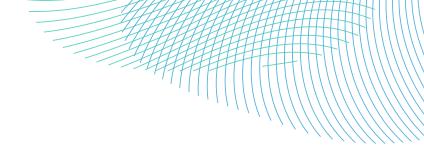


Internet of Wind 4.0


NextGen SCADA

Gregor Biering,

Team Lead Application Development

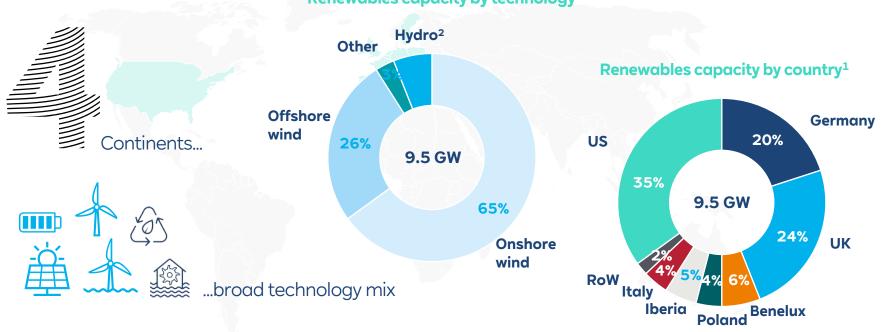
RWE Renewables International GmbH

Agenda

1 The new RWE

Who we are, what we do in the renewables world

2 How a flexible infrastructure is helping us to operate a global renewable portfolio Potential of digitalization in the wind industry Global data backbone

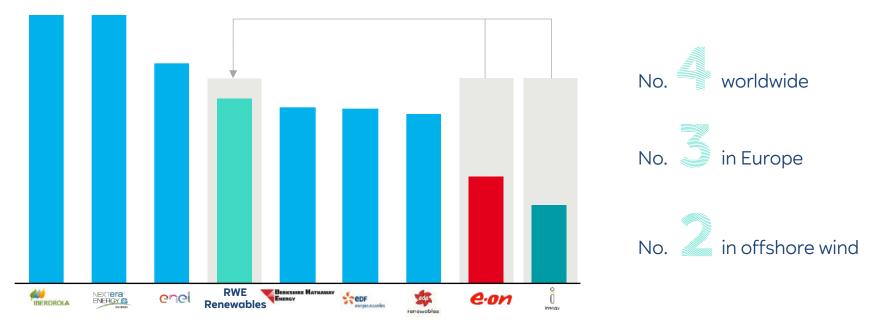

3 More sensors = more data = higher performance ? From data to actions

4 IoT and retrofitting -some real use cases Ice detection Foundation monitoring

The new RWE

Internet of Wind 4.0, RWE Renewables, Gregor Biering

A global player with a well diversified renewables portfolio



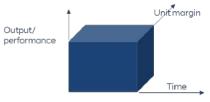
Renewables capacity by technology¹

¹ Pro forma combined renewables capacity; E.ON and innogy portfolio as of 31 August 2019; RWE portfolio as of 1 January 2019. Pro rata view. |² Hydro and biomass assets to be transferred to European Power segment.

RWE Renewables well positioned from the start

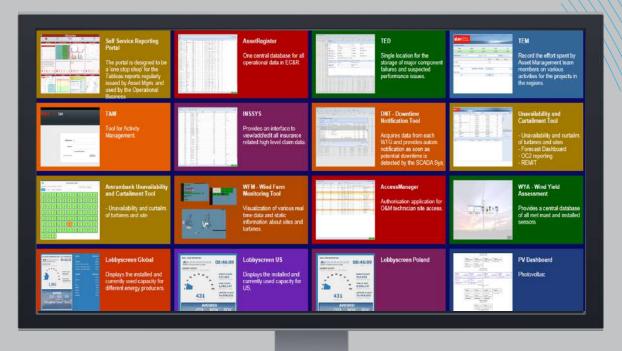
Globally owned renewables capacity¹

¹ Excluding Chinese players. Includes onshore wind, offshore wind, solar, small hydro, marine, geothermal and biomass. | Source: BNEF, as of 31 Aug 2019.



Three women, three men, different nationalities - one board

We are "operating in a box" – bound in three dimensions: Unit margin (Price – cost)/ unit Time to produce Output performance


Business performance Optimization

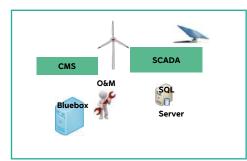
management

Increase Output / performance	Increase the time we can operate	Optimize costs and revenues
Identify underperforming	Increase energetic availability	Reduce O&M costs
assets	Increase lifetime of windfarm	Reactive to predictive
Optimize turbine performance	Decrease maintenance times	maintenance
Reduce losses inside the wind	Avoid unplanned outages	Optimize revenues
farm	Reduce return to service times	Insource margins – self-
Optimize control algorithm	Dynamic maintenance	perform as economic
	schemes	Risk & opportunity

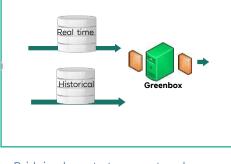
Internet of Wind 4.0, RWE Renewables, Gregor Biering

Utilizing the central data pools in different Apps is creating benefits for the business

Self service reporting portal as a key interface to data and pre defined reports.

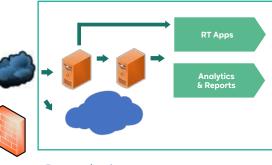

How a flexible infrastructure is helping us to operate a global renewable portfolio

Potential of Digitalization


Manufacturing	Project origination / development	Wind farm planning	Construction
Documentation CAD / CAF 3D printing Simulations	Project portfolio management Business case tracker Modelling	3D/ 4D Simulations Array layout design Project optimization Tendering / E-Auction	Logistic tracking Training, simulations Digital twins, Quality management
Operations		Decomisioning	Big unknown
RT / CMS monitoring Advanced Analytics Machine learning Augmented Reality Spare part management	Field force management Forecasting Smart repairs System integrations and connected services Mobility	Project management Logistic tracking Waste management Documentation	New business models New revenue streams

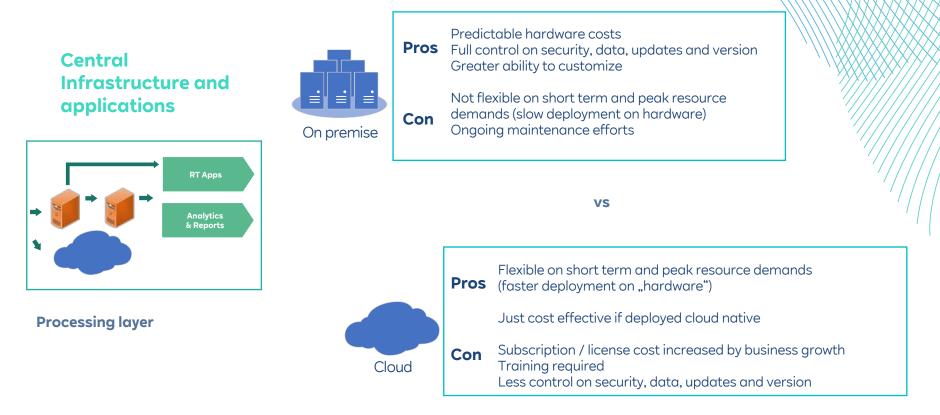
How to connect to the assets and manage the data?

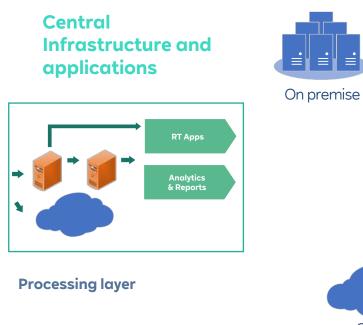
Infrastructure at the Wind- and PV farm



Majority of components are not standardized but related to a dedicated supplier or technology Connecting Infrastructure at the assets

Bridging layer to transport and standardize towards a central infrastructure

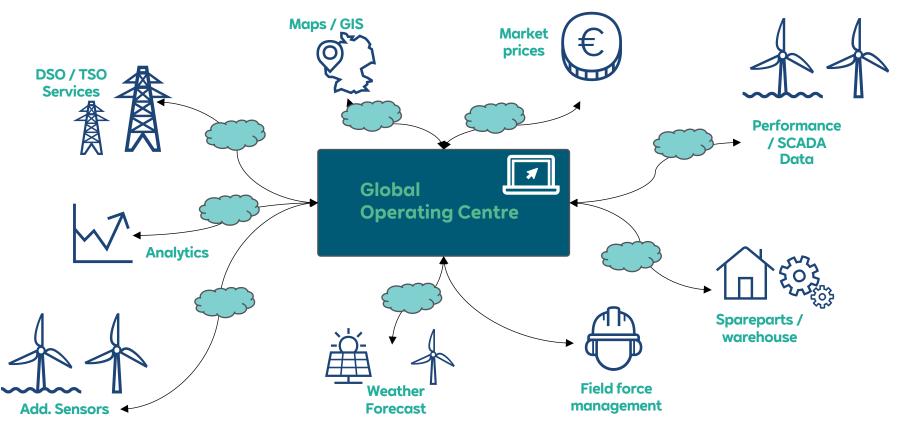

Central Infrastructure and applications


Processing layer

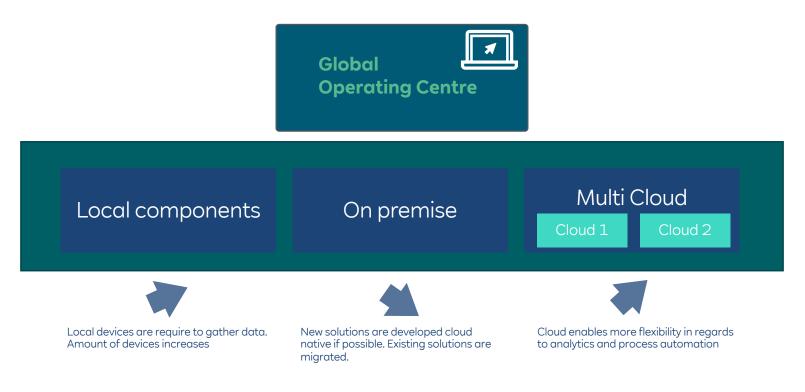
Strong separation between the different layers

Where to store and process the data?

How to enable cloud / on premise best-of-breed?


RT / CMS monitoring with predicable growth Proprietary system without cloud native options Simulations Gateway / management layer

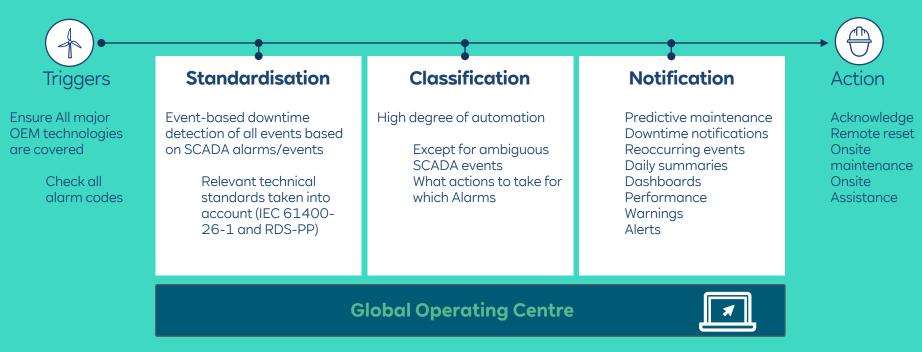
VS


Cloud

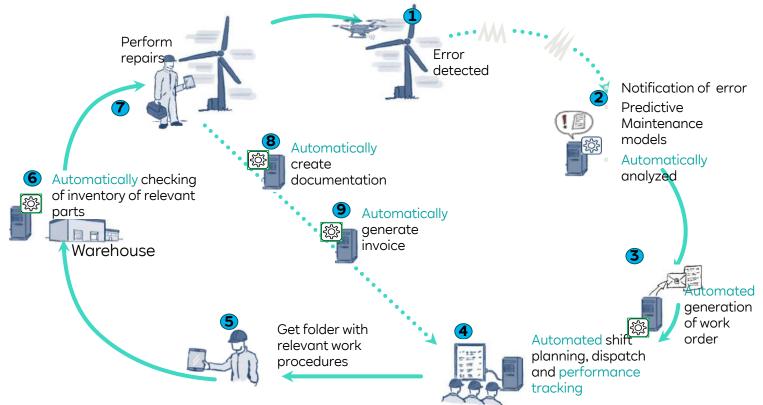
Advanced Analytics Machine learning Process automation related to reporting Datalake

Harmonized global concept – To serve different demands

Harmonized global concept – Based on a hybrid infrastructure


Solutiondeployment has changed over time

More sensors = more data = higher performance ?


Internet of Wind 4.0, RWE Renewables, Gregor Biering

RWE

From data to action - ensuring an efficient alarm classification approach

Connecting tools and data to automate processes in one integrated platform

Systematic data analysis – increase efficiency and reduce costs with PredATur[®] (Predictive Analytics of Turbines)

With common installed hardware significant amounts of 10min SCADA data are collected that can be used for predictive maintenance (PM)

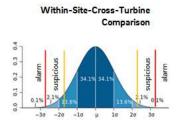
SCADA data usually include mechanical, electrical and hydraulic data plus event codes

RWE Renewables developed the PredATur® tool to:

Utilize machine learning methods to identify turbines with deviating signals Provide a user interface for analysts and technicians to check the turbines signals and alerts

Automatically categorize downtimes and provide a user friendly way to recategorize

Connect SAP to link maintenance with downtime information and PM detections

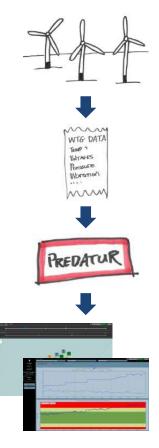

Analyze vibration measurements, if available

Motivation

Detect issues with different methods - Identify critical turbine signals before a serious defect occurs

A "within-site cross-turbine comparison" is used as first step and backup solution for PredATur®

The site averages (or the averages for neighbouring turbines) are calculated The averages are compared to the measured values Different methods for comparison are available


The backbone of PredATur[®] is a machine learning approach

RWE

Machine learning algorithm is used to analyze the correlations between the different signals within a turbine and with surrounding turbines

Approach

Connect systems and improve turbine knowledge

SAP Connection

Work-orders can be connected to PredATur® detections

If a similar detection occurs old work-orders and functional locations can be referenced to help with the resolution of the issue

Notifications can be triggered from PredATur® to streamline the process

Downtime categorization

High quality downtime categorization is the basis to identify availability drivers

PredATur[®] automatically identifies and categorizes downtimes based on SCADA and SAP

Additional connection

PredATur[®] detections reduced operating costs and production losses

Several over-temperatures related to coolers that needed cleaning

Clogged filters

Generator over-temperatures

Failing sensors of different kinds

Voltage imbalances

Nacelle direction miscalibrations

Pitch miscalibrations

(Generator-/ Gear-/ Main-) bearing over-temperatures

Brake pressure deviations

Cooling water pressure and level deviations

Converter over-temperatures and malfunctions

RWE

IoT and retrofitting -some real use cases

Internet of Wind 4.0, RWE Renewables, Gregor Biering

Applying additional sensors to improve asset performance and asset integrity

"With our retro fit solutions for

- Condition Monitoring,
- Ice detection,

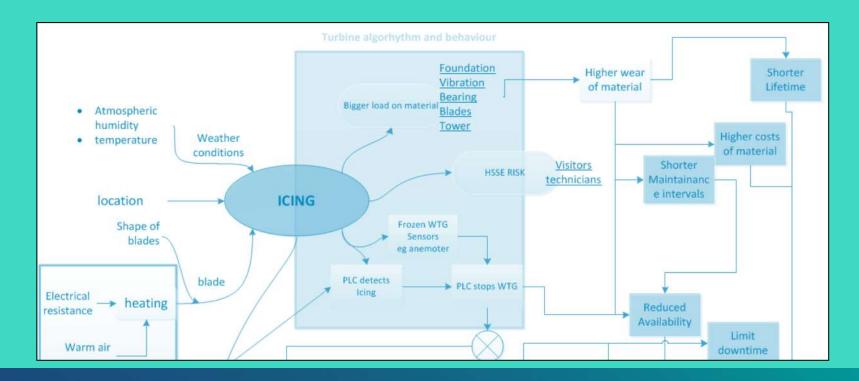
RWE

- Foundation monitoring

we have improved the performance of our windfarm drastically.

Tower and foundation monitoring provide the data basis for any life time extensions of existing windfarms."

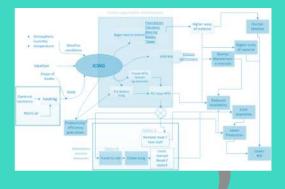
Danielle Jarski: Director Asset & Innovation Management , RWE Renewables



Our Windfarm Bowbeat Challenge: Ice detection and how to react

Impact:

HSE - health and safety of people Production - how to minimize production losses



We need to understand how the "System Windturbine" interacts with Icing

Apply and test sensors

Re evaluate the model

Decision based on business case

Test the technic, revaluate the model and decide on business case / investment

Tower and foundation monitoring create the basis for lifetime extension

Internet of Wind 4.0, RWE Renewables, Gregor Biering

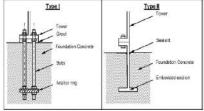
Foundation Prognosis & Diagnosis

The project started in 2015 from systematic findings on tower foundation interface on WTG in our fleet spread around the world.

The aim of the project was to define a standard approach to support site in operation experiencing such problems.

The outcome of the project was the definition of different level of mitigation and repairing procedures for damaged tower foundation interfaces.

A standard approach


Best practice for onshore Foundation monitoring

re Measurement work instruction

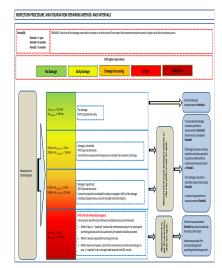
damage classification & mitigation measure

Measurement results,

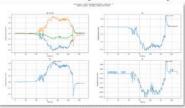
Measurement limitations

e Do adjust the small holding piece at the end of the stand to align the sensor, meaning alignment netical and horizontal. (The head end of the stand will allow to a fine adjustment of the sensor by using the water level). It is possible to easy adjust in all directions and lock it on the final position.

f. Install the sensor and adjust it in a way the pin is able to follow upwards and downwards movements, as half of the way. So after reset the sensor, it will be able to regater positive and negative values. When the sensor is in its final position, it must be tightered so it is fixed.



f Adjust the sensor and that


Remark: Adjustment of the sensor pin to allow it dials up and down registers it means to place the sensor with the pin pulled up by the relevance plate, installed on the tower, so the scale is hall problem and half negative.

(\rtf:\onsi\onsicpg1252\deffO\defing3082(\ fontbi(\To\fnl\rchorset0Tdhoma;) \viewkind4\uc1\pard\f0\fs20~0.001\tab 0.000\tab 0.00\tab 16:02:46\par -0.002\tab 0.00\tab 16:02:47\par -0.001\tab -0.001\tab 0.01\tab 16:02:47\par -0.001\tab -0.001\tab 16:02:47\par -0.003\tab 0.00\tab 16:02:47\par -0.003\tab 0.00\tab 16:02:47\par -0.003\tab 0.00\tab 16:02:47\par -0.003\tab 0.00\tab 16:02:47\par

Measurement output format sample

Post processing sample

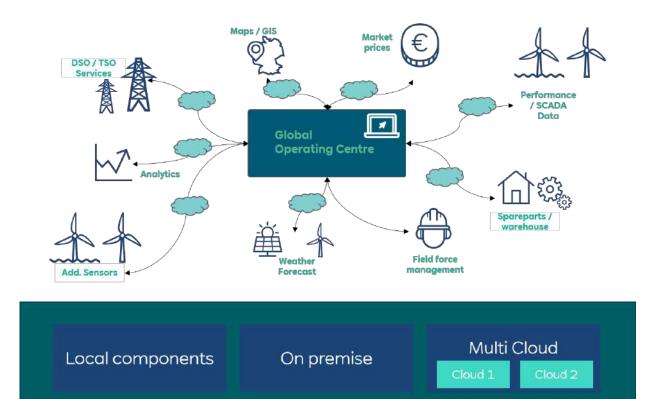
Measurement process improvement

In the long term these improvements may lead to define a kind of "foundation passport" that will support the full lifecycle of the component.

RWE

Did I cover everything - let's recap

1 The new RWE


Who we are, what are we doing in the renewables world

2 How a flexible infrastructure is helping us to operate a global wind farm portfolio Potential of digitalization in the wind industry Global data backbone

3 More sensors = more data = higher performance ? From data to actions

4 IoT and retrofitting -some real use cases Ice detection Foundation monitoring

Harmonized global concept – Based on a hybrid infrastructure

Disclaimer

This document contains forward-looking statements. These statements are based on the current views, expectations, assumptions and information of the management, and are based on information currently available to the management. Forward-looking statements shall not be construed as a promise for the materialisation of future results and developments and involve known and unknown risks and uncertainties. Actual results, performance or events may differ materially from those described in such statements due to, among other things, changes in the general economic and competitive environment, risks associated with capital markets, currency exchange rate fluctuations, changes in international and national laws and regulations, in particular with respect to tax laws and regulations, affecting the Company, and other factors. Neither the Company nor any of its affiliates assumes any obligations to update any forward-looking statements.

All figures regarding the renewables business are based on pro forma combined innogy and E.ON publicly available data.

Thank you