

Cyber Security

Fundamentals of the Smart Grid 2019 Brad Prent, ENCS 28 August 2019

European Network for Cyber Security

The European Network for Cyber Security (ENCS) is a non-profit organization that brings together critical infrastructure stakeholders and security experts to deploy secure European critical energy grids and infrastructure.

Schedule

15:30 Cyber Security

- Understanding the threat landscape
- Get in control, get prepared
- Security frameworks
- 16:10 Breakout Group Exercise Protocol Security
- 16:25 Q&A Session Introduction
 - Approach to enhancing security
- 16:40 Q&A Session
- 17:00 End

Learning Goals

- Understanding cyber security threats for a smart grid
- Understanding how cyber security strategies are evolving, to mitigate increasingly more sophisticated threats to the smart grid

What You Need To Know

- Understand the threat landscape
- How to get in control and get prepared
- Security frameworks
- Enhancing security for smart grids

What Has Changed?

Substation (1998)

- Serial connection to RTU
- SCADA over proprietary protocol
- Custom hardware and software (including OS)

Substation (2018)

- IEDs connected over Ethernet using IEC 61850 (MMS, GOOSE)
- Configured with standard Windows laptop
- HMI and SCADA Gateway run Windows using IEC 104
- Use of USB

ENCS

Bedroom Hackers Grew Up

Cyber Criminal = Ransomware = Money

Militarisation Of Cyber Warfare

Nation State Hackers?

6th (United Kingdom) Division

@6thUKDivision

The British Army's asymmetric edge. Intelligence, Counter-Intelligence, Information Operations, Electronic Warfare, Cyber and Unconventional Warfare.

@NSAGov

Are The Threats Real?

The New York Times

U.S. Escalates Online Attacks on Russia's Power Grid

The US planted offensive malware in Russia's power grid

It's acting on vows to conduct more aggressive cyberwarfare.

Jon Fingas, @jonfingas 06.15.19 in Security 56 Comments 2079 Shares

A heating power plant in Moscow. Officials described the move into Russia's grid and other targets as a classified companion to more publicly discussed action directed at Moscow's disinformation and hacking units around the 2018 midterm elections. Maxim Shewetov/Reuters

By David E. Sanger and Nicole Perlroth

First Cyber Incident In Ukraine

23 December 2015

- Power outage occurred in Ukraine
- Affected 50% of Ivano-Frankivsk region
- Malware was found at several of the affected regional Distribution System Operators (DSOs)
- Outage was caused by a cyber attack via IT

I ecnnology

Hackers caused power cut in western Ukraine - US

3 12 January 2016 | Technology

Security

Malware 'clearly' behind Ukraine power outage, SANS utility expert says

Mounting evidence attacks are handiwork of elite Russian hacker team.

Ukraine Déjà vu

17 December 2016

- Substation in Pivnichna
- Cut off from main power grid for 75 minutes
- Hackers sent malware via phishing email to employees
- Allowed them to steal login credentials and shut down substations

Russian hackers may be behind attacks leveled at the nation's power grid and artillery. The West should take note.

Industroyer

July 2017

- Probably caused 2016 power outage in Ukraine
- Specifically aimed at electricity grids
- Supports sending IEC 104 commands
- Supports sending IEC 61850 commands
- Exploits against SIPROTEC protection relays

Collateral Damage From IT

27 June 2017

- WannaCry / (Not)Petya ransomware randomly hit companies
- EternalBlue NSA SMB v1 exploit
- Flat networks without segregation helped spread malware and make containment harder
- Could have affected any Windows computers in substations

12:00 EDT - JUNE 27, 2017

Ukraine's police confirm MeDoc, an accounting software package taxes, as a NotPetya infection vector.

Robert M. Lee 🥝 @RobertMLee

Kyivenergo hacked, Ukrenergo affected kyivpost.com/ukrainepoliti... > very little known right now but worth watching ♥ 38 2:48 PM - Jun 27, 2017

Kyivenergo hacked, Ukrenergo affected - Jun. 27, 2017

Kyiv's energy generating company Kyivenergo has reported a hacker attack, the company's press service has told the... - Jun. 27, 2017. kyivpost.com

0

0

We can confirm that Maersk IT systems are down across multiple sites and business units. We are currently assessing the situation.

♡ 202 2:21 PM - Jun 27, 2017

θ

Kaspersky Lab's analysts are investigating the new wave of ransomware attacks targeting organizations across the world. Our preliminary findings suggest that it is not a variant of Petya ransomware as publically reported, but a new ransomware that has not been seen before. That is why we have named it NotPetya.

The company's telemetry data indicates around 2,000 attacked users so far. Organizations in Russia and the Ukraine are the most affected, and we have also registered hits in Poland, Italy, the UK, Germany, France, the US and several other countries.

This appears to be a complex attack which involves several attack vectors. We can confirm that a modified EternalBlue exploit is used for propagation at least within the corporate network.

Kaspersky Lab detects the threat as UDS:DangeroundObject.Multi.Generic.

Kaspersky Lab experts aim to release new signatures, including for the System Watcher component as soon as possible and to determine whether it is possible to decrypt data locked in the attack – with the intention of developing a decryption tool as soon as they can.

We advise all companies to update their Windows software, to check their security solution and ensure they have back up and ransomware detection in place.

Kaspersky Lab corporate customers are also advised to:

- Check that all protection is activated as recommended; and that they have enabled the KSN/System Watcher component.
- Use the AppLocker feature to disable the execution of any files that carry the name "perfc.dat"; as well as the
- PSExec utility from Sysinternals Suite.

The latest from @kaspersky researchers on #Petya: it's actually #NotPetya

♡ 637 7:12 PM - Jun 27, 2017

Why Target Smart Grids?

Untargeted & Opportunistic Attackers

Script kiddies

- Stereotype teenage hacker
- Intends no real damage, but may cause it unintentionally

Hacktivists

- Deface websites
- Cause bad publicity

Researchers / Journalists

- Show what's possible
- Like a good story

Opportunistic Criminals

- Target IT, but may hit OT
- Just sending spams
- Ransomware

 Disgruntled Employees Taking revenge Selling information on the black market 	Targeted Determined Financed Attackers
 Terrorists May be interested in causing power outage 	 Nation State Actors Strategic assets Espionage Sabotage
 Criminals targeting OT Extortion Could work for terrorists of nation states 	

https://www.tno.nl/media/8578/gpg_criticalinformationinfrastructureprotection.pdf

Key Risk To Smart Grids

- Technology mix
 - New internet connected components are added everywhere in the grid architecture (smart meters, IoT etc.)
 - Patching hardly possible
- Cascading effects
 - Inside grids, spreading to other critical infrastructures
- IT security concepts invalid for the grid
 - monitoring/incident handling/recovery
- Security immaturity of OT suppliers

What You Need To Know

ENCS

- Understand the threat landscape
- How to get in control and get prepared
- Security frameworks
- Enhancing security for smart grids

European Regulatory Perspective

- NIS Directive (effective May 2018)
 - Appropriate technical and organizational measures
 - Mandatory (national) incident reporting
- Cybersecurity Act
 - New permanent mandate for ENISA
 - European cybersecurity certification framework for ICT products and services
 - Certification framework yet to be decided

ENCS

EG2 Recommendations

Network Code Cybersecurity

- Baseline protection for all grid operators (ISO 27001 and minimum security requirements)
- More advanced cybersecurity standards should apply to Operators of Essential Services (OES)

Commission Recommendations

Specific measures addressing:

- Real-time requirements
- Cascading effects
- Legacy and state-of-the-art technology

Brussels, 3.4.2019 C(2019) 2400 final

COMMISSION RECOMMENDATION

of 3.4.2019

on cybersecurity in the energy sector

{SWD(2019) 1240 final}

Get In Control, Get Prepared

- Technology mix
 - Defense in depth for legacy systems
 - Security requirements and testing for new grid components
- Incident management
 - Intrusion detection systems
 - Exercises
 - Recovery!
- Skills management
 - Awareness
 - Role based training
 - Expert knowledge

What You Need To Know

- Understand the threat landscape
- How to get in control and get prepared
- Security frameworks
- Enhancing security for smart grids

Frameworks in Energy Sector

ENCS

Completeness / Governance & Policy Aspects

How They Can Meet In The Middle

Breakout Group Exercise

Q&A Introduction

What You Need To Know

ENCS

- Understand the threat landscape
- How to get in control and get prepared
- Security frameworks
- Enhancing security for smart grids

ENCS

Enhancing Security For Smart Grids

Five key areas to enhance security

- 1. Implement an ISMS
- 2. Establish cyber risk management
- 3. Establish cyber technical controls
- 4. Prepare for the worst case
- 5. Manage the skill gap

ENCS

Implement An ISMS

ISMS Is All About People and Processes

Risk Management Gives Security Focus

ISO 27005

ISO 31000

ISF IRAM2

BOWTIE

YOUR OWN VERSION?

Focus On Critical Assets At Risk

Define Strong Use Cases To Mitigate

ENCS

Defense

Architectures

Zoning Model

- Implement a zoned network architecture that protects the interface between IT and OT systems
- Divide OT infrastructure into different security zones based on their risk levels
- Standards such as IEC 62443 can help here.

Secure Communication

- Authenticate and encrypt communication between zones
- Gradually deploy secure communication to components

- Access Control
 - Define and implement centralized access control & 3rd party remote access strategies
 - Develop strategies for secure field maintenance access to infrastructure

System & Component Security

•

Enhanced Lifecycle Management For smart grid systems and components, including security requirements during procurement

Security Validation Adoption of open/standardized tools and best practices for security validation

- **Futureproof Deployments** Adoption of reliable and efficient processes to perform software/firmware upgrades. Ensure sufficient hardware capacities are available
 - **Functional Separation** Available support for secure separation of services on single physical units. ("Zoning for Components")

Cyber Security Monitoring

Security Monitoring

- Set up a SIEM system and start to collect information
- Set up teams to analyze and respond to security events
- Deploy SCADA network intrusion detection systems with deep-packet inspection and flow monitoring
- SOC, CSIRT, Trigger for BCM/DR

Threat Intelligence

- Foster industry exchange of vulnerabilities in industrial components
- At EU level: Incident Reporting through NIS Directive mandatory

Organise Your Smart Grid's CSIRT

Cyber Security Incident Response Team

- Virtual OT CSIRT
- Integrated OT / IT CSIRT
- Industry CSIRT
- EU CSIRT (CERT-EU)
- Outsourcing / Collaboration model

Need operational security capabilities within the OT engineering departments to work with the response team

Have A Recovery Process

Not all components may work normally, may take months to bring all systems into operation again.

- Have a contingency plan
- Have up to date schematics available
- Have manually inputted configuration available
- Have backups (data, systems, configs, docs)
- Test if the plans and backups work
- Know how to test if system is working normally

Process	Leading role	Other roles
Selecting and implementing organizational security measures	 Security officers: Implement an ISMS Understand risks to OT systems Select measures feasible for OT 	 All employees: Know how to apply security policies Be aware of security risks
Selecting and implementing technical security measures;	 Security architects: Assess risks in detail Select effective measures Track the implementation Evaluate the implementation 	 Engineers: Translate architecture design into component configurations Roll out configurations Perform functional tests
Finding and mitigating vulnerabilities;	 Security analysts: Monitor for vulnerabilities Assess the risk of vulnerabilities Select fixes or mitigations Track implementation Validate implementation 	Apply patches or secure settings
Detecting and responding to security incidents	 Gather data for detection Analyze alerts Handle small incidents 	 Isolate systems Recover systems to a secure state
	Advice during major incidents	 Crisis organization: Coordinate major incidents Prioritize response actions Communicate about incidents

Collaboration and Resource Sharing

Collaboration focus on

- Security requirements, testing and certification
- Education & Training
- Research

Security Community Building

- Policy
- Architecture
- Operations

Questions and Answers

QQ

Welcome to the European Network for Cyber Security

The European Network for Cyber Security (ENCS) is a non-profit member organization supporting to deploy secure European critical energy grids and infrastructure.

Learn More About Our Mission

