IEC 61850 Global 2020

Wide Area Monitoring

Enabling Wide Area Monitoring, Protection, and Control (WAMPAC) systems with IEC 61850 to improve grid operation and stability

Birkir Heimisson, Project manager for Smart-Grid Development

Agenda

- Icelandic transmission system and the operational challenges
- Development of Wide Area Control Methodology
- Testing and Implementation of WACS
- Examples of how WACS have improved system response during disturbances
- What's next for WACS in Iceland?

Icelandic Transmission System

Load peak: 2400 MW

Total Energy: **17.7** GWh/year

100% Renewable energy: 70% Hydro 30% Geothermal

Power intensive users ~80% of total load

The grid includes more than 3,000km of transmission lines and about 70 substations

Icelandic Transmission System

Load peak: 2400 MW

Total Energy: **17.7** GWh/year

100% Renewable energy: 70% Hydro 30% Geothermal

Power intensive users ~80% of total load

The grid includes more than 3,000km of transmission lines and about 70 substations

Effect of Sparse Centres of Inertia

• Iceland shows frequency & angle divergence between centres of inertia

General Method for Locational Fast Response

General Method for Locational Fast Response

Test Environment

Sanity check

Aggregation

Power Imbalance

Triggering

Implementation

Implementation

Implementation

<u>Smartgrid Project in Reykjanes – Load Shed Control and Generator</u> <u>Governor Mode by using GOOSE [IEC 61850]</u>

NETWORK INFRASTRUCTURE

PMU+Communication latency <100ms; Overall trigger time <0.5s

NETWORK INFRASTRUCTURE

Improved network architecture for WAMS/WACS

Scalability & robustness with decentralization & redundancy

- PMU data Region 1
 PMU data Region 2
 PMU data Region 3
- PMU Phasor Measurement Unit
- PDC Phasor Data Concentrator
 - PDC9 PDC with Stream Forwarding
- PhC Phasor
- PMU data Region 4
 PDC data regions
- PhC data broadcast (PMU format)
- 61850 GOOSE broadcast
- Data direction unicast C37.118
- Data direction broadcast C37.118
- Data direction 61850 GOOSE

- PhC PhasorController RA Regional Aggregator
- RA Regional Aggregator RC Resource Controller
- ISAL Smelter in SW Iceland
- HRA Hvdro unit in SW Iceland
- EILS East Iceland Load Shed
- ISLN Islanding North

REAL SYSTEM RESPONSES

REAL SYSTEM RESPONSES

Time [Sec]

Latest Development in Wide Area Control

for locational frequency response and regional re-balancing

REF: C2-142 2020 CIGRE **e**-Session 2020

Example of Region 3 load loss and oscillations

Digital Substation Project Overview

Conclusion

- WACS have improved the system performance during disturbances:
 - The system operators experience less severe disturbances, improving system security
 - The generator operator experiences fewer plant trips and large frequency excursions which extends the lifetime of the machines
 - The load customers in the region experience fewer and shorter interruptions and better power quality
- There are still many promising WACS project proposals, more capacity of regulating units in south west, harnessing the fast response of geothermal units, regulating options with datacenters and wide-area-damping.
- Fast Frequency Response (FFR) ancillary service is in development.
- Digital Substation projects increase the demand of fast and reliable communication between substations. Which opens the option for routable GOOSE,SV [IEC TR 61850-90-5] for enhanced protection and control.

Thank you for your attention

