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• Covalent inhibitors

• Screening with AtomNet® model
• Covalent adaptation of AtomNet®

model training protocol
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Atomwise

• Pharmaceutical company using 
machine learning for drug 
discovery

• Wide and diverse portfolio of 
internal and joint venture assets

• Developing innovative strategies 
to target undruggable genome

• Covalent inhibition is one such 
strategy

“Drug The Undruggable”
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Covalent Inhibitors

• Covalent inhibitors act by forming covalent bonds with targets
• Traditionally under-explored by pharmaceutical companies due to 

concerns surrounding off-target toxicity
• Historically covalent inhibitors were discovered serendipitously
• 14 covalent drugs approved by US FDA in the last decade

Covalent Inhibitors form covalent bonds with targets
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Covalent Inhibitors

• Inhibitors usually have an electrophilic group with reacts with 
nucleophilic amino acid residues

• Electrophilic group on inhibitor is called a warhead
• Identity of warhead decides 

• Mechanism of reaction: reversible covalent vs. irreversible covalent
• Reactivity and selectivity

Warhead, an electrophilic group on inhibitor, reacts with nucleophilic residues
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Picture credits: Gehringer, M. et al J. Med. Chem 2019, 62, 5673
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Virtual screening using AtomNet® model
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Training data

Readout

AtomNet® model
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L(y, ŷ)

Training
• Bioactivity dataset from multiple 

sources with diverse targets 
and ligands

• Classifier and regressor models 
trained on bioactivity prediction 
task
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Virtual screening using AtomNet® model
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L(y, ŷ)

Training
• Bioactivity dataset from multiple 

sources with diverse targets 
and ligands

• Classifier and regressor models 
trained on bioactivity prediction 
task

Screening 
library

Screening
• Library of compounds screened 

against target of interest
• Classification and ranking 

based on affinity prediction

✅

❌

❌

AtomNet® model
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AtomNet® model training protocol

• Standardization of binding affinity data
• Filtering out potentially noisy and incorrect data 
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Data 
curation

Pose 
generation

Pose 
selection Training

© 2021 Atomwise



AtomNet® model training protocol

• Protein-ligand 
conformations (poses) 
generated using docking

• Cuina,[1] our in-house 
GPU implementation of 
the Vina scoring 
function, used
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Data 
curation

Pose 
generation

Pose 
selection Training

[1] https://blog.atomwise.com/efficient-gpu-implementation-of-autodock-vina
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AtomNet® model training protocol

• Selection of poses 
from ensemble

• Ranking of poses 
using AtomNet®
pose ranker
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Data 
curation

Pose 
generation

Pose 
selection Training
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AtomNet® model training protocol

• Decoy binding affinity data generation
• Cross-validation splits
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Data 
curation

Pose 
generation

Pose 
selection Training
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Data curation for covalent inhibitors

• Covalent reaction requires a warhead-containing compound and 
nucleophilic residue in the binding pocket

Identify electrophile and nucleophile required for reaction
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Amino acid residue 
(nucleophile)

Compound
(electrophile)

Picture credits: PDB ID 5P9J

© 2021 Atomwise



Data curation for covalent inhibitors

• Warheads identified by SMARTS pattern matching
• ~80 SMARTS patterns compiled

Electrophile identified by SMARTS pattern matching
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Data curation for covalent inhibitors

• Warheads identified by SMARTS pattern matching
• ~80 SMARTS patterns compiled
• CovalentInDB[1] is a comprehensive database of covalent inhibitors

• 4500 inhibitors
• 280 protein targets

Electrophile identified by SMARTS pattern matching
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[1] Du, H. et al. Nucleic Acids Res. 2021, 49, D1122
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Data curation for covalent inhibitors

• ~80 SMARTS patterns cover 87.6% of CovalentInDB
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Data curation for covalent inhibitors
Potential covalent targets and site of attachment identified from CovalentInDB
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280 targets

259 targets
157 

targets

Number of unique targets CovalentInDB

Number of targets in Atomwise DB

Filtering
• Binding to amino acid residues and not cofactors
• Consistent nucleophilic residue identity
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AtomNet® model training protocol

• Covalent pose generation for covalent target and covalent inhibitor
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Data 
curation

Pose 
generation

Pose 
selection Training
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Pose generation

• Covalent poses generated using constrained docking
• Requirements

1. Modification of amino acid residue for binding
2. Modification of ligand
3. Position and atom(s) to restrain
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Pose generation

• Deletion of appropriate hydrogen on the covalent residue

Target is modified by deleting hydrogen on nucleophilic atom
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Residue Modification
CYS Delete HG

SER Delete HG

LYS Delete 1HZ/2HZ/3HZ

HIS Delete 2HE →
CYS

Picture credits: PDB ID 5P9J

CYS
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Pose generation

• Deletion of appropriate hydrogen on the 
covalent residue

• Restraint point is deduced from the bond 
distance (𝑟), bond angle (𝜃) and dihedral (𝜙)

• Parameter set (𝑟, 𝜃, 𝜙) deduced from crystal 
structures

Target is modified by deleting hydrogen on nucleophilic atom
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Warhead Reaction mechanism

Nitrile

Michael acceptor

Halohydrocarbons

Pose generation

• Each warhead undergoes a certain type of reaction with residue
• Reaction is carried out programmatically using reaction SMARTS

Ligand is modified to resemble the product after reacting covalently with target
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Warhead Reaction mechanism Reaction SMARTS

Nitrile

Michael acceptor

Halohydrocarbons

Pose generation

• Each warhead undergoes a certain type of reaction with residue
• Reaction is carried out programmatically using reaction SMARTS
• Atom index number of atom to be restrained is saved

Ligand is modified to resemble the product after reacting covalently with target
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Pose generation

• Covalent bond is modeled by 
adding a penalty to the Vina 
scoring function

• Penalty is added on ligand atom 
that forms covalent bond

• Penalty form:
𝑓 𝑟 = 𝑎! 𝑟 − 𝑟! "

𝑟: Position of ligand atom
𝑟!: Restraint point
𝑎!: Prefactor

Covalent bond is modelled by restraining bonding atoms to be proximal
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Dataset and protocol for docking evaluation

Dataset
• 116 crystal structures
• 92 cysteines and 24 serines
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Protocol
• Top 64 out of 2048 poses chosen
• 64 poses compared with crystal structure pose
• RMSD computed for heavy atoms of ligand
• Minimum of the RMSDs reported for each complex

© 2021 Atomwise



Pose generation

• Constrained docking can recapitulate crystal structure pose 
significantly better than unconstrained docking

• Restraint parameters set (𝑟, 𝜃, 𝜙) derived from crystal structure

24 © 2021 Atomwise



Pose generation

• Bond distance and angle are transferable but not dihedral

Correct location of restraint is essential to generate good poses
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Pose generation

• Bond distance and angle are transferable but not dihedral
• Scanning the restraint point by scanning dihedral with fixed (𝑟, 𝜃)
• “Ring restraint” reduced RMSD of best pose by ~0.9 Å

Correct location of restraint is essential to generate good poses
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AtomNet® model training protocol
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Data 
curation

Pose 
generation

Pose 
selection Training
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Pose selection

• Vina scoring function is good at generating good poses but not 
ranking them

• Better poses improve performance of binding activity prediction 
models

• AtomNet® pose ranker[1] is a neural network trained to rescore 
poses and identify the best ones

• AtomNet® pose ranker currently trained only on non-covalent 
interactions

Good poses are important for binding affinity predictions
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[1] https://blog.atomwise.com/ligand-pose-ensembles-improves-affinity-prediction-in-structure-based-virtual-screening
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Pose selection

• AtomNet® pose ranker already 
improves performance on 
covalent poses

• Mean is contaminated by 
extreme values

AtomNet® pose ranker improves performance on covalent pose selection
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Pose selection

• AtomNet® pose ranker already 
improves performance on 
covalent poses

• Mean is contaminated by 
extreme values

• Median performance improves 
by 2 Å

• Curation of larger dataset 
consisting of covalent poses 
needed for re-training/finetuning 
AtomNet® pose ranker 

AtomNet® pose ranker improves performance on covalent pose selection
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Conclusions
• Demonstrated protocol for identifying 

covalently binding protein-inhibitor pairs
• Developed a constrained docking 

protocol for covalent pose generation
• Constrained docking protocol can 

generate poses with RMSD of 1.5 Å
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Future directions
• Training covalent AtomNet® pose 

ranker 
• Training and evaluation of models for 

bioactivity prediction based on good 
covalent poses
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