

Data Lakes Their role in predictive maintenance strategy

14-10-2020 Prof. Dr. Robert Ross

HAN Univ. of Applied Science: Professor of Reliable Power Supply

TenneT: AM Strategy Research

Educational background:

Physics & Mathematics, Weibull statistics, PhD Technical Physics + Analytical Chemistry

Fields of expertise:

Electrical grids, Material science, Forensics & Reliability analysis, Diagnostics, Electronics, Superconductivity

Other affiliations:

Utrecht Univ. (83-86), KEMA (86-07), NIMC (Jp, 92-93), NL Def. Acad. (07-12), IWO (≥84)

- Some basics about data, purposes and hazard rate
- Maintenance styles
 - Corrective Maintenance
 - Planned / Period Based Maintenance
 - Condition Based Maintenance, Health Index and FMECA
 - Health Index view from 3 groups (ENTSOe, Cigré, FIND-GO)
 - Risk Based Maintenance
 - Risk Index & Risk Matrix
- Data considerations for maintenance styles
- Lessons from the learning cycle
- Developments and Conclusions

Up and down the chain

٠

٠

14-10-2020 R. Ross - Data Lakes - Predictive Maintenance, Berlin

Ref.: Cigré WG 2.49 Tutorial, 2019 Delhi

Some very basic statistics, just a little

 \uparrow 0.010

a.u. is 'any unit'

<u>Failure distribution</u> **F**: failed percentage <u>Reliability</u> **R**: surviving percentage

Distribution density **f**: failing percentage per time

<u>Hazard rate</u> **h** (also 'failure rate'): probability per time that a working asset fails

F R = 1 - F

f = dF/dt

$$h = f/R$$

In short for an asset: <u>hazard rate h = danger</u><u>to fail in the next time interval</u> (hr⁻¹, d⁻¹, yr⁻¹, ..)</u>

<u>Lifetime</u> τ : more or less inverse h

For further reading: ISBN 9781119125174

14-10-2020 R. Ross - Data Lakes - Predictive Maintenance, Berlin

Maintenance actions and styles

Maintenance Actions

- Inspections
- Servicing
- Replacement

Maintenance Styles

- Corrective
- Planning or Period Based
- Condition Based
- Risk Based

Actions and styles require specific data NB: Balance effort & effectiveness!

Condition Based

Risk Based

Corrective Maintenance

Main characteristic:

- Correct malfunction; use of full lifetime
- Flexibility in emergency planning required
- Redundancy reduces emergency

Typically applied when:

- Effort OPEX >> CAPEX
- Asset inspection or rejuvenation impossible
- Examples: various types of cables; light bulbs

Examples of relevant data:

- Numbers & lifetimes (estimate staff, parts)
- Variation and correlations with circumstances

CM – Corrective Maintenance

Inspections

• Not, apart from checking functionality

Servicing

- Not
- Action after failure

- After failure
- Asset to be specified for CM

Planning or Period Based Maintenance

Main characteristic:

- Planned preventive actions; sacrifice lifetime
- Planning makes operations predictable
- **Redundancy** important, but less than with CM

Typically applied when feasible and:

- Value >> OPEX and CAPEX (⇒ extent life)
- CAPEX >> OPEX or failure costs
- Examples: switchgear, tap changer

Examples of relevant data like CM plus:

- Costs and impact of maintenance
- Planning-related data, keep track of periods

PBM - Period Based Maintenance

Inspections

- Planning based on periods
- Period: time, cycles/switching action
- Same assets, same planning

Servicing

- Planning
- Based on periods
- · Concept: as good as new
- Same assets, same planning

- Planned by schedule (often time)
- Same assets, same planning

Condition Based Maintenance

Main characteristic:

- **Preventive** activities by **individual condition**
- Flexibility in timely planning is required
- **Redundancy** important, but less than with CM
- **Diagnostics + interpretation** prerequisite

Typically applied when feasible and:

- Like PBM + individual assessment lucrative
- Examples: trafo on-line DGA

Examples of relevant data like PBM plus:

- Condition and operational data
- Correlations for interpretation (incl. AI, ML)

0 10 20 30 40 50 60 70 80 90 time CBM - Condition Based Maintenance

Inspections

CBM

hazard rate

0.05

- Present condition sets planning
- Interval based on knowledge rules
- Evaluation per individual asset

Servicing

- Based on condition monitoring
- Need: diagnostics & knowledge rules
- Evaluation per individual asset

- Just in time according to condition
- Decommissioning by condition
- Need: diagnostics & knowledge rules
- Evaluation per individual asset

Comparison of PBM and CBM

- Solid blue line: failure percentage of group
- · Diamond series: probabilities after signal of imminent failure
- PBM requires planning
- PBM in red: low failure probability → sacrifice life
- CBM requires reliable condition assessment and interpretation
- · CBM in green: status line indicates which assets signal failure
- Average individual life under CBM > life under PBM

Health Index as a tool for CBM

- Condition grade
- **Measure** for hazard rate, remaining life, robustness as for failure, reliability
- Enables quick overview of conditions
- Suitable aid for CBM
- Requires ways to assess condition:
 - Diagnostics, inspections, data
 - Interpretation of findings

What it is not:

- It is not a asset management method
- It is not a planning tool
- It is not an investment selection

CBM and HI in relation to FMECA

۲

•

•

•

•

•

.

Example of Health Index in Excel – part 1

. .

Static data

Calculated HI result

circuitbreaker ID	station ID	station bay ID	provider	brand	type	HI	colour	HI_life I	HI_condit	ion Data	_quality
Asset ID S	Station	Veld	Netbeheerder	Merk	Туре	HIS	HIS	HI_Leeftijd	HI_Conditie	HI_Data	
VERMSCH.T011039	Station Doetinchem 380	DTC-HGL380 Z	TenneT GS	ALSTHOM	FX 22	8	ORANJE	9	7	37	
VERMSCH.T011056	Station Doetinchem 380	DTC380-LGK150 TR402	TenneT GS	ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T011102	Station Doetinchem 380	DTC-HGL380 W	TenneT GS	ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T011112	Station Doetinchem 380	DTC380 KV	TenneT GS	ALSTHOM	FX 22	8	ORANJE	9	6	47	
VERMSCH.T011126	Station Doetinchem 380	DOD-DTC380 W	TenneT GS	ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T011185	Station Doetinchem 380	DOD-DTC380 Z	TenneT GS	ALSTHOM	FX 22	9	GROEN	9	7	10	
VERMSCH.T019099	Station Ens 380	ENS380-ENS220 TR404	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T019138	Station Ens 380	LLS-ENS380 W	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T020089	Station Geertruidenberg 380	GT-EHV380 W	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T020214	Station Geertruidenberg 380	GT380-GT150 TR402	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T025203	Station Krimpen a/d IJssel 380	KIJ380-KIJ150 TR403	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	8	47	
VERMSCH.T029113	Station Maasbracht 380	MBT380 CC-A	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T029127	Station Maasbracht 380	MBT380-MBT150 TR402	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T029161	Station Maasbracht 380	MBT380 KV1	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T029171	Station Maasbracht 380	MBT-EHV380 W	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	
VERMSCH.T029273	Station Maasbracht 380	VYK-MBT380 W	TenneT GS	GEC ALSTHOM	FX 22	9	GROEN	9	0	0	

14-10-2020 R. Ross - Data Lakes - Predictive Maintenance, Berlin

Example of Health Index in Excel – part 2

Initially

- HI models were deterministic
- Decision tree

Last years

FMECA studies for assets with experts

Alternative / additional

- Machine learning with transparency
- Working with a range of dedicated indices (cf. TAI)

ENTSOe WG AIM WS3 – Health Index

ENTSOe =

European Network of Transmission System Operators

- **WG AIM** = Working Group Asset and Implementation Management
- Workstream 3: 'Maintenance and Renovation Strategy'

WS3 (preliminary findings) what is the **Health Index:**

- not standardized as yet
- vision: a score to represent condition, closely related to failure i.e. hazard rate; measure for being fit to function
- overall preference is to strictly stick to technical condition (if needed age as well if relevant data lack)
- obsoleteness, risk, reparability, etc. important too, but should be reflected by other indices

Cigré Working Group A2.49 – TAI and HI

A2: Power transformers and reactors

• WG A2.49 Subject:

"Condition Assessment of Power Transformers and Assessment Indices"

Cigré Technical Brochure 761

Term: Transformer Assessment Index

- Name an index according to its purpose
- TAI: generic term for such indices

HI: Fit for purpose - Network operation, dependability

Outlook of indices

HI beyond asset condition – FIND-GO-project objectives:

Present method

snapshot

condition

HI class

10

9

8

6

5

3

2

- The predictive HI
 - Extrapolate trends
 - Optimize outage planning
- Confidence boundaries
 - Acknowledge scatter
 - Incorporate uncertainties
- Combined HI
 - System condition of systems (station, connection)
 - Redundancy and/or series dependency
- Interaction System Operation and Asset Management
 - Challenges: security, managing data lakes

The FIND-GO project is sponsored by the Dutch Ministry of Economic Affairs and Climate (nr. TEUE418008) Partners: HAN University of Applied Science, TenneT, IWO, Stedin, Delft University of Technology, GE

• One unit can go down, but **system remains operational**; maintenance style less important? $MTRF_{4} = \frac{1}{2}$

Redundancy – as an alternative / addition

System failure after all units fail

System versus unit (=asset)

- Buys time for repair without outage
- CAPEX increases, OPEX may decrease

Units each other's reserve for complete load

Works well in low region of bath tub

- Effective for non-suspect units
- Falls short with wear-out and common cause

Blue: relative reduction of MTBF for circuit (=circ) Red: relative reduction of MTBF for double circuit (=conn) Green: ratio of MTBF single circuit and double circuit

Risk Based Maintenance – beyond failure rate

Main characteristic:

- Risk = probability (h) x impact
- **Prioritize preventive** actions by individual risk
- **Impact** in terms of business values violation (like security of supply, safety, compliance, ..)

Typically applied when feasible and:

- Performance measured as total of values
- Examples: prioritizing investments by balancing damage from various values

Examples of relevant data like CBM plus:

- Likelihood of various business value violations
- Attributing weights to different outcomes

RBM – Risk Based Maintenance

Inspections

Planning by condition plus impact

Servicing

- Planning by condition plus impact
- Concept: priority for situations where business values are most violated

- Planning by condition plus impact
- Concept: priority for situations where business values are most violated
- RBM may replace earlier than CBM

Risk Index as a tool for RBM

encv

Risk: impact x failure frequency (=*h*)

- Risk level: \Rightarrow necessity of maintenance (inspection, servicing, replacement)
- Assess Risk per CBV with a Risk Matrix •
- Risk assessment for decisions prioritizing .

Corporate Business Values (CBV)

- Utility performance on various values •
- Monetizing versus gravity scale ۲
- Risk threshold for mitigation per CBV
- Compulsory mitigation from 'medium' ۲
- Risk Index (RI): Each CBV weighed in RI for • summed violation of CBVs

RISK				impact			
	minor	very small	small	moderate	significa nt	serious	extreme
very often	low	medium	high	very high	unacceptable	unacceptable	unacceptable
often	negligible	low	medium	high	very high	unacceptable	unacceptable
frequent	negligible	negligible	low	medium	high	very high	unacceptable
probable	negligible	negligible	negligible	low	medium	high	very high
possible	negligible	negligible	n gible	negli	low	nediu	higt 🔵
improbable	negligible	neglig	negligible	negli	negligible	low	medium
nearly impossible	negligible	negligible	negligible	negligible	negligible	negligible	low

example CBV list: CBV Safety Quality of Supply Financial Reputation Customers Environment Compliance Cp%

%

S%

Q%

F%

R%

Ct%

E%

Whatever maintenance style is optimized ...

- <u>Maintenance styles</u> require case by case <u>decisions</u>
- <u>Decisions</u> lean on <u>information</u> (complete or not)
- Information is based on data (complete, adequate or not); preferably incl. exhaustive historic records
- <u>Data</u> must be collected from <u>sources</u>; often this collection is newly <u>initiated by questions</u> to be solved
- Rather have too much new data, than too little; but how much is feasible/useful?
- As for old data: quite often insufficient, incomplete, suspect or inadequate for present questions;
- 'TAG': Consistent Asset Data structure (categories of assets, (sub)components, findings) ↔ FMECA
- The game can also be: 'What data is available?' and 'Can this be an alternative to gather information?'
- 'What techniques bridge recognized gaps?': AI, ML, censored statistics, need to provide transparency...

On maintenance style related data

\ Maintenance: Aspects: \	Corrective (CM)	Period Based (PBM)	Condition Based (CBM)	Risk Based (RBM)
Statistics	Group	Group	Individual	Individual
Criterion	Up or down; working or not	Elapsed period (e.g. time, #surges)	Condition (Hazard rate)	Risk (Hazard rate + impact)
Used asset lifetime	Full lifetime	Part of (extended) lifetime	Part of (extended) lifetime	Part of (extended) lifetime
Reactive/proactive	Reactive	Proactive	Proactive	Proactive
Challenge	Unplanned outage → Flexible response → Possible emergency	Sensible general policy Sacrifice less significant lifetime	Adequate (comprehensive) Diagnostics & expert rules	Adequacy in assessing Risk Deal with low h, high impact
Advantage	Exploiting full lifetime	Life extension by renewal, Predictable service and replacement	Life extension by renewal, Exploiting most of lifetime	Overall optimized CBV performance
Information	Group failure Group efforts (In)efficiency of maintenance	Group time to hazard rate Group efforts How to optimize period	Individual hazard rate Individual efforts How to assess hazard rates	Individual hazard rate Individual impact(s) How to assess risk
Data	Up or down state Historic failure times + causes Support for CM choice	Experienced renewal efficiency Service results + experience Support for PBM choice	Support relation condition-failure FMECA results + experience Support for CBM choice	As with CBM + failure impact Impact experience Support for RBM choice
'HI' if all in CBM	Up or down state indicator	Elapsed period	Quantified condition (HI)	Quantified risk (RI)

Lessons from the learning cycle

Asset management is a transition

- Some quick wins, but tedious job after that
- Cycles: lifetimes >40y; inspection >years → it is a learning process for the long run
- In place, the effect is lasting and significant

Maintenance actions and styles

- Be aware of plannability ↔ flexibility
- Redundancy is overrated (take care)

Past data scarcely available

- Failures: low probability, high impact
- Data: partly excessive; but which is / is not?
- Check what existing data are useful

Much concern about security: SO versus AM

14-10-2020 R. Ross - Data Lakes - Predictive Maintenance, Berlin

Developments

Broad trends:

- International cooperation
- Need for efficient use of workforce
- Digitalization + monitoring
- Ambiguous: FMECA studies (expert opinions) and machine learning (seeking hidden patterns)

Comprehensive, accepted AM system:

- Calls for various types of expertise
 - (asset aging, statistics, ict, inspections, monitoring, strategy, maintenance ..)
- Cooperative perseverance of many
- Touches various departments and disciplines
- Requires alignment of interests and skills

Conclusions

- Data lakes are very useful and often missing
- To be managed and to yield information
- Important maintenance styles discussed
- Different information and datatypes per style
- On-line monitoring and diagnostics hand in hand with digitalization and smart grids

Development of AM systems (CBM/RBM):

- Take years to gain experience and fine tune (lessons learned)
- Health index, Risk index and other asset related indices not yet harmonized
- Big challenge: algorithms useful for planning
- Consensus on definitions and methods is emerging

Disclaimer

Liability and copyright of TenneT

This PowerPoint presentation is offered to you by TenneT TSO B.V. ('TenneT'). The content of the presentation – including all texts, images and audio fragments – is protected by copyright laws. No part of the content of the PowerPoint presentation may be copied, unless TenneT has expressly offered possibilities to do so, and no changes whatsoever may be made to the content. TenneT endeavours to ensure the provision of correct and up-to-date information, but makes no representations regarding correctness, accuracy or completeness.

TenneT declines any and all liability for any (alleged) damage arising from this PowerPoint presentation and for any consequences of activities undertaken on the strength of data or information contained therein.

www.tennet.eu

TenneT is a leading European electricity transmission system operator (TSO) with its main activities in the Netherlands and Germany. With over 23,000 kilometres of high-voltage connections we ensure a secure supply of electricity to 41 million end-users. TenneT is one of Europe's major investors in national and cross-border grid connections on land and at sea, bringing together the Northwest European energy markets and accelerating the energy transition. We make every effort to meet the needs of society by being responsible, engaged and connected.

Taking power further