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* Covalent inhibitors

- Screening with AtomNet® model

Agenda

- Covalent adaptation of AtomNet®
model training protocol

& Atomwise © 2021 Atomwi



Atomwise
“Drug The Undruggable”

- Pharmaceutical company using
machine learning for drug
discovery

* Wide and diverse portfolio of
internal and joint venture assets

- Developing innovative strategies
to target undruggable genome

* Covalent inhibition is one such
strategy
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Covalent Inhibitors

Covalent Inhibitors form covalent bonds with targets

- Covalent inhibitors act by forming covalent bonds with targets

- Traditionally under-explored by pharmaceutical companies due to
concerns surrounding off-target toxicity

» Historically covalent inhibitors were discovered serendipitously
* 14 covalent drugs approved by US FDA in the last decade
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Covalent Inhibitors

Warhead, an electrophilic group on inhibitor, reacts with nucleophilic residues

- Inhibitors usually have an electrophilic group with reacts with
nucleophilic amino acid residues

- Electrophilic group on inhibitor is called a Warhead

- |dentity of warhead decides
Mechanism of reaction: reversible covalent vs. irreversible covalent
- Reactivity and selectivity \ ‘
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Virtual screening using AtomNet® model

Readout Training
- Bioactivity dataset from multiple

. 4, . . A, & sources with diverse targets
Training data - I } £(Y7Y) and ligands g

+ Classifier and regressor models

AtomNet® model trailr:ed on bioactivity prediction
as
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Virtual screening using AtomNet® model

Readout Training
Bioactivity dataset from multiple
) . A, & sources with diverse targets
- I o ’C(Y7 ) 0

and ligands

Classifier and regressor models
trained on bioactivity prediction
task

Screening

QQ”Q 9. Library of compounds screened
against target of interest
T > 1 * b X <« Classification and ranking
based on affinity prediction

AtomNet® model /O

Screening

library
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AtomNet® model training protocol

D P P o
s OSe OS= Training
curation generation selection

+ Standardization of binding affinity data
- Filtering out potentially noisy and incorrect data

& Atomwise © 2021 Atomwi



AtomNet® model training protocol

Data Pose Pose Training

curation generation selection

Protein-ligand
conformations (poses)
generated using docking

Cuina,l'l our in-house
GPU implementation of
the Vina scoring
function, used

[1] https://blog.atomwise.com/efficient-gpu-implementation-of-autodock-vina
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AtomNet® model training protocol

Data Pose Pose Training

curation generation selection

« Selection of poses
from ensemble

» Ranking of poses
using AtomNet®
pose ranker
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AtomNet® model training protocol

Data Po P -
. & OSE Training
curation generation selection

- Decoy binding affinity data generation
» Cross-validation splits

& Atomwise © 2021 Atomwi



Data curation for covalent inhibitors

|dentify electrophile and nucleophile required for reaction

- Covalent reaction requires a warhead-containing compound and
nucleophilic residue in the binding pocket
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Data curation for covalent inhibitors
Electrophile identified by SMARTS pattern matching

- Warheads identified by SMARTS pattern matching
+ ~80 SMARTS patterns compiled
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Data curation for covalent inhibitors
Electrophile identified by SMARTS pattern matching

» Warheads identified by SMARTS pattern matching
+ ~80 SMARTS patterns compiled
- CovalentinDB!"' is a comprehensive database of covalent inhibitors

* 4500 inhibitors
: mm 28.30% Kinase
« 280 protein targets =~ == 10.80% Protease
2050 mm 3.70% Beta-lactamase
2000 mm 3.30% Endopeptidase
£ 5007 mm 53.90% Others
v [1] Du, H. et al. Nucleic Acids Res. 2021, 49, D1122

& Atomwise 13 © 2021 Atomwise




Data curation for covalent inhibitors

+ ~80 SMARTS patterns cover 87.6% of CovalentinDB
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Data curation for covalent inhibitors

Potential covalent targets and site of attachment identified from CovalentinDB

— Number of unique targets CovalentinDB
- Number of targets in Atomwise DB

Filtering

« Binding to amino acid residues and not cofactors

« Consistent nucleophilic residue identity
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AtomNet® model training protocol

Data Pose Pose Training
curation generation selection

- Covalent pose generation for covalent target and covalent inhibitor
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Pose generation

- Covalent poses generated using constrained docking

* Requirements
1. Modification of amino acid residue for binding
2. Modification of ligand
3. Position and atom(s) to restrain
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Pose generation

Target is modified by deleting hydrogen on nucleophilic atom

» Deletion of appropriate hydrogen on the covalent residue

Residue Modification

CYS Delete HG
SER Delete HG
LYS Delete 1HZ/2HZ/3HZ
HIS Delete 2HE
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Pose generation

Target is modified by deleting hydrogen on nucleophilic atom

» Deletion of appropriate hydrogen on the
covalent residue

» Restraint point is deduced from the bond
distance (r), bond angle () and dihedral (¢)

- Parameter set (r, 8, ¢) deduced from crystal
structures |
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Pose generation

Ligand is modified to resemble the product after reacting covalently with target

- Each warhead undergoes a certain type of reaction with residue
- Reaction is carried out programmatically using reaction SMARTS

Warhead Reaction mechanism
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Pose generation

Ligand is modified to resemble the product after reacting covalently with target

- Each warhead undergoes a certain type of reaction with residue
- Reaction is carried out programmatically using reaction SMARTS

«  Atom index number of atom to be restrained is saved

Reaction SMARTS

Warhead Reaction mechanism
R Target ek c1
Nitrile \N > )\ P 1 > > a %sz
HN R
o Target O Ti‘ U’
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Pose generation

Covalent bond is modelled by restraining bonding atoms to be proximal

- Covalent bond is modeled by
adding a penalty to the Vina
scoring function

» Penalty is added on ligand atom
that forms covalent bond

* Penalty form:
f@) = ag(F —19)*
r: Position of ligand atom
1. Restraint point
a,. Prefactor
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Dataset and protocol for docking evaluation

Addition to aldehyde

Dataset
* 116 crystal structures vichact additen
- 92 cysteines and 24 serines

Boronic acid substitution

Protocol
* Top 64 out of 2048 poses chosen Addition to nitril
* 64 poses compared with crystal structure pose
 RMSD computed for heavy atoms of ligand
* Minimum of the RMSDs reported for each complex
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Pose generation

- Constrained docking can recapitulate crystal structure pose
significantly better than unconstrained docking

* Restraint parameters set (1, 6, ¢) derived from crystal structure

pm Constrained
B Unconstrained

4.34

0.00 3 p 5
Min RMSD (in A)
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Pose generation

Correct location of restraint is essential to generate good poses

- Bond distance and angle are transferable but not dihedral
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Pose generation

Correct location of restraint is essential to generate good poses

- Bond distance and angle are transferable but not dihedral
» Scanning the restraint point by scanning dihedral with fixed (r, 6)
- “Ring restraint” reduced RMSD of best pose by ~0.9 A

pm Point restraint
mm Ring restraint

0.0 2 4 6 8
Best RMSD out of 64 poses (in A)
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AtomNet® model training protocol

Data Pose P o
. : S Training
curation generation selection
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Pose selection

Good poses are important for binding affinity predictions

 Vina scoring function is good at generating good poses but not
ranking them

- Better poses improve performance of binding activity prediction
models

- AtomNet® pose rankerl!l is a neural network trained to rescore
poses and identify the best ones

- AtomNet® pose ranker currently trained only on non-covalent
interactions

[1] https://blog.atomwise.com/ligand-pose-ensembles-improves-affinity-prediction-in-structure-based-virtual-screening
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Pose selection

AtomNet® pose ranker improves performance on covalent pose selection

- AtomNet® pose ranker already 05
improves performance on 6.0/
covalent poses 0.20
* Mean is contaminated by 015
= U. i PoseNet
extreme values 2 = Smina
D0.10
0.05
0.00

0 2 4 6 8 10 12
RMSD of best pose (in A)

14 16
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Pose selection

AtomNet® pose ranker improves performance on covalent pose selection

- AtomNet® pose ranker already
improves performance on
covalent poses

* Mean is contaminated by
extreme values

 Median performance improves
by 2 A

 Curation of larger dataset
consisting of covalent poses
needed for re-training/finetuning
AtomNet® pose ranker
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Conclusions
Demonstrated protocol for identifying
covalently binding protein-inhibitor pairs
Developed a constrained docking
protocol for covalent pose generation
Constrained docking protocol can
generate poses with RMSD of 1.5 A

Future directions
Training covalent AtomNet® pose
ranker
Training and evaluation of models for
bioactivity prediction based on good
covalent poses
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