

Quantitatively predicting binding affinity globally across structures and ligands

Comparing voxel-based and point-based convolutional neural network models

Michael Mysinger, PhD

Principal Scientist Atomwise Inc.

Agenda

- Model Architectures
- Global pKi Model
- Compound Series Benchmark
- Point-based versus Voxel-based
- Target versus Compound Splits
- Adding Inequality Data

Where does Deep Learning Fit In?

Adapting deep learning architectures to structure-based drug design

Image Recognition

Pixels

Edges

Eyes, Noses, Mouths

Faces

Molecular Recognition

Molecule-Protein Binding

Atoms in 3D Space

Biochemical Features

\land Atomwise

Voxel-based is Like Pixels and Images in 3D

Classical convolutional neural networks

Point-based uses Atoms and Distances

Message passing neural networks (MPNN) on atomic graphs

Directional Message Passing

Point-based MPNN ideas

- Update messages depend on
 - Source atom embedding
 - Distance between atoms
- Messages are linear combinations of Radial Basis Functions:

$$e_{ij}^{(a \to b,l)} = \sum_{c} c_n^{(l)} R_n(r_{ij})$$

e.g., radial Bessel functions

$$R_n(r_{ij}) = j_0\left(\frac{z_{0n}r_{ij}}{R}\right)$$

Voxel-based versus Point-based Networks

Pros and cons for structure-based pKi prediction

- Voxel-based 3D CNN
 - Maps easily to image-based literature
 - Needs rotational data augmentation
 - Harder to learn
 - Yet also more robust
- Point-based MPNN or GCN
 - More natural representation for atoms
 - Rotationally invariant
 - Requires more overfitting controls (dropout, data augmentation, etc.)

Global pKi Model

Overview

- Classification model is trained to find initial hits (binds or not)
 - For more see Pawel's talk at https://info.atomwise.com/acs_spring2021
- Regression model is trained to find tightest binders
- Predict quantitative pKi (-log₁₀ K_i [M])
- Global model all targets versus all ligands
- IC₅₀ and K_i quantitative binding data
 - Typically excluding inequalities

Compound Series Benchmark

Motivation

data

Atomwise

- Global pKi model primary use case is expanding initial screening hits into compound series
- Want to achieve ranking performance within a compound series
- Find molecules for each target that form chemical series from our quantitative

How to define chemical series?

Generic Bemis-Murcko Scaffolds

Compound Series Benchmark

Matched molecular pair based Series

Matched Molecular Pair (MMP) Based Series

Refining the Series Benchmark

Use Kendall's tau-b that ignores small differences

- Problem
 - Small pKi differences are too important for metrics
- Fix
 - Use a Kendall's Tau-b metric with ties
 - Measures concordance versus discordance over pairs of molecules
 - User tunable difference threshold (0.5 pKi here)

Refining the Series Benchmark

Range and dispersion criteria

- Problem
 - Smaller, tightly clustered series have highly variable performance without reason
- Fix 1
 - Effective size threshold
 - At least 10 molecules
 - 50 (~₁₀C₂) non-tied pairs above threshold
- Fix 2
 - Dynamic range threshold
 - Span at least 2 pKi units

Observed

Compound Series Benchmark

Putting it all together

- Result is a useful task-focused benchmark
- We use 6 cross-fold strategy to train and analyze benchmark
 - Predict each target-compound pair using the model that has not seen it
 - Sequence similarity 70% (seqsim70) splits unless otherwise noted
- Current benchmark composition
 - 6000 compound series
 - 700 targets
 - 200K molecules

Voxel-based versus Point-based

Which is better for pKi?

Voxel-based vs Point-based

Benchmark series tau-b histogram

Voxel-based vs Point-based

Benchmark series tau-b violin plot

Voxel-based vs Point-based

Benchmark series tau-b point plot

Compound versus Target Split

How different are they?

Murcko Splits Easier Than Target Splits

Splitting strategy for cross-folds histogram

Murcko Splits Easier Than Target Splits

Splitting strategy for cross-folds

Harder seqsim70 splits match our goal to tackle novel and undruggable targets

\land Atomwise

Inequality pKi Data

Does it help or hurt pKi performance?

Non-binder Quantitative Data is Scarce

Global pKi model overestimates non-binders

- Initially aimed to use only higher quality data for pKi model
- As you climb the experiment chain -% inhibition to IC₅₀ to K₁
 - pKi data becomes more devoid of non-binders
- So pKi models trained with only equality data tends to overestimate non-binders
- How can we get more negative experimental pKi data?
 - Incorporate inequality data
 - Change cost function from MSE to censored (one-sided) MSE

Can Add Inequality Data for Free

70% more data mostly from non-binders

Better on Series Including Inequalities

Using a version of the compound series benchmark that includes inequalities

Conclusions

- We measure performance using a compound series based benchmark evaluated with a Kendall's Tau-b metric
- Our best point-based networks outperform our best voxel-based networks for global pKi prediction at this time
- Target-based (seqsim70) splits are harder to predict than compound-based (Murcko) splits
 - Seqsim70 splits more representative for novel and undruggable targets
- Can add inequality data for free in terms of performance
 - 70% more data
 - Mostly non-binders which are scarce

Acknowledgments

Kate Stafford & Brandon Anderson, plus the excellent team of Atomwise scientists

Our Other Talks & Posters

https://info.atomwise.com/acs_spring2021

Join Us!

https://www.atomwise.com/careers/

