IEC 61850 at Stedin Today and Tomorrow

Bas Mulder – Technical Advisor Grid Automation

VOOR DE NIEUWE ENERGIEGENERATIE

OUR OPERATING AREA

PROVINCES OF ZUID-HOLLAND AND UTRECHT

Stedin is the grid operator of most of the Randstad area, which includes the cities The Hague, Utrecht and Rotterdam, the Rijnmond port area and the Botlek industrial area. High-density urban areas with a complex infrastructure and a high dependency on energy that require continuous availability of energy. Now and in the future.

Stedin also manages energy infrastructure in the regions Kennemerland, Amstelland and north-east Friesland.

Stedin operating area electricity

Stedin operating area gas

STEDIN KEY FIGURES 2018

Electricity

69% OF OUR CUSTOMERS AWARDED STEDIN A 8 OF HIGHER FOR SERVICES PROVIDED

Why IEC 61850

- Today and tomorrow
- The future is next week
- Q&A

IEC 61850 at Stedin FACTS AND FIGURES

- Since 2007 substation automation with IEC 61850 edition 1
- 90 out of 200 substations are equipped with IEC 61850 station bus
- All newly built primary substations are IEC 61850 based
- Refurbishing 10-15 primary substations per year
- Biggest substation consists of 100 IEDs
- Ambition to have vast majority on IEC 61850 in 2030
- Also in distribution: 100 substations (sort of light version)

Cumulative amount of SA systems in Stedin's Primary Substations

LEC 61850

STE

IEC 61850 at Stedin WHY?

- Unified data-modelling
- Standardized engineering workflow
- Proven (open) communication protocols
- Application decoupled from communication protocols

Bay

¥

Φ

Ю

- Descriptive data objects and functions
- Vendor independent
- Industry proven and validated

IEC 61850 at Stedin Today

IEC 61850 at Stedin 3RD GENERATION SAS

- Communication protocols in IEC 61850 are mapped on Ethernet (Xerox 1970)
- IEC 61850-8-x and -9-x describe to date 4 communication protocols
 - MMS (e.g. IED to gateway);
 - GOOSE (e.g. IED to IED to exchange breaker positions);
 - Sampled Values (exchange of currents/voltages between primary apparatus & IED);
 - XMMP/MMS (e.g. communication from/to DER devices).
- To date only MMS and GOOSE are used by 3rd generation SA systems
- 4th generation will introduce SMV and digital instrument transformers (Middelharnis!)
- More and detailed data acquisition and processing upstream
- Pilot ongoing to replace IEC 104 for SCADA communication with IEC 61850-90-2

Architecture 3RD GEN SAS

- Standardized network?
- Mix of start and ring
- 100M RSTP links
- FO to IEDs
- UTP to STN
- UTP to NTP and HMI

IEC 61850 at Stedin Tomorrow

IEC 61850 at Stedin

IEC 61850 at Stedin PUBLIC TENDER PROCESS

- 3 months for the market exploration
- Actual tendering done in 9 months

IEC 61850 at Stedin CLEAR REQUIREMENTS SPEED UP COMPARISON

to intermittent ground loan protocolori processes die r.m.e. it to a settable threshold.

Requirement SSRQ-27540 [Weight: 1]

It shall be possible to block the protection functions. This has to be done by the IEC61850 system, a digital input or via the front of the IED

Requirement SSRQ-20222 [KO]

The protection function and measurement functions of the PAC system shall support both clockwise and anticlockwise phase rotation order of the grid.

Sub Requirement(s): SSRQ-23676,

Requirement SSRQ-23676 [Weight: 1]

In case of a deviation between the set phase rotation and the phase rotation of the connected voltage or current an alarm shall be generated

Parent Requirement: SSRQ-20222,

Requirement SSRQ-19769 [KO]

The protection function shall measure the voltage correctly in three phase systems using the following primary equipment:

- Three phase to ground voltage transformers
- Two phase to phase voltage transformers
- Open-delta voltage transformer

Requirement SSRQ-19771 [KO]

The trip pulse output signal duration shall be adjustable.

	Description (not complete)	ID	KO 👻	Weight 👻	Compliant (yes or no 👻
		PKG-19405			
		PKG-19415			
		SSRQ-23394	True		yes
		PKG-19692			
software		SSRQ-19759	True		yes
ded or	The intermittent ground fault	SSRQ-15124	True		yes
0		SSRQ-27540	False	1	yes
:h		SSRQ-20222	True		yes
onnected		SSRQ-23676	False	1	yes
the	* Three phase to ground voltage	SSRQ-19769	True		yes
		SSRQ-19771	True		yes
iessages		SSRQ-27424	True		yes
ation		SSRQ-18375	True		yes
ed with		SSRQ-19857	True		yes
ne		SSRQ-23589	True		yes
an		SSRQ-19868	True		yes
		SSRQ-23588	True		VAC

IEC 61850 at Stedin AWARD CRITERIA, PRACTICAL EVALUATION PHASE

Practical Evaluation phase										
I. Score of the Awarding phase	70,0%									
II. Practical Evaluation	30,0%	Process audit (7.5%)								
		Technical audit (22.5%)								
Total score:	100%									

STEDIN

VOOR DE NIEUWE

Digital grid

Digital grid: a common base for real-time to long-term insight and control of the grids.

IEC 61850 at Stedin **4TH GENERATION SAS**

- One box solution based upon IEC 61850 Edition 2+ •
- Stedin IEC 61850 implementation profile (PID) for: •
 - Data model (Stedin reference model) •
 - Communication services (both inside and outside the SAS) •
 - Network architecture •
 - Cyber security (RBAC, authentication, virtualization, backups) •

unctionalitie

Overcurrent + Automation & Control

Overcurrent

Contro

ime server in substatio

IED Type A: OC

IED Type B: OC + A

IED Type C: OC + freq.

IED Type E: OC+ LD + A

IFD Type F: OC + TD + A

IED Type G: OC + LD + Dist + AC

IED Type H: OC+ LD + TD + AC

IED Type I: Freq + AC (Logic

Type X: Gateway units

vne Y[.] Substation HM

Type Z: GPS receiver wit

(S)NTP-serve

IED Type D: OC + LD

- Tendering and evaluation in 2018/2019 •
- Single vendor (Sprecher) •
- Modular / building blocks •
- First project : MOTA ٠

Figuur 2: referentiestation implementatie, inclusief IED types en positionering IED's

STE

IEC 61850 at Stedin 4TH GENERATION SAS

- Redundant 10G links to STN core
- IP/MPLS L3 VLANs per service
- SAR-8 is access to SA LAN
- SA-LAN 1G uplink
- Routing/ACL in the SA LAN
- VLAN tagging in the SA LAN
- RSTP recovery <= 100 ms
- Ring topology to reduce costs
- Jump-server/VMware host in substations (not for SA-Light)

VOOR DE

NIFUWF

IEC 61850 at Stedin OT AND IT NICELY PLAYING TOGETHER

VOOR DE NIEUWE ENERGIEGENERATIE

STED N.NET

IEC 61850 at Stedin Innovation & near future

IEC 61850 at Stedin PROCESS BUS PILOT MIDDELHARNIS

- Advantages of a process bus
 - Improved safety and reliability (no open current circuits)
 - Reduced CT saturation
 - Simple plug-in of extensions on the bus
 - Easy replacement of components
 - Single source of very accurate data
 - Multi vendor and it is awesome!

STED N.NET

VOOR DE NIEUWE

IEC 61850 at Stedin PROCESS BUS PILOT MIDDELHARNIS

VOOR DE NIEUWE ENERGIEGENERATIE

DN

IEC 61850 at Stedin COMPONENTS OF A DIGITAL SUBSTATION

- Communication protocols in IEC 61850 are mapped on Ethernet (Xerox 1970)
- IEC 61850-8-x and -9-x describe to date 4 communication protocols
 - GOOSE (e.g. IED to IED to exchange breaker positions);
- GOOSE is mapped on multicast Ethernet (publishers and subscribers)
- · Often faster compared to (mechanical) support relays and wires
- Fault tolerant and reliable due to continuous transmission
- Real-time behavior but non-routable
- Used for exchange of process information:
 - Interlocking positions
 - Protection functions and trips
 - Automation functions

IEC 61850 at Stedin COMPONENTS OF A DIGITAL SUBSTATION

- Communication protocols in IEC 61850 are mapped on Ethernet (Xerox 1970)
- IEC 61850-8-x and -9-x describe to date 4 communication protocols
 - Sampled Values (exchange of currents/voltages between primary apparatus & IED);
- SMV is mapped on multicast Ethernet (publishers and subscribers)
- Fault tolerant and reliable due to continuous transmission
- Real-time behavior
- Used for exchange of current and voltages (e.g. measurements and protections)

IEC 61850 at Stedin PROCESS BUS PILOT MIDDELHARNIS

IEC 61850 at Stedin DSS FAT

- Introduction to all components
- Network design review
- Network connection validation
- SCL validation
- GOOSE/SMV checks
- Network performance
- Validation of use-cases
 - Measurements
 - Trips signals
 - Protection functions

IEC 61850 at Stedin PROJECT EXPERIENCES

- Challenges in station-bus and process-bus design
 - Virtual LANs
 - Priorities
 - Network Speed
 - Interoperability between IEDs and RedBoxes
- Capacity/performance of gateway system
 - Slow cycle time of disturbance file copy
- Time-synchronization PTP (IEEE 1588v2)
 - MU320 without time-sync due to network load
 - No clock-sync SMV -> false trips of ABB IED
 - Variations on network load (70-90% vv) -> false trips
 - Change of time -> reboot of T60 IED

STEDIN

VOOR DE NIEUWE

IEC 61850 at Stedin MEASUREMENT MESSAGES?

Ethernet	Intel(R)	Ethernet Connection I219-	V ea	some_	02:00:00	LI	LDP_MUILIC													
			kG	ridSo_	ff:01:48	Ie	ec-Tc57_01	1 > Fr	rame 1488:	1492 b	ytes on wir	e (11936 bits	;), 1492	2 bytes	captu	ured (119	36 bit	s) on	inter	face 0
Throughput		54 Mbj	ps kG	ridSo_	ff:01:48	Ie	ec-Tc57_01	1 2 5	thernet II	, Snc:	UkGridSo_ff	:01:48 (80:b3	3:2a:ff	:01:48)	, Dst	: Iec-Tc5	/_01:0	0:00 ((01:00	::cd:01:00:00)
			kG	ridSo_	ff:01:48	Ie	ec-Tc57_01	1 8	AppID*:	0										
			- kG	ridSo_	ff:01:48	Ie	ec-Tc57_01	1	PDU Leng	th*: 170	0									
			ea	sonTe_	02:b5:20	LI	LDP_Multic	c	Reserved	1*: 0x0	000									
			kG	ridSo_	ff:01:48	Ie	ec-Tc57_01	1	Reserved	2*: 0x0	000									
			kG	ridSo	ff:01:48	Ie	ec-Tc57 01	1	TEC G	OOSE										
		32 Mbp	c ea	sonTe	02:b5:20	LI	LDP Multic	c	{	0052										
			kG	ridSo	ff:01:48	Ie	ec-Tc57 01	1	Con	trol Blo	ock Referen	e*: NW_NAM	ESYSTEM	1/LLN0\$	GO\$Goo	se PBus				
			kG	ridSo	ff:01:48	Ie	ec-Tc57 01	1	Tim	e Allowe	ed to Live	(msec): 4100								
			· -		0.46.07.455.454				Dat	aSetRefe	erence*: [DatasetPBus	100	1000	1520	0.17.11	42	42	~	21
				33	9:40:37.400404	Acsi	Asdu L=94 II Asdu L=94 II	D=SV_IV	102_3AGA08	Count=9	995 ConfRev=	1 Synch=2 Cur:	-400	-1000	1528	0 Volt:	-42	42 42	03 · 42	-21
				41	9:46:37.455889	Acsi	Asdu L=94 I	ID=SV_N	102_3AGA08	Count=9	997 ConfRev=	1 Synch=2 Cur:	-231	-1233	1460	2 Volt:	-63	63	63	-21
				45	9:46:37.456108	Acsi	Asdu L=94 I	ID=SV_N	1U2_3AGA08	Count=9	998 ConfRev=	1 Synch=2 Cur:	-112	-1304	1409	2 Volt:	-42	63	63	-21
				49	9:46:37.456437	Acsi	Asdu L=94 I	D=SV_N	1U2_3AGA08	Count=9	999 ConfRev=	1 Synch=2 Cur:	18 -	1373	1345	0 Volt:	06	53 4	2 -2	1
				53	9:46:37.456702	Acsi	Asdu L=94 II	D=SV_N	1U2_3AGA08	Count=1	1000 ConfRev:	=1 Synch=2 Cur	: 139	-1425	1281	0 Volt:	-42	42	42	-21
				57 61	9:40:37.400902	Acsi	Asdu L=94 II	D=SV_IV	102_3AGA08	Count=1	1001 ConfRev: 1002 ConfRev:	= 1 Synch=2 Cur - 1 Synch=2 Cur	208	-14/3	1208	2 Volt:	-42	42	42	-42
				65	9:46:37.457457	Acsi	Asdu L=94 II	ID=SV_N	1U2 3AGA08	Count=1	1002 ConfRev:	=1 Synch=2 Cur	501	-1544	1034	2 Volt:	-42	42	63	-21
				69	9:46:37.457701	Acsi	Asdu L=94 I	ID=SV_N	1U2_3AGA08	Count=1	1004 ConfRev:	=1 Synch=2 Cur	615	-1563	940	2 Volt:	-42	42	42	-21
60 seconds			0 🛆	73	9:46:37.457952	Acsi	Asdu L=94 I	D=SV_N	1U2_3AGA08	Count=1	1005 ConfRev:	=1 Synch=2 Cur	725	-1570	839	2 Volt:	-63	42	42	-21
Cond	Adapter paper	Ethorpot		77	9:46:37.458201	Acsi	Asdu L=94 II	D=SV_N	1U2_3AGA08	Count=1	1006 ConfRev:	=1 Synch=2 Cur	: 835	-1572	730	2 Volt:	-42	42	63	-21
Sella	Adapter name.	Ethemet .	2	81	9:40:37.408371	Acsi	Asdu L=94 II	D=SV_IV	102_3AGA08	Count=1	1007 ConfRev: 1008 ConfRev-	= 1 Synch=2 Cur - 1 Synch=2 Cur	933	-1003	508	0 Volt:	-42	42	42 63	-21
0 Kbps	Connection type:	Ethernet		89	9:46:37.458937	Acsi	Asdu L=94 II	ID=SV_N	1U2_3AGA08	Count=1	1000 ConfRev:	=1 Synch=2 Cur =1 Synch=2 Cur	1119	-1515	393	2 Volt:	-42	42	63	-21
	IPv4 address:	169.254.76.96		93	9:46:37.459187	Acsi	Asdu L=94 I	ID=SV_N	1U2_3AGA08	Count=1	1010 ConfRev:	=1 Synch=2 Cur	1206	-1476	265	2 Volt:	-42	42	42	-21
Receive	IPv6 address:	fe80::ec52:24b3:57dd:4c60%21		97	9:46:37.459436	Acsi	Asdu L=94 I	ID=SV_N	1U2_3AGA08	Count=1	1011 ConfRev:	=1 Synch=2 Cur	: 1279	-1430	146	2 Volt:	-42	63	63	-21
170 Mahne				101	9:46:37.459683	Acsi	Asdu L=94 I	D=SV_N	1U2_3AGA08	3 Count=1	1012 ConfRev:	=1 Synch=2 Cur	: 1345	-1377	25	2 Volt:	-42	42	63	-21
2qaivi 6.71				105	9:46:37.459931	Acsi	Asdu L=94 I	D=SV_N	1U2_3AGA08	3 Count=1	1013 ConfRev:	=1 Synch=2 Cur	: 1405	-1311	-96	2 Volt:	-42	42	42	-21
			~	109	9:40:37.400095	Acsi Acsi	Asdu L=94 II Asdu L=94 II	D=SV_IV	102_3AGA08	Count=1	1014 ConfRev- 1015 ConfRev-	= 1 Synch=2 Cur -1 Synch=2 Cur	1400	-1258	-224	2 Volt:	-42 -42	42 63	42 63	-21
				117	9:46:37.460702	Acsi	Asdu L=94 II	ID=SV N	1U2_3AGA08	Count=1	1016 ConfRev:	=1 Synch=2 Cur	: 1528	-1073	-460	2 Volt:	-42	63	63	-21
				121	9:46:37.460975	Acsi	Asdu L=94 I	ID=SV N	1U2_3AGA08	Count=1	1017 ConfRev	=1 Synch=2 Cur	1551	-975	-583	0 Volt:	-42	42	63	-21
				125	9:46:37.461200	Acsi	Asdu L=94 I	ID=SV_N	1U2_3AGA08	Count=1	1018 ConfRev:	=1 Synch=2 Cur	1565	-876	-693	0 Volt:	-42	42	42	-21
				129	9:46:37.461452	Acsi	Asdu L=94 I	D=SV N	1U2 3AGA08	Count=1	1019 ConfRev:	=1 Synch=2 Cur	: 1570	-773	-798	2 Volt:	-42	42	63	-21

STED IN."

VOOR DE NIEUWE

IEC 61850 at Stedin PROJECT EXPERIENCES

STEDIN

VOOR DE NIEUWE

THANK YOU Questions and Answers

E: Bas.Mulder@stedin.net | T: +31 6 538 100 38

VOOR DE NIEUWE ENERGIEGENERATIE

I III

C HH

e HH

