ELAADNL
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* : Analysis on data from 1 Jan.–31 Mar. 2015 (N = 90 562)

PERIOD 03/2012 – 03/2013 01/2012 – present
# SESSIONS 8.5 k > 2 M
# USERS 134 about 53 000
CAR TYPE Full EV Unknown mix
CHARGE POINT At home Public
TRIP DETAILS Yes No

iMove: Flemish EV field trial; data from 50 EVs shared 3 x 2 months
ELaadNL: EV innovation in NL; data from ~3000 public stations



TYPICAL ARRIVAL AND DEPARTURE TIMES (1/2)
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TYPICAL ARRIVAL AND DEPARTURE TIMES (2/2)
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SOJOURN AND IDLE TIMES (2/2)
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Daytime charging
(9.4%)

Anytime charging,
short sojourn (61.5%)

Nighttime charging 
(29.1%)

Idle: 48min
Sojourn: 2h 28min

Idle: 5h 30min
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SOJOURN AND IDLE TIMES (2/2)
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Quantifying flexibility potential
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QUANTIFICATION OF FLEXIBILITY: CALCULATION

PFLEX(t, Δ) = Maximal power that DR could either consume 
constantly, or not at all, in interval [t, t+Δ ]

•Charging session has to include [t, t+Δ ]
[else demand is not available for DR for the whole interval ]

•Charging duration ≥ Δ
[else we could not consume power for the full interval]

•Flexibility = session duration − Δ ≥ charging duration  
[we can also move the charging power entirely outside the interval]

Upper bound: we disregard impact of 
using/suppressing power in [t, t+Δ] on 

flexibility at other times t’
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QUANTIFICATION OF FLEXIBILITY: RESULT

§ Park to charge:
• Daytime flexibility
• Weekend: ≈ volume, but ≠ timing

§ Near home:
• Nighttime flex
• Weekend: lower & more spread 

§ Near work:
• Daytime flex
• Low in weekend

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019

min



Quantifying flexibility exploitation
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SAMPLE CASE STUDIES
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SO … WHAT FLEXIBILITY IS ACTUALLY USED?

Quantification of use of flexibility in relevant use cases:

Eflex = ⇒ 1 – Eflex = fraction charged at tBAU

Tflex = =  fraction of idle time exploited to delay

E.g., Eflex = 0.2 ⇒ only 20% of charge volume is delayed
E.g., Tflex = 0.8 ⇒ end-of-charge at 80% of flexibility time window

CASE STUDIES: (1) Load flattening, (2) RES balancing

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019

Energy beyond tBAU

Maximal energy beyond tBAU

tcoordinated – tBAU

tdepart – tBAU



SAMPLE CASE STUDIES
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§ Near home:
• Tflex close to 1: charging

till last moment, but…
• Eflex low: reasonable 

SoC at tBAU

§ Near work:
• Higher Tflex in weekend
• Reasonable SoC at tBAU

§ Park-to-charge:
• Tflex close to 1
• Peaked Eflex during 

daytime

Tflex (% idle time used)

Eflex (% kWh deferred)

flattening balancing



§ Real world data set
§ Three major types of charging sessions 
§ Statistical models of user behavior
§ Methodology to quantify flexibility potential
§ Metrics to evaluate exploitation of flexibility

Application?
E.g., extrapolation of iMove data to 3% of Flemish fleet by 2020:

• ~100k cars out of ~3.2M
• E.g., noon in weekend � can have ~7MW extra for 2h

SUMMARY OF PART I

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019
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PART II:
“Controlling” EV charging sessions
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CONTROLLING EV CHARGING?
Possible objectives
Possible objectives:
§ Flatten load: peak shaving &

valley filling
§ Balance renewable sources
§ Avoid voltage violations
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CONTROLLING EV CHARGING?
Problem statement

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019



Reinforcement learning model
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REINFORCEMENT LEARNING MODEL
State space
§ Characterization of EVs in the system:

• Time of arrival
• Time till departure
• Required charging & charging rate

§ Aggregated state representation:
Bin cars with similar (1) time till departure, (2) requested charging

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019
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REINFORCEMENT LEARNING MODEL
Making charging decisions
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Simulation results
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EXPERIMENTAL EVALUATION
Experiment settings and dataset

§ Arrival data from ElaadNL data, top-10 or top-50 stations from 2015
§ Control/decision granularity of 2h (to compute fast)
§ Set maximum connection time to 24h
§ Ensure empty system in between consecutive days 

§ “Cost” = squared power per timeslot, summed over all timeslots
§ We plot costs relative to optimal, all-knowing oracle decision 

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019



1 month 3 months 5 months 7 months 9 months

5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K

1.14

1.16

1.18

1.20

N
or

m
al

iz
ed

 c
os

t (
10

 E
Vs

) (a)

1 month 3 months 5 months 7 months 9 months

10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K

1.16

1.18

1.20

Number of samples per episodeN
or

m
al

iz
ed

 c
os

t (
50

 E
Vs

)

5000 10000 15000 20000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.14

1.16

1.18

1.20

CRL

(b)

10000 30000 50000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.16

1.18

1.20

Training data time span (months)

1 month 3 months 5 months 7 months 9 months

5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K 5K 10K 15K 20K

1.14

1.16

1.18

1.20

N
or

m
al

iz
ed

 c
os

t (
10

 E
Vs

) (a)

1 month 3 months 5 months 7 months 9 months

10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K10K 30K 50K

1.16

1.18

1.20

Number of samples per episodeN
or

m
al

iz
ed

 c
os

t (
50

 E
Vs

)

5000 10000 15000 20000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.14

1.16

1.18

1.20

CRL

(b)

10000 30000 50000

1 3 5 7 9 1 3 5 7 9 1 3 5 7 9

1.16

1.18

1.20

Training data time span (months)

EXPERIMENTAL EVALUATION
Q1: Appropriate training data settings?

§ Training period of
3 months suffices

§ Sampling 5k trajectories 
per day suffices
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EXPERIMENTAL EVALUATION
Q2: RL performance compared to oracle benchmark?

§ Relative cost saving compared to business-as-usual scenario
(= immediate charging) of the order of 39% or 30% for 10 or 50 EV stations

§ Relative difference compared to all-knowing optimal charging strategy
(with perfect knowledge of future arrivals) of the order of 13% to 15.6% for 10 
or 50 EV stations

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019



EXPERIMENTAL EVALUATION
Q3: Variance of RL performance over time (a year)?

§ Flexibility varies: higher cost difference between BAU and optimal
§ RL policy exploits flexibility to varying degree

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019
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EXPERIMENTAL EVALUATION
Q4: Generalization to different number of stations?

§ Experiment: scale up car arrivals (and # EV stations) by factor up to 10x 
… but follow policy from original system size

§ Result: RL policy still achieves largely same cost reduction

C. Develder, et al., "AI for EV charging: Knowing and controlling EV stations", AI & ML for Smart Grid, Berlin, Sep. 19, 2019
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SUMMARY OF PART II

§ Challenge: coordinate EV charging (for peak shaving & valley filling, for 
balancing renewable energy sources) of an EV fleet 

§ Reality check: real-world charging behavior shows flexibility potential

§ Reinforcement learning looks like a viable approach to solve the challenge
with consistent performance over time & when upscaling system
↔ MPC: RL is purely data-driven
↔ SotA: Our RL solution = single-step decision for aggregate of EVs

§ What’s next?
• Effective exploration of vast state-action space
• More advanced neural net architectures for Q-function approximation
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Thank you.
Any questions?

chris.develder@ugent.be
http://users.ugent.be/~cdvelder
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