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OUTLINE

= PART I: "Knowing" EV charging session behavior
e Quantitative analysis of real-world EV charging data
e Flexibility potential quantification
e Flexibility exploitation quantification

= PART II: "Controlling” EV charging sessions
e Reinforcement learning model
e Experimental evaluation through simulations
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PART I: DATA ANALYTICS
“Knowing” EV charging session behavior

N. Sadeghianpourhamami, N. Refa, M.Strobbe and C Develder, “Quantitive analysis of eledtric vehicle
flexibility: A data-driven approach”, Int. J. Electr. Power Energy Syst., Vol 95, Feb.2018, pp. 451-462.

N. Sadeghianpourhamami, D.F. Benoit, D. Deschrijver and C Develder, “Bayesian cylindrical data
modeling using Abe-Ley mixtures”, Appl. Math. Model, Vol 68, Apr. 2019, pp. 629-642.

C Develder, N. Sadeghianpourhamami, M. Strobbe and N. Refa, "Quantifying flexibility in EV charging as
DR potential: Analysis of two real-world data sets", in Proc. 7th [EEE Int. Conf. Smart Grid
Communications (SmartGridComm 2016), Sydney, Australia, 6-9 Nov. 2016, pp. 600-605.
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Characterization of real-world
EV charging sessions
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DATASETS: IMOVE (BE) AND ERSABNE

PERIOD 03/2012 - 03/2013 _01{20\12 - present

H SESSIONS 8.5k >2M

# USERS 134 about 53 000

CARTYPE Full EV Unknown mix

CHARGE POINT | Athome Public S
TRIP DETAILS Yes No

iMove: Flemish EV field trial; data from 50 EVs shared 3 x 2 months
ELaadNL: EV innovationin NL; data from~3000 public stations

*: Analysis on data from 1Jan.-31 Mar.2015 (N =90 562)
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TYPICAL ARRIVAL AND DEPARTURE TIMES (1/2)
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TYPICAL ARRIVAL AND DEPARTURE TIMES (2/2)
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SOJOURN AND IDLE TIMES (2/2)
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SOJOURN AND IDLE TIMES (2/2)
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Quantifying flexibility potential
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QUANTIFICATION OF FLEXIBILITY: CALCULATION

Power | i
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S

Priex(f, )

t

Time

Upper bound: we disregard impact of
using/suppressingpowerin [£ t+A] on
flexibility at other times ¢’

Prex(Z A) = Maximal power that DR could either consume
constantly, or not at all, in interval [{ +A]

e Charging session has to include [ #+A]

e Charging duration > A

e Flexibility = session duration — A > charging duration
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QUANTIFICATION OF FLEXIBILITY: RESULT
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Quantifying flexibility exploitation
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SAMPLE CASE STUDIES
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SO ... WHAT FLEXIBILITY IS ACTUALLY USED?

Quantification of use of flexibility in relevant use cases:

Energy beyond tg,,

= “Maximaleneray veyond by 1 - Eq, = fraction charged at tg,,

1:coordinated - 1:BAU

= fraction of idle time exploited to delay

Jl:depar’[ - 1:BAU

E.g., Eqey = 0.2 = only 20% of charge volume is delayed
E.g9., Tqe, = 0.8 = end-of-charge at 80% of flexibility time window

CASE STUDIES: (1) Load flattening, (2) RES balancing

_
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SAMPLE CASE STUDIES
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SUMMARY OF PART |

= Real world data set

= Three major types of charging sessions

= Statistical models of user behavior

= Methodology to quantify flexibility potential
= Metrics to evaluate exploitation of flexibility

Application?

E.g., extrapolation of iMove data to 3% of Flemish fleet by 2020:
e -100k cars out of ~3.2M
e Eg,noonin weekend = can have ~7MW extra for 2h

—
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PART II:
“Controlling™ EV charging sessions

N. Sadeghianpourhamami, J. Deleu and C Develder, “Definition and evaluation of model-free
coordination of electrical vehicle charging with reinforcement Learning”, IEEE Trans. Smart Grid, 2019,
pp. 1-12. (In Press)

M. Lahariya, N. Sadeghianpourhamamiand C. Develder, “Reduced state space and cost function in
reinforcement Learning for demand response control of multiple EV charging stations”, in Proc. 6th
ACM Int. Conf. Sys. for Energy-Effic. Build., Cities and Transp. (BuildSys 2019), New York, NY, USA, 13-14

Nov. 2019.
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CONTROLLING EV CHARGING?

Possible objectives: /— Charging schedule ™
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CONTROLLING EV CHARGING?

] @ 3+ business as usual
EV charging 5 (BAU)
coordinator 22
2 14
T
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Reinforcement learning model
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REINFORCEMENT LEARNING MODEL

= Characterization of EVs in the system:
e Time of arrival

e Time till departure V, = {(AEP" AL,
e Required charging & charging rate . (At‘}f}pm, At?\l;arge)}

= Aggregated state representation:
Bin cars with similar (1) time till departure, (2) requested charging

Time left

1 2 3 : (t, x;) =
car ¢, : (A9 Archar9e) = (3, 2) Requested ; 8 (g (_(') 0 05 O
car ¢, : (AP, At5"9¢) = (2,1)  charging | =0 01 1, 8 8 065
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REINFORCEMENT LEARNING MODEL
Making charging decisions
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Simulation results
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EXPERIMENTAL EVALUATION

= Arrival data from ElaadNL data, top-10 or top-50 stations from 2015
= Control/decision granularity of 2h

= Set maximum connection time to 24h

= Ensure empty systemin between consecutive days

= “Cost” =squared power per timeslot, summed over all timeslots
= We plot costs relative to optimal, all-knowing oracle decision
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EXPERIMENTAL EVALUATION

= Training period of
3 months suffices

= Sampling 5k trajectories
per day suffices
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EXPERIMENTAL EVALUATION

= Relative cost saving compared to business-as-usual scenario
(= immediate charging) of the order of 39% or 30% for 10 or 50 EV stations

= Relative difference compared to all-knowing optimal charging strategy
(with perfect knowledge of future arrivals) of the order of 13% to 15.6% for 10
or 50 EV stations
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EXPERIMENTAL EVALUATION

= Flexibility varies: higher cost difference between BAU and optimal
= RL policy exploits flexibility to varying degree
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EXPERIMENTAL EVALUATION

= Experiment: scale up car arrivals (and # EV stations) by factor up to 10x
.. but follow policy from original system size

= Result: RL policy still achieves largely same cost reduction

Normalized cost
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SUMMARY OF PART [l

= Challenge: coordinate EV charging (for peak shaving & valley filling, for
balancing renewable energy sources) of an EV fleet

= Reality check: real-world charging behavior shows flexibility potential

= Reinforcement learning looks like a viable approach to solve the challenge
with consistent performance over time & when upscaling system

<> MPC: RLis purely data-driven
<> SotA: Our RL solution = single-step decision for aggregate of EVs

= What's next?

e Effective exploration of vast state-action space
e More advanced neural net architectures for Q-function approximation
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Thank you.
Any questions?

chris.develder@ugent.be
http://users.ugent.be/~cdvelder
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