| | CNC MACHINED MATERIALS STARTING FROM STOCK | | | | | | | | | | | | | | | | |---|---|---|--|--|---|--|-------------------------------|--|--|--|---|--|---|---|--|--| | Matarial | Non-ferrous alloys | | | | | | | | Iron alloys | | | Plastics | | | | | | Material | Aluminum 7075
T6 Ergal | Aluminum 6082
Anticorodal | Aluminum 5083
Peraluman | Brass OT58
(CW614N, Cu
Zn39Pb3, UNI5705) | Copper C101
(UNS_C11000,
CW004A) | Bronze CuSn12 | C45 Steel
(EN8, AISI 1045) | CarbonSteel
(39NiCrMo3
EN10083-3) | Steel 18NiCrMo5 | Stainless steel
316L (inox A4) | Stainless steel
304 | Nylon 6 + MoS2
(Polyammide 6, Tecast
TM) | Delrin
(POM-C, acetal resin) | PEEK (Polyetheretherketone) | PTFE (Teflon) | | | Natural color | grey | grey | grey | yellow | reddish yellow | dark yellow | grey | grey | grey | grey | grey | black | white | nocciola | bianco | | | Available finishes | Anodizing,
Lancet® shot
peening | Anodizing,
Lancet® shot
peening | Anodizing,
Lancet® shot
peening | Lancet® shot peening - | - | - | - | | | Density | 2.88 g/cm ³ | 2.70 g/cm ³ | 2.66 g/cm ³ | 8.40 g/cm ³ | 8.91 g/cm ³ | 8.60 g/cm ³ | 7.87 g/cm ³ | 7.85 g/cm ³ | 7.85 g/cm ³ | 7.85 g/cm ³ | 8.00 g/cm ³ | 1,15 g/cm ³ | 1,41 g/cm ³ | 1,31 g/cm ³ | 2,22 g/cm ³ | | | Max workable size | 496x496x400 mm | 496x496x400 mm | 496x496x400 mm | 300x300x300 mm | 300x300x300 mm | 300x300x300 mm | 260x260x200 mm | 260x260x200 mm | 260x260x200 mm | 110x110x300 mm | 110x110x300 mm | 150x150x150 mm | 150x150x150 mm | | | | | Applications | High strenght
aeronautic alloy:
gears, shafts,
motorcycle and
bikes frames,
spurs, aerospace
applications,
naval engines,
moulds. | Light alloy with excellent mechanical properties, and very good corrosion resistance: industrial components, load bearing elements. | Very good resistance to corrosion and oxidation, toughness. For parts which require a good mechanical strenght, and improved fatigue resistance. | Good corrosion
and mechanical
resistance: shafts,
transmission
parts, impellers,
condenser plates,
valves, pins and
decorative
elements. | Oxygen free copper, high electric and thermal conductivities, moderate resistance to corrosion: bus bars, automotive components, home appliances. | Good corrosion
resistance: pumps
bodies, valves,
friction, wearing
and high-pressure
bearing parts. | mechanical
organs such as | Tenacity and
hardenability,
resistance to
fatigue, vibrations
and twists. For
heavily stressed
parts, crankshafts,
axle shafts, large
gears. | For parts with high mechanical properties and high surface hardness conferred by cementing hardening: gears, pins, bushings, plastic molds with high surface hardness. | Very good
corrosion and
chemical
resistance. Heat
exchangers,
pipes, materials
for external
construction in
coastal areas.
Marine and food
industry
equipment | Household and industrial applications such as food handling and processing equipment, screws, machinery parts, utensils and car headers. It is also used in the architectural field for exterior accents. | The addition of the solid lubricant Molybdenum Sulphide makes it an excellent choice for the manufacturing of bushings, pulleys, rolls, wheels, gears, valve seats, seals. | Excellent mechanical properties, low moisture absorption, chemical inertness, and dimensional stability. Can be used in a wide range of temperatures. | Great for prototypes and final components allike. Amazing specific resistance, better than some non-ferrous alloys. Its chemical and thermal resistance enable use of this material in very harsh working environments. Good for mechanical components, supports, brackets carters and covers. Certified UL94 vs. 2012. | It is the polymer with
the lowest friction
coefficient. Great
chemical and thermal
resistances but with
low mechanical
properties. Cannot be
glued and it is fire
resistant UL94 V0.
Food contact
compatible | | | Minimum tolerance | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,05 | ± 0,10 | ± 0,10 | ± 0,10 | ± 0,10 | | | Yield strenght [MPa] | 434-503 | 230-360 | 110-130 | 340-550 | 180-320 | 140-150 | 280-370 | 540-785 | 635-980 | 290-320 | 280-290 | N.D. | N.D. | N.D. | 15 | | | Tensile strenght [MPa] | 510-572 | 310-385 | 275-350 | 360-500 | 220-410 | 140-280 | 480-700 | 780-1080 | 900-1200 | 570-620 | 520-540 | 55-80 | 65-70 | 108 | 28 | | | Young modulus [GPa] | 72 | 69 | 72 | 97 | 120 | 118 | 220 | 205 | 190 | 200 | 190 | 3 | 3 | 3,34 | 0,57 | | | Elongation at break [%] | 5-11 | 10-11 | 12-16 | 6-20 | 6-50 | 5-12 | 20-22 | 11-13 | 13-16 | 50-55 | 65-70 | 50-100 | 25 | 6 | 332 | | | Brinell hardness | 150 | 100 | 75 | 90-160 | 90 | 80 | 175-230 | 250-285 | 200-225 | 215-225 | 120-130 | N.D. | N.D. | N.D. | N.D. | | | Melting point [°C] | 635 | 645 | 570 | 875 | 1083 | 1000 | 1550 | 1580 | 1643 | 1435 | 1400 | 255 | 164 | 255 | N.D. | | | Electrical conductivity (% IACS) | 33 | 46 | 29 | 28 | 100 | 10 | 3 | 3 | 4 | 15 | 13 | 0 | 0 | 0 | 0 | | | Rockwell M hardness | | | | | | | | | | | | M86 | M94 | Rockwell M105 | Shore 51 D | | | HDT @ 0.45 MPa [°C] | | | | | | | | | | | | 160 | 165 | 160 | 135 | | | HDT @ 1.8 MPa [°C] | | | | | | | | | | | | 55 | 125 | N.D. | 55 | | | Maximum operating temperature (short term) [°C] | | | | | | | | | | | | 180 | 145 | 310 | N.D. | | | Maximum operating temperature (long term) [°C] | | | | | | | | | | | | 75 | 85 | 250 | 260 | | | Water absorption (50% Rh, saturation) [%] | | | | | | | | | | | | 3 | 0,9 | 0,45 | 0 | | | | | | | | | | | 3D PRINTING | | | | | | | | | |----------------------------------|--|--|---|---|--|--------------------------------|--|---|--|--|--|--|--|---|---------------------------------------|--| | Motorial | Tecnologia | HP 5210 Multi Jet | Fusion (MJF) | Tecnologia F | HP 5420W Multi J | let Fusion (MJF) | Tecnologia | HP 5210 Multi Jet | t Fusion (MJF) | Tecnologia | HP 5210 Multi Jet | : Fusion (MJF) | Tecnologia I | HP 5210 Multi Jet | Fusion (MJF) | | | Material | Nylon PA12
classic | Nylon PA12
performance | Nylon PA12
top mechanical | Nylon PA12
white
classic | Nylon PA12
white
performance | rion PA12 white top mechanical | Nylon PA12 -
Glass filled
classic | Nylon PA12 -
Glass filled
performance | Nylon PA12 -
Glass filled
top mechanical | Nylon PA11
classic | Nylon PA11
performance | Nylon PA11
top mechanical | Polypropylene
PP classic | Polypropylene
PP performance | Polypropylene
PP top
mechanical | | | Natural color | | grey | | | White | | | grey | | | grey | | | | | | | Available finishes | RAL Matt or Glossy spray painting in: Black, Red, Blue,
Green, White, Gold, Silver, Black Soft Touch;
Dye colored Extrablack Classic (matt) or Semigloss | | | | white | | Green, White, Go | ssy spray painting ir
old, Silver, Black Sol
ktrablack Classic (m | ft Touch; | Green, White, G | ssy spray painting in
old, Silver, Black Sof
xtrablack Classic (m | t Touch; | RAL Matt or Gloss
Green, Whit | RAL Matt or Glossy spray painting in: Black, Red, Blue,
Green, White, Gold, Silver, Black Soft Touch | | | | Density | | 1,01 g/cm ³ | | | 1,01 g/cm ³ | | | 1,3 g/cm ³ | | | 1,05 g/cm ³ | | | 0,87 g/cm ³ | | | | Max workable size | 380x | 284x380 mm (15x11. | 2x15 in) | 380x2 | 380x284x380 mm (15x11.2x15 in) 330x234x330 mm (13x9,2x13 in) 380x284x340 mm (15x11.2x7.8 in) | | | | | | 250x250x250 mm (7.87x7.87x7.87in) | | | | | | | Applications | parts. Excellent of hydrocarbons. USP Class I-V Surface Device Statement of Co | astic for functional procession of the procession of the control o | o oils, greases and
ishing processes.
ce for Intact Skin
PAHs, UL 746A,
plications. Certified | parts. Excellent of hydrocarbons. O white base co USP Class I-VI Surface Device Statement of Cor | themical resistance
ptimal for post finis
lor enables new an
applications.
and US FDA guida
s, RoHS,11 REACH
nposition for Toy A | nce for Intact Skin | Suitable for comp
stability are key p
oil, grease and fu | | ity and dimensional
emical resistance to
ed UL94 HB75 0,75 | and consumer el
fatigue resistar
opening and closi
Resistant to hydri | ectronics sectors. Ex
nce for parts that rec
ng cycles. It can rep | quire hundreds of
place injection parts.
Pertified UL94 HB75 | Lightweight material for prototypes, automotive interiors fluid tubes and tanks, machine parts, medical equipmen and cosmetics. Certified UL94 HB75 0,75 <spessore<3mm -="" hb40="" spessorex3mm<="" th=""></spessore<3mm> | | | | | Minimum tolerance | ± 0,30mm b | elow 100mm ± 0,3% | above 100mm | ± 0,50mm below 100mm ± 0,5% above 100mm | | | ± 0,40mm be | elow 100mm ± 0,4% | á above 100mm | ± 0,50mm b | elow 100mm ± 0,5% | above 100mm | ± 0,60mm below 100mm ±0,6% above 100mm | | | | | Tensile strenght [MPa] | 42-46 | 46-50 | 50-54 | 42-46 | 46-50 | 50-54 | 28 | 30 | 32 | 44-46 | 49-52 | 52-56 | 30-32 | 34-36 | 37-39 | | | Young modulus [GPa] | 1900 | 1900 | 1900 | 1600 | 1600 | 1600 | 2600 | 2600 | 2600 | 1700-1800 | 1700-1800 | 1700-1800 | 1600 | 1600 | 1600 | | | Elongation at break [%] | 12 | 15 | 19 | 12 | 15 | 19 | 5-9 | 5-9 | 5-9 | 31 | 35 | 39 | 20 | 22 | 24 | | | Impact resistance (Izod) [KJ/m2] | 3,8 | 4,0 | 4,2 | - | - | - | 3 | 3 | 3 | 4,5-7,0 | 4,5-7,0 | 4,5-7,0 | 3,0-3,5 | 3,0-3,5 | 3,0-3,5 | | | Melting temperature [°C] | | 187 | | | - | | | - | | | 202 | | 140 | | | | | Rockwell M Hardness | | Shore D 80 | | - | | | - | | | | Shore D 80 | | - | | | | | HDT @ 0.45 MPa [°C] | | 175 | | | - | | | 171 | | | 185 | | 100 | | | | | HDT @ 1.8 MPa [°C] | | 95 | | | - | | | 114 | | | 54 | | | 60 | | | | | 3D PRINTING | | | | | | | | | | | | | | |---|---|---|--|--|--|--|--|---------------------|--|---|--|---|--|--| | | Fused Deposi | ition Modeling tecl | nnology (FDM) | Fused Depos | sition Modeling tec | hnology (FDM) | Fused Depos | ition Modeling tec | hnology (FDM) | Fused Depos | ition Modeling tec | hnology (FDM) | | | | Material | ABS Food
classic | ABS Food performance | ABS Food
top mechanical | ABS Medical classic | ABS Medical performance | ABS Medical top mechanical | ABS ESD
classic | ABS ESD performance | ABS ESD top mechanical | Extreme™ Fibra
di carbonio +
PA6
classic | Extreme™ Fibra
di carbonio +
PA6 performance | Extreme™ Fibra di carbonio + PA6 top mechanical | | | | Natural color | | white | | | white | | | black | | | | | | | | Available finishes | | - | | | - | | | | | | - | | | | | Density | | 1,20 g/cm ³ | | | 1,20 g/cm ³ 1,10 g/cm ³ | | | | | | 1,20 g/cm³ | | | | | Max workable size | 300x300 | 0x400mm (11.8x11.8 | 3x15.7 in) | 300x30 | 0x400mm (11.8x11.8 | 3x15.7 in) | 300x300 | 0x400mm (11.8x11. | 8x15.7 in) | 300x300 | 0x400mm (11.8x11.8 | 3x15.7 in) | | | | Applications | automotive and co
mechanical pr
resistance. This ma
certified by our
compatibility in the
customers with | tensively in multiple
nsumer goods, than
operties, ductility an
aterial has been dev
R&D department to
most diverse applic
o certified material thanufacturing design | ks to a good mix of
d temperature
eloped, tested and
guarantee food
cations to empower
at make use of | automotive and co
mechanical p
resistance. This m
certified by ou
contact compatit | tensively in multiple
onsumer goods, thar
roperties, ductility ar
laterial has been dev
r R&D department to
bility and its use as a
most diverse applica | ks to a good mix of
ad temperature
eloped, tested and
guarantee skin
medical device in | equipment, sens
material as a matte
charges to flow in | | c discharge. This sipative: this allows r so that they don't | and impact resist | arts. Good ductility
pisture absorpiton.
s and fixtures. | | | | | Minimum tolerance | ± 0,50mm bel | low 100mm ± 0,6% | above 100mm | ± 0,50mm be | elow 100mm ± 0,6% | above 100mm | ± 0,50mm be | low 100mm ± 0,6% | above 100mm | ± 0,60mm below 100mm ± 0,75% above 100mm | | | | | | Tensile strenght [MPa] | 43 | 44 | 45,6 | 47,8 | 50 | 52 | 29 | 30 | 30 | 61 | 63 | 63 | | | | Young modulus [GPa] | 1450 | 1450 | 1450 | 1375 | 1375 | 1375 | 2840 | 2840 | 2840 | 2356 | 2367 | 2370 | | | | Elongation at break [%] | 5 | 5,5 | 6 | 5 | 5,5 | 6 | 18 | 20,5 | 22 | 8 | 8 | 8 | | | | Rockwell M Hardness | | N.D. | | N.D. | | | | N.D. | | | N.D. | | | | | HDT @ 0.45 MPa [°C] | | N.D. | | | N.D. | | | N.D. | | | 128 | | | | | HDT @ 1.8 MPa [°C] | | N.D. | | | N.D. | | | 88 | | 91 | | | | | | Maximum operating temperature (short term) [°C] | 99 | | | 100 | | | | N.D. | | 120 | | | | | | Maximum operating temperature (long term) [°C] | | 89 | | | 89 | | | N.D. | | 90 | | | | | | Water absorption (50% Rh, saturation) [%] | | N.D. | | | N.D. | | | N.D. | | | N.D. | | | | | | 3D PRINTING | | | | | | | | | | | | | | |---|--|--|---------------------|--|--|-------------------------------------|---|--|--|---|---|--|--|--| | Material | Fused Depos | ition Modeling tech | nology (FDM) | Fused Deposi | tion Modeling tecl | nnology (FDM) | Fused Depos | ition Modeling tech | nnology (FDM) | Fused Deposition Modeling technology (FDM) | | | | | | Material | Extreme™ Carbon
fiber + PA12
classic | | | PEEK
morphous
classic | PEEK
amorphous
performance | PEEK amorphous top mechanical | PEEK
nicrystalline
classic | PEEK
semicrystalline
performance | PEEK
semicrystalline
top mechanical | PEEK CF
semicrystalline
classic | PEEK CF
semicrystalline
performance | PEEK CF
semicrystalline
top mechanical | | | | Natural color | | black | | | amber | | | beige | | dark grey | | | | | | Available finishes | | - | | - | | | | - | | - | | | | | | Density | | 1,20 g/cm ³ | | 1,30 g/cm ³ 1,30 g/cm ³ | | | | | | 1,34 g/cm ³ | | | | | | Max workable size | 300x300 | 0x400mm (11.8x11.8 | x15.7 in) | 300x300 | x400mm (11.8x11.8 | 3x15.7 in) | 300x300 | 0x400mm (11.8x11.8 | x15.7 in) | 300x30 | 0x400mm (11.8x11.8 | x15.7 in) | | | | Applications | resistance and exc | es and functional par
ellent rigidity, thanks
for mechanical parts | to the carbon fiber | specific resistance
Its chemical and
material in very ha | s and final component, better than some in thermal resistance carsh working environments, supports, brovers. | enable use of this nments. Good for | specific resistance
Its chemical and
material in very h
mechanical compo | es and final compone
a, better than some in
thermal resistance e
larsh working envirou
onents, supports, brivers. Certified UL94 | non-ferrous alloys.
enable use of this
enments. Good for
ackets carters and | Great for prototypes and final components alike. Amazing specific resistance, better than some non-ferrous alloys. Outstanding thermal properties enable use of this material in environment where no other polymer may be used. Good for mechanical components, supports, brackets carters and covers. | | | | | | Minimum tolerance | ± 0,60mm bel | ow 100mm ± 0,75% | above 100mm | ± 0,60mm belo | ow 100mm ± 0,75% | above 100mm | ± 0,60mm belo | ow 100mm ± 0,75% | above 100mm | ± 0,60mm below 100mm ± 0,75% above 100mm | | | | | | Tensile strenght [MPa] | 54,5 | 56 | 58 | 68 | 70 | 72-73 | 98 | 100 | 101,1 | 85 | 87 | 88,4 | | | | Young modulus [GPa] | 8300 | 8300 | 8300 | 3738 | 3738 | 3738 | 3738 | 3738 | 3738 | 8650 | 8655 | 8655 | | | | Elongation at break [%] | 1,8 | 1,9 | 1,8 | 4 | 4 | 4 | 2,9 | 3 | 3,3 | 2,1 | 2,5 | 2,7 | | | | Rockwell M Hardness | | N.D. | | N.D. | | | | N.D. | | N.D. | | | | | | HDT @ 0.45 MPa [°C] | | 128 | | | >=145 | | | 180 | | 315 | | | | | | HDT @ 1.8 MPa [°C] | | 91 | | | 145 | | | 152 | | 180 | | | | | | Maximum operating temperature (short term) [°C] | 120 | | | 145 | | | | - | | - | | | | | | Maximum operating temperature (long term) [°C] | | 90 | | | 145 | | | - | | | | | | | | Water absorption (50% Rh, saturation) [%] | - | - | - | | 0,7 | | | 0,7 | | | 0,4 | | | | | | 3D PRINTING | | | | | | | | | | | | | | |---|--|--|---|---|--|------------------------------------|--|---|---|--|----------------------------|----------------------------|--|--| | | LED MS | LA + 4KSPER™ te | echnology | LED MS | LA + 4KSPER™ te | echnology | LED MS | LA + 4KSPER™ te | chnology | LED MSLA + 4KSPER™ technology | | | | | | Material | ABS like resin
classic | ABS like resin performance | ABS like resin top mechanical | ligh Temp Resin
classic | High Temp Resin
performance | n Temp Resin
top mechanical | Clear
Translucent
resin
classic | Clear
Translucent
resin
performance | Clear
Translucent
resin
top mechanical | Tough resin
classic | Tough resin
performance | Tough resin top mechanical | | | | Natural color | | grey | | | grey | | | traslucid | - | | | | | | | Available finishes | With o | r Without printing S | upports | With or Without printing Supports With printing | | | | | ring Supports With or Without printing Supports | | | | | | | Density | | 1,18 g/cm ³ | | | 1,17 g/cm ³ | | | 1,08 g/cm ³ | | 1,08 g/cm ³ | | | | | | Max workable size | 250x152 | x390mm (9.84x5,98 | x15.35 in) | 250x152 | x390mm (9.84x5,98 | 1x15.35 in) | 250x152 | 2x390mm (9.84x5,98 | x15.35 in) | 250x152x390mm (9.84x5,98x15.35 in) | | | | | | Applications | and due to its tech
many applications | el of detail, extreme
nnical characteristics
. Excellent for proto
automotive and mec | s it replaces ABS in
types or functional | and can bear to | el of detail, extremel
hermal loads. Good
ypes in high tempera
ad a good surface fir
mould creation. | for aestetic and ature environment | portfolio. Great to phase to have a ph | ne first semitranspare
for producing parts in
nysical feedback of y
ually to achieve bette | n the prototyping
our design. Can be | Material with elastic and ductile mechanical properties, similar to polyamides (Nylons). Great for functional obkects that also need the smooth and uniform surface finish characteristic of resin 3D printing. Very resilient and it does not fragment whenever subjected to impacts. | | | | | | Minimum tolerance | ± 0,20mm belo | ow 100mm ± 0,25% | above 100mm | ± 0,30mm bel | ow 100mm ± 0,35% | above 100mm | ± 0,30mm bel | ow 100mm ± 0,35% | above 100mm | ± 0,30mm below 100mm ± 0,35% above 100mm | | | | | | Tensile strenght [MPa] | 29 | 29,5 | 31 | 34 | 34 | 36 | 14 | 15 | 16,5 | 30 | 33 | 34 | | | | Young modulus [GPa] | 800 | 800 | 800 | 1850 | 1850 | 1850 | 619 | 619 | 619 | 997 | 1001 | 1000 | | | | Elongation at break [%] | 5,1 | 6 | 6,7 | 2 | 2,2 | 2,1 | 16 | 17 | 17 | 17 | 18 | 18 | | | | Rockwell M Hardness | | Shore 72 D | | | Shore 80 D | | | Shore 70 D | | Shore 78 D | | | | | | HDT @ 0.45 MPa [°C] | | 68°C | | | 190°C | | | - | | - | | | | | | HDT @ 1.8 MPa [°C] | | - | | | - | | | - | | - | | | | | | Maximum operating temperature (short term) [°C] | - | - | - | - | - | - | | | - | - | - | - | | | | Maximum operating temperature (long term) [°C] | - | - | - | - | - | - | - | - | - | - | - | - | | | | Water absorption (50% Rh, saturation) [%] | - | - | - | - | - | - | - | - | - | - | - | - | | |