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• Model Architectures

• Global pKi Model

• Compound Series Benchmark

• Point-based versus Voxel-based

• Target versus Compound Splits

• Adding Inequality Data
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Adapting deep learning architectures to structure-based drug design
Where does Deep Learning Fit In?

Molecule-Protein Binding

Pixels Edges Eyes, Noses, Mouths Faces

Biochemical FeaturesAtoms in 3D Space

Image Recognition

Molecular Recognition

2



© 2021 Atomwise

Classical convolutional neural networks
Voxel-based is Like Pixels and Images in 3D
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Binding Pocket

Voxelized Grid
Convolutional Neural Network

Training data

Voxel-based
Readout

AtomNet® Model

Predictions
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Message passing neural networks (MPNN) on atomic graphs
Point-based uses Atoms and Distances
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ligand

receptordVoxel-based Point-based
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Directional Message Passing
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Message Passing Self Embedding

mlp

Updated Embedding

• Update messages depend on 
• Source atom embedding 
• Distance between atoms

• Messages are linear combinations 
of Radial Basis Functions:

     e.g., radial Bessel functions 

Point-based MPNN ideas
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Voxel-based versus Point-based Networks

• Voxel-based – 3D CNN
• Maps easily to image-based literature
• Needs rotational data augmentation

• Harder to learn
• Yet also more robust 

• Point-based – MPNN or GCN
• More natural representation for atoms
• Rotationally invariant
• Requires more overfitting controls (dropout, data augmentation, etc.)
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Pros and cons for structure-based pKi prediction
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Global pKi Model

• Classification model is trained to find initial hits (binds or not)
• For more see Pawel’s talk at https://info.atomwise.com/acs_spring2021

• Regression model is trained to find tightest binders

• Predict quantitative pKi (-log10 Ki [M])
• Global model – all targets versus all ligands
• IC50 and Ki quantitative binding data

• Typically excluding inequalities
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Overview
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Compound Series Benchmark

• Global pKi model primary use 
case is expanding initial 
screening hits into compound 
series

• Want to achieve ranking 
performance within a 
compound series

• Find molecules for each 
target that form chemical 
series from our quantitative 
data
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Motivation

How to define 
chemical series?

Generic Bemis-Murcko 
Scaffolds 
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Compound Series Benchmark
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Matched molecular pair based Series

Matched Molecular 
Pair (MMP) Based 
Series
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Refining the Series Benchmark
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Use Kendall’s tau-b that ignores small differences

• Problem
• Small pKi differences are too important for metrics

• Fix
• Use a Kendall’s Tau-b metric with ties
• Measures concordance versus discordance over 

pairs of molecules
• User tunable difference threshold (0.5 pKi here)
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Refining the Series Benchmark

• Problem
• Smaller, tightly clustered series have highly 

variable performance without reason 
• Fix 1

• Effective size threshold
• At least 10 molecules
• 50 (~10C2) non-tied pairs 

above threshold
• Fix 2

• Dynamic range threshold
• Span at least 2 pKi units
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Range and dispersion criteria
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Compound Series Benchmark
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Putting it all together

• Result is a useful task-focused benchmark
• We use 6 cross-fold strategy to train and analyze benchmark

• Predict each target-compound pair using the model that has not seen it
• Sequence similarity 70% (seqsim70) splits unless otherwise noted

• Current benchmark composition
• 6000 compound series
• 700 targets
• 200K molecules
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Voxel-based versus Point-based
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Which is better for pKi?
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Voxel-based vs Point-based
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Benchmark series tau-b histogram 
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Voxel-based vs Point-based
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Benchmark series tau-b violin plot 
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Voxel-based vs Point-based
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Benchmark series tau-b point plot 
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Compound versus Target Split
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How different are they?
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Murcko Splits Easier Than Target Splits
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Splitting strategy for cross-folds histogram
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Murcko Splits Easier Than Target Splits
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Splitting strategy for cross-folds

Harder seqsim70 
splits match our goal 
to tackle novel and 
undruggable targets
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Inequality pKi Data
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Does it help or hurt pKi performance?
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Non-binder Quantitative Data is Scarce 

• Initially aimed to use only higher quality data for pKi model

• As you climb the experiment chain – % inhibition to IC50 to Ki 
• pKi data becomes more devoid of non-binders

• So pKi models trained with only equality data tends to overestimate 
non-binders

• How can we get more negative experimental pKi data?
• Incorporate inequality data
• Change cost function from MSE to censored (one-sided) MSE 
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Global pKi model overestimates non-binders 
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Can Add Inequality Data for Free
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70% more data mostly from non-binders
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Better on Series Including Inequalities
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Using a version of the compound series benchmark that includes inequalities
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Takeaways

• We measure performance using a compound series based 
benchmark evaluated with a Kendall’s Tau-b metric

• Our best point-based networks outperform our best voxel-based 
networks for global pKi prediction at this time

• Target-based (seqsim70) splits are harder to predict than 
compound-based (Murcko) splits
• Seqsim70 splits more representative for novel and undruggable targets

• Can add inequality data for free in terms of performance
• 70% more data
• Mostly non-binders which are scarce
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Conclusions
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