Digital.ON 🔅

Scaling Predictive Maintenance Christian Schroeder

Distribution is by far the largest profit contributor within E.ON

Activities of future E.ON

	Objective to develop E.ON's identity in a "new energy world"		
	Customer-centric		
	Sustainability		
•	Local proximity		
	 Small scale, distributed 		
	Clean technologies		

E.ON's initial bet was to implemented a central data science capability

"Data Science is an interdisciplinary field about processes and systems to extract knowledge or insights from data in various forms."

001001010101 001110110101 0101001001

Data

(Maybe) huge amounts of it! Data Quality/Reliability?!?

TERADATA ASTER

Implement a central on –premise analytical environment

Staff an data science team, sponsored by the innovation department

Expertise

Domain & Statistical Knowledge

Fund analytical projects, inviting the organization to explore their ideas With Predictive Maintenance we aim for improving on costs, revenues, and quality

Growing replacement need – allocate CAPEX properly

Serve customers better

Become more efficient

Grid size does not correlate with data abundance, due to the heterogeneity of the information space

Overview of grid lengths

Grid activities of E.ON

Digital.ON

E.ON had its "customer journey" into data science

Incremental approach towards successful solution implementation

- Main statement
 - The organization is on a journey, much as your usual customers. You need to guide them through it as a consultant
- Steps
 - Stages, similar to a customer journey
 - Information, create interest
 - Explain what data science is, how it works, and which common examples the users might refer to, when think about the
 possibilities
 - Eventually, after a while the organization will have ist own success stories in data science, and can use them as a showcase
 - Clarify needs, and scope
 - This includes clearly defining the initial hypotheses
 - The assumed value should be stated, and a assumed baseline should be included, too
 - Check feasibility, with data quality assessment and EDA
 - Use sample data to prove that the hypotheses are correct
 - Develop analytical models, and align with SME
- Notes
 - Similar to design thinking process
 - · Use the following parameters to select you path
 - Statistics on outages, and impact analysis
 - Feature engineering along conventional physics and electrical engineering wisdom
 - Statistics on data quality, and explore imputing dat

In the log run, we had to evaluate our odds of success for each and every idea...

- More ideas than capacity to serve them, forces you to quickly assess your odds of success
- Ideas are sometimes only speculations, so you need to validate them continuously throughout the process
- Data is only theoretically available, so checking the quality, and adequacy early on
- Business value is not always quantifiable, and therefore difficult to argue for

Three-step logic to move ahead with different approaches

Approach Explanation Steps to take • Validation of a new or extension of an existing hypothesis Data gathering Usage of data extractions **Exploration** Focusing the analytical effort Modelling Translation of the exploration into a real solution Industria- Technical connection of (new) data sources Piloting of the solution in the real IT-surrounding lization integration Pre-study with focus on data assessment Transition of the solution into the Service Management **Roll-out** Briefing and training of employees / users

- Explorative data analysis
- Platform development
- Development of data
- Tool development
- Transition into the line
- Service Management

8

Explorative Data Analysis: Joint work between data science and electrical engineering

Digital.ON

- Cable age: cables of an age about 30 – 40 year show increase outage patterns
- 2. Cable type: PE cables show an increased outage frequency
- **3. Outage sequence on MV-line:** Increase of outage rate for previously damaged lines.

"Supervised Machine Learning" is our currentDigital.ON Option, based on the amount & quality of data available

Requirements: Substantial number of training records.

Goal: find optimal classification.

In essence, we use a data-based time machine to understand model performance

Prioritization based on Kms of Cables - Focus Area (<700) 20 15 Outages 10 5 Random Model Conventional 100 200 500 600 700 300 400 Cumulative Length (Km)

Test of model performance

Method:

- 1. Pick past network state at 1.1.2015
- 2. Train model with outages prior to 2015
- 3. Predict outages for given network
- 4. Compare prediction with outage history in 2015

How many outages could have been prevented by replacing the first 150 km that are predicted to most likely fail?

The typical result of our solution is a replacement priority list

Input

- MV-cable data and outages
- Inner cable faults without known reason

Modelling

- Yearly prediction
- Classification algorithm

Output

- Ranked list
- Employed by DSO by considering also soft criteria and ongoing projects

MV-cables in SH-Netz with PdM priorities

The project technically had a "free of charge" entry Digital.ON point, but gradually was moved out to fly on its own

ERADATA ASTER			
Teradata On-premise Big Data Appliance	Azure Private Cloud-based Central Platform	Azure Private Cloud Based Group of Solutions	
 Clear, centralized funding Dedicated high performance hardware Tight information security control Skill requirements are predictable 	 Self-maintenance allows pick-and-chose platform integration Easy start for new users and projects 	 Projects need to organize their cloud funding Highest flexibility in solution design 	
 Highest cost Confined to the capabilities of the provider 	 Funding Skill ramp-up grows with the number of tools 	 Governance on tools, architecture, data stores 	
• High	• Moderate, pay as you go	 Higher on a per project perspective 	
 Abandoned in favor of a cloud approach 	 Partly decommissioned, in favor of dedicated resources per project 	 Increase architecture governance Use templates, to foster common best practices 	
	 Fradata On-premise Big Data Appliance Clear, centralized funding Dedicated high performance hardware Tight information security control Skill requirements are predictable Highest cost Confined to the capabilities of the provider High Abandoned in favor of a cloud approach 	 Fradata On-premise Big Data Appliance Clear, centralized funding Dedicated high performance hardware Tight information security control Skill requirements are predictable Highest cost Confined to the capabilities of the provider High Skill ramp-up grows with the number of tools Moderate, pay as you go Partly decommissioned, in favor of dedicated resources per project 	

The combination of these is perfect in our case

We aim for industrialization, to improve efficiency and gain quality

General features:

- Cloud based
- Heavy use of open source big data tech.
- Scalable

Special features:

- 1. Datalake, to historize data
- 2. Common libraries for common DSO data processing
- **3. Job control** for "everything", incl. infrastructure setup (laaS)
- 4. Automated E2E test framework

Over time, we transpose the group of distinct roles, in to a project team, enacting the capability

Moving best practices of software development into analytics is our approach to solution quality

A "T-shaped" infrastructure is our approach to keep Digital.ON flexibility, and not sacrifice security in the cloud

- Subscriptions, to allow separating the role based access control
- Production and development Data Lake syncs, to keep the data environment usable
- Infrastructure coding, with a dedicated subscription and dummy data, to reduce the information security risk
- **Cloud scanner technology**, to systematically and continuously govern the cloud configuration
- Security reviews and pen-tests, to find more complex deficiencies in the setup
- Four-eye principle, when changing infrastructure code 17

Rollout of our a single model to an arbitrary DSO is executed along a dedicated work plan, with confined timeline

¹ No complete integration of ETL processes, etc.

Digital.ON

² Dependent on IT landscape

In the Predictive Maintenance product, we try to focus on our core capabilities, and delegate or reuse the rest

1. ESP = E.ON Solution Platform

2. PM = Predictive Maintenance core logic

- **Presentation part** with a multitude of tools and requirements from the users. We try to descope them from the core service
- Data science and engineering is the core, and we try to harmonize on that, and keep it centralized
- Data Lake as a shared component, so DSO can re-use our solutions data also in other contexts
- Data sources are diverse, and heterogeneous, and therefore will need to be delegated to the DSOs