

CLOUD BASED SUBSTATIONS

EDP Distribuição's vision on Clouds and Edge Computing

November 2019

AGENDA

1. EDP in brief

- 2. Energy Transition and Digitalization
- 3. CLOUD Concepts and key technologies
- 4. Substation Cloudification Potential
- 5. Strategy, Culture and new ways of working

EDP Group has grown from a local integrated incumbent utility to a global energy player with business operations in 14 countries

AGENDA

- 1. EDP in brief
- 2. Energy Transition and Digitalization
- 3. CLOUD Concepts and key technologies
- 4. Substation Cloudification Potential
- 5. Strategy, Culture and new ways of working

The path to a secure, affordable, competitive and sustainable energy is being supported by a profound System transformation

Digitalization untaps fundamental capabilities, such as small scale and variable renewables, flexibility and smart demand response

Digitalization core technologies are key to smart grids and energy sustainability, security and decarbonization

The dynamic and permanent balance between supply and demand in an atomized control and at scale, mediated by market participants implies:

- An all-connected data environment;
- Massive and distributed processing and decision making;
- Core ICT technologies, Big Data and AI

AGENDA

- 1. EDP in brief
- 2. Energy Transition and Digitalization
- 3. CLOUD Concepts and key technologies
- 4. Substation Cloudification Potential
- 5. Strategy, Culture and new ways of working

Digitalization at scale requires flexible, evolutive and efficient computing resources as offered by Cloud technologies

CLOUD entails three key enabling technologies

Virtualization

- Resource abstraction
- Efficiency
- Scalability
- Reusability
- Geographic reach

Reliability

CONNECTIVITY

- IP Networking
- VPNs
- Wired/Wireless
- Pervasiveness
- High Bandwidth

SOA

- APIs
- Ease of Interfacing
- Hide Logic
- On demand services
- Flexibility
- Reuse

edp distribuição

The ownership, location and management of CLOUD resources define their deployment models, namely Public, Private and Multi-Clouds

CLOUD Services vary on composition and scope, from low level Computing resources to Applications (Software) and Functions (Serverless)

distribuição

Cloud concept has virtualization has one of it's core pillars

- Expanding hardware capabilities
- Efforts to control costs and to simplify through consolidation of servers
- The effort to control and manage large multiprocessor and cluster installations
- The ability to run OS-dependent applications in different hardware or OS environments

VM ! VM

HYPERVISOR

"Bare metal"

II VM

A specialized Software called "hypervisor" separates the physical resources from the virtual environments

Hypervisors can sit on top of an operating system (like on a laptop) or be installed directly onto hardware (like a server).

Hypervisors take your physical resources and divide them, creating virtual environments that can be independently used.

The fundamental role of the hypervisor in virtualization

Virtualization can be applied in different domains ...

Data virtualization integrates data from disparate sources without copying or moving the data, thus giving users a single virtual layer that spans multiple applications, formats, and physical locations. This means faster, easier access to data. Desktop virtualization is the Servers creation of a virtual designer computer environment that volume runs in a HOST server and is Virtualiz then delivered remotely to physical the user's device.

Servers are computers designed to process a high volume of specific tasks. Virtualizing partitions a physical server into multiple smaller, virtual servers, improving utilization Network virtualization is defined by the ability to create logical, virtual networks that are decoupled from the underlying network hardware, virtualizina L2-3 services like switching and L4-7 and routina, includina firewallina and load-balancing

edp d

distribuição

The benefits of software "contentorization" and inherent scalability is further enhanced by SOA and Microservices architecture

- Service reusability
- Easy maintenance
- Platform independent
- Availability
- Reliability
- Scalability
- Graceful degradation

Source: Maveric Systems

EDP Distribuição

Loose coupling: Services are designed as self-contained components, maintain relationships that minimize dependencies on other services.

Abstraction: A service is completely defined by service contracts hiding their logic

Reusability: Services can be reused more effectively, thus reducing development time and the associated costs.

Autonomy: Services have control over the logic they encapsulate

Evolution of Software Architectures

Discoverability: Services are defined by description documents

Composability: Using services as building blocks, sophisticated and complex operations can be implemented

Private and Public networks support pervasive connectivity, enabling the evolution of DATA driven processes required by Grid Digitalization

Clouds and Virtualization bring and undebatable advantages to security but also come with increased security risks that must be taken into account

Existing standards and recommended frameworks enable risk management and security controls, with open scrutiny and sharing for effective action

Configuration (CWE-16)

Configuration

AGENDA

- 1. EDP in brief
- 2. Energy Transition and Digitalization
- 3. CLOUD Concepts and key technologies
- 4. Substation Cloudification Potential
- 5. Strategy, Culture and new ways of working

Envisioning the present and future Digital context of a Substation through possible functional families

edp distribuição

Envisioning the present and future Digital context of a Substation through possible functional families – GRID OCHESTRATION

edp distribuição

Envisioning the present and future Digital context of a Substation through possible functional families – Automation & Protection

Envisioning the present and future Digital context of a Substation through possible functional families – Networking

Envisioning the present and future Digital context of a Substation through possible functional families – Cyber Physical

Envisioning the present and future Digital context of a Substation through possible functional families – ASSET MANAGEMENT

Envisioning the present and future Digital context of a Substation through possible functional families – HUMAN SUPPORT

CLOUD technology can leverage the Smart Grid digital transformation, offering a fluid, agile and scalable architecture, from Core to Edge

edp distribuição

Cloud Substation clusters will be orchestrated as a distributed Cloud, constrained by capacity of core IP networks and delay requirements

ILLUSTRATIVE

CLOUD technology can leverage the Smart Grid digital transformation, offering a fluid, agile and scalable platform, from Core to Edge

Automation & Protection Grid Orchestration	laaS PaaS	laaS PaaS	IED Automation SW
Automation & Protection Grid Orchestration			IED Automation SW
Grid Orchestration			Protection SW
	Core Vs. Edge		P2P decision process Edge forecasting Protection SW
Networking	Resilience Driver		Switching / Routing Load Balancer FW & Security probes
Cyber Physical			Video Processing IoT GW Specialized Analytics
Human Support			Assisted/Augmented Reality Perimeter Control Personal Protection
Asset Management			Logging / IoT Edge Analytics

"As-is" and the new developments from Cloud and Virtualization perspective

The "CLOUD journey" tackles hidden benefits and will require holistic approach and reference vendor participation and buy-in

- Agility (deploy, Change, ...)
- ➤ No Single-point-of-failure
- Environment automation at scale
- Compliance (App, RBAC, IAM, ...)
- Patching
- Decouple HW / SW
- Horizontal/Vertical scalability

Vendor "take-in"

Journey as started with products adopting ICT virtualization technology

General acceptance of

and systems

open layered architectures

New partner engagement models, promoting open

Vendor pushes compliant

platforms "as-a-product"

architectures

EDP Distribuição

▶ ...

AGENDA

- 1. EDP in brief
- 2. Energy Transition and Digitalization
- 3. CLOUD Concepts and key technologies
- 4. Substation Cloudification Potential
- 5. Strategy, Culture and new ways of working

Digital acceleration motivated EDP X project, sponsored by EDP's CEO, tackling Strategy, Projects and Culture, fostering and retaining skills

Engaging Digital stakeholders and embracing new roles, moving into the "Hands-on" domain is crucial to the innovation "New Normal" paradigm

CLOUD is a Pillar for the Digital Utility Transformation

GET ENGAGED ON OPEN FRAMEWORKS

DIGITAL TRANSFORMATIONS ARE RARELY PRODUCT DRIVEN

DE-VERTICALIZE CONCEPTS, OPENING LAYERS DO INNOVATION AND COMPETITION

CONTINUOS TRANSFORMATION REQUIRES LIVING AND ADAPTATIVE ARCHITECTURES

IN-HOUSE KNOW-HOW FUELS AND SUSTAIN YOUR SUCCESS

COMPOSE AND SOURCE TO YOUR BEST FIT

a better energy, a better future, a better world