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Quantitatively predicting binding affinity
globally across structures and ligands




* Model Architectures

* Global pKi Model

« Compound Series Benchmark
Agenda |
» Point-based versus Voxel-based
» Target versus Compound Splits

- Adding Inequality Data
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Where does Deep Learning Fit In?
Adapting deep learning architectures to structure-based drug design
Image Recognition
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Molecular Recognition

Atoms in 3D Space Biochemical Features Molecule-Protein Binding
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Voxel-based is Like Pixels and Images in 3D

Classical convolutional neural networks
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Point-based uses Atoms and Distances

Message passing neural networks (MPNN) on atomic graphs
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Voxel-based » Point-based
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Directional Message Passing
Point-based MPNN ideas

. Update messages depend on Message PaSSing Self Embeddlng
+ Source atom embedding
- Distance between atoms
- Messages are linear combinations
of Radial Basis Functions:

(a—)b l) Z (l)R T’LJ)

e.g., radial Bessel functions
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Voxel-based versus Point-based Networks

Pros and cons for structure-based pKi prediction

* Voxel-based — 3D CNN

+ Maps easily to image-based literature
- Needs rotational data augmentation

» Harder to learn

* Yet also more robust

* Point-based — MPNN or GCN

* More natural representation for atoms
- Rotationally invariant
- Requires more overfitting controls (dropout, data augmentation, etc.)
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Global pKi Model

Overview

» Classification model is trained to find initial hits (binds or not)
«  For more see Pawel’s talk at https://info.atomwise.com/acs_spring2021

Regression model is trained to find tightest binders

Predict quantitative pKi (-log, , K. [M])
Global model — all targets versus all ligands

IC,, and K. quantitative binding data
- Typically excluding inequalities
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Compound Series Benchmark

Motivation

* Global pKi model primary use
case is expanding initial
screening hits into compound
series

- Want to achieve ranking
performance within a

How to define
chemical series?

compound series -—
* Find molecules for each
target that form chemical Generic Bemis-Murcko

series from our quantitative Scaffolds
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Compound Series Benchmark

Matched molecular pair based Series
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Refining the Series Benchmark

Use Kendall's tau-b that ignores small differences

* Problem
- Small pKi differences are too important for metrics
* Fix
+ Use a Kendall's Tau-b metric with ties
- Measures concordance versus discordance over
pairs of molecules
- User tunable difference threshold (0.5 pKi here)
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Refining the Series Benchmark

Range and dispersion criteria

* Problem
- Smaller, tightly clustered series have highly
variable performance without reason

* Fix 1
- Effective size threshold
* At least 10 molecules =0 = +1 =-1
* 50 (~,,C,) non-tied pairs ° e 3| e
above threshold I o:.o :5 2| ee
 Fix 2 o ® &’ ®e
» Dynamic range threshold Observed

« Span at least 2 pKi units
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Compound Series Benchmark
Putting it all together

* Result is a useful task-focused benchmark

* We use 6 cross-fold strategy to train and analyze benchmark
* Predict each target-compound pair using the model that has not seen it
« Sequence similarity 70% (seqsim70) splits unless otherwise noted

» Current benchmark composition

- 6000 compound series
« 700 targets
« 200K molecules
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Voxel-based versus Point-based
Which is better for pKi?
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Voxel-based vs Point-based

Benchmark series tau-b histogram
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Voxel-based vs Point-based

Benchmark series tau-b violin plot
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Voxel-based vs Point-based

Benchmark series tau-b point plot
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Compound versus Target Split

How different are they?
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Murcko Splits Easier Than Target Splits

Splitting strategy for cross-folds histogram
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Murcko Splits Easier Than Target Splits

Splitting strategy for cross-folds
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Inequality pKi Data

Does it help or hurt pKi performance?
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Non-binder Quantitative Data is Scarce

Global pKi model overestimates non-binders

* |nitially aimed to use only higher quality data for pKi model

* As you climb the experiment chain — % inhibition to IC, to K
+ pKi data becomes more devoid of non-binders

» So pKi models trained with only equality data tends to overestimate
non-binders

* How can we get more negative experimental pKi data?
 Incorporate inequality data

- Change cost function from MSE to censored (one-sided) MSE
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Can Add Inequality Data for Free

/0% more data mostly from non-binders
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Better on Series Including Inequalities

Using a version of the compound series benchmark that includes inequalities
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Takeaways

Conclusions

- We measure performance using a compound series based
benchmark evaluated with a Kendall's Tau-b metric

* Qur best point-based networks outperform our best voxel-based
networks for global pKi prediction at this time

» Target-based (seqsim70) splits are harder to predict than

compound-based (Murcko) splits
+ Seqgsim70 splits more representative for novel and undruggable targets
- Can add inequality data for free in terms of performance

» 70% more data
» Mostly non-binders which are scarce
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