The Why & What of OpenEye

Geoff Skillman, CSO

We're going to change drug discovery!

Anthony Nicholls, Summer 2000

Impact on Drug Discovery Scales

- 7.8 Billion people
 - All of them get seriously ill
- 11% of people have a hospital stay (US)
 - 85% <65 years old
- 48% of people in the US use 1 therapeutic
 - 24% use 3 or more therapeutics
- Discovery Cost >> Manufacturing Cost
- WHO: 336 "essential medicines"

Working at the interface

Old-school problem-solving values

Modern interface values Technology Science **Cloud Platform Judicious Heuristics** HPC Robust 2D & 3D Security Web services **MD** Simulation Web UI Validation **Proteins & Solid-phase**

- 1. Unprecedented scale
 - Robust, elastic, scalable, affordable
- 2. Hardware & software
 - Challenge & opportunity
- 3. Platform
 - Unified technologies
- 4. 3rd Party tools & opportunities
- 5. No computation too big

learn

GROMACSFILEXIBLE.

Modern impact

Drug Discovery Realms

Targets

Clinical Candidate

- Biology
- Structure
- Complexes
- Mutants
- Selectivity

- HTS
- Virtual Screen
- Solubility
- hERG, PGP
- Drugability
- Small-molecule vs
- Antibody vs
- PROTAC vs
- bRo5
- Chemistry

- Potency
- Selectivity
- Bioavailability
- Liver stability
- Clearance
- Permeability
- Metabolites
- Distribution
- Toxicity!

- Candidate selection
- Polymorph risk
- Formulation
- Manufacturing
- Shelf-life
- Hygroscopicity
- Efficacy!

Exciting projects we don't have time for today

<figure>

Drug Discovery Realms Targets Hit ID MPO Clinical Candidate

Protein Structure, Modeling & Simulation

Loop modeling

• Enabled by default – expected increased preparation times

Validation set: Rossi et al. (Prot. Sci. 2007)

PDB-ID: 3TPP. Modeled pieces in brown

DVA between GLU 310 A and THR 314 A GFPLNQSEVLAS between ALA 157 A and VAL 170 A

Guide to Pharmacology

Core RCSB families in Orion

MMDS - Macromolecular Data Service

Sessions	Project	ts	Experiments						
	Q Search by project name ▼Expand ▲ Collapse						▲ Collapse		
								38502 sites	
								39061 sites	
								1690 sites	
								5006 sites	
								2426 sites	
							430 sites		
		G		d receptore					A12 sites
	-	G-J							2204 sites
	-			receptors					12 sites
		T	1A Thuroid h	ormone rece	ontore				42 sites
		Ξ.	1R. Potinoio	ormone rece	piors				42 sites
		T	1C Dereview	no proliforat	or activated	racantara			422 sites
		TO. Peroxisome proliferator-activated receptors							423 siles
		Ξ.	1E Detingia a	eceptors	rabana				222 oites
		T	1L Liver V re		recentore				202 Siles
		Ŧ	11 Vitamin D						200 sites
		<u> </u>		to puoloor fo	tereceptors	atoro			20 sites
		Ξ.	2R. Repaid		actor-4 recep	JUIS			07 sites
		Ξ.	25. Retinoid /						97 sites
		Ξ.	2E. Talliess-III	veleted rece	ntava				2 sites
		Ŧ	A Norvo are	with factor I	piors Dilika ragant	0.50			45 sites
		Ξ.	4A. Nerve gro	WIT ACTOF I		ors			45 sites
		Ξ	64. Corm coll	pueloar feet		10			2 eitee
		T	Storoid horm	nuclear fact		2			2 sites
	– 7	T		one receptor	5				922 sites
	- T I	alist	0011015						ZZU Sites

Enabled by GPU Color Optimization

Why compare actives sites

- Organizing target families
- Transferring ligand binding (SAR transfer)
- Analyzing selectivity
- Anticipating off-target effects

Overlay and alignment: Shape TK

GPU SiteHopper Progress

- Orion: Available
 - Floe to create SH Database from GtoP structures
 - Floe to query
- Desktop App: 2021.1 release
- Toolkit: 2021.2 release
- GPU Brood after

Enhanced Sampling MD simulations

"Targeting proteases: successes, failures and future prospects, Boris Turk, 5: 785, 2006.

Addressing Biological Complexity

Enhance Sampling MD simulations

• Tools

Weighted Ensemble MD

- Unbiased Hamiltonian
- Simulation pathways
- Efficient, selective sampling

Cloud-based Enhanced-sampling Simulations

- OpenEye goals
 - Tools for protein complexes
 - Enhanced sampling MD for large-scale & rare protein motion
 - WESTPA
 - REMD
 - Understanding conformational states of proteins & complexes
 - Markov-state models relating the states
 - Isoform, mutant, allosteric comparisons
 - Opportunities for selective drug discovery

Drug Discovery Realms

Large-scale Search & Virtual Screening

Unprecedented Scale

- GigaDocking
 - Docking >3Bn available molecules in 24 hours
 - Multiple successes
 - Service & in Orion

Databases

1.0Bn – Ro5 filtering

GPU OMEGA improves speed

Dataset: Friedrich et al., J. Chem. Inf. Model., 57, 539 (2017).

©2018 OpenEve Scientific

Omega new built-in fragment library

Classic OMEGA Performance Improvements with random subset of MCULE (1000 mols)

MT GPU-Omega in Orion – ~3x less expensive

Database Prep Floe

2021 FastROCS & Enamine REAL Space 10^10 molecules

Beyond Brut Force

Drug Discovery Realms Targets Hit ID MPO Clinical Candidate

Molecular Design-Cycle

Reactions in the Medicinal chemists' toolbox

top reactions generally have largely remained the same for the past 3 decades

Focused Library Design

Nicolaou, et al., JCIM, 56(7): 1253-1266, 2016

Reaction Database Directory Listing

~ 1.8	2 opencye onon	<u></u>	õ	Openage Onon

< > C i orion-galeyesopen.us × +

🛗 Apps 🖞 Staging 🖞 QA 🖞 Released 🖞 Dev 💼 AWS Status 🕎 ZIA 🥱 ZIASite 🕥 Orion - MaaS

Reaction Database:

phase_III_6M_STATS.db

Reaction Name	Reagent1	Reagent1 Count	Reagent2	Reagent2 Count	Product Count
3-nitrile-pyridine	3-nitrile-pyridine:Diones_2_4	541			541
Buchwald-Hartwig	Buchwald-Hartwig:Halides_aryl	3,337	Buchwald-Hartwig:Amines	182,760	609,870,120
Buchwald_cross_coupling1	Buchwald_cross_coupling1:Amines	257,939	Buchwald_cross_coupling1:Aryl_halides	248,751	64,162,584,189
Buchwald_cross_coupling2	Buchwald_cross_coupling2:Amines	78,758	Buchwald_cross_coupling2:Aryl_halides	248,751	19,591,131,258
Ester_hydrolysis-amide_synthesis1	Ester_hydrolysis-amide_synthesis1:Amines	281,409	Ester_hydrolysis-amide_synthesis1:Esters	63,048	17.742.274.632
Ester_hydrolysis-amide_synthesis2	Ester_hydrolysis-amide_synthesis2:Amines	168,246	Ester_hydrolysis-amide_synthesis2 Esters	63,048	10,607,573,808
Grignard_alcohol	Grignard_alcohol:Ketones_aldehydes	86,355	Grignard_alcohol:Halides_alkyl	611	52,762,905
Grignard_carbonyl	Grignard_carbonyt:Nitriles	38,286	Grignard_carbonyl:Halides_alkyl_aryl	5,072	194,186,592
Heck_non-terminal_vinyl	Heck_non-terminal_vinyl:Non_terminal_vinyls	1,674	Heck_non-terminal_vinyt.Halide_vinyl_aryts	2,384	3,990,816
Heck_terminal_vinyl	Heck_terminal_vinyl:Halide_vinyl_aryls	2	Heck_terminal_vinyl:Terminal_vinyls	2	4
Huisgen_disubst-alkyne	Huisgen_disubst-alkyne:Alkynes_disubstituted	1,926	Huisgen_disubst-aikyne:Aikyi_haildes_aicohois	45	86,670
Mitsunobu_imide	Mitsunobu_Imide:Alcohols_primary_secondary	104.010	Mitsunobu_Imide:Acetylacetamides	2,190	227,781,900
Mitsunobu_phenol	Mitsunobu_phenol:Alcohols_primary_secondary	104,010	Mitsunobu_phenol:Phenols	23,705	2,465,557,050

Customer lead → Small library

MD in Structure-Based Lead Optimization in ORION

• MD methods can be integrated into traditional workflows in Orion

Amber14sb + Parsley in POSIT

- POSIT
 - Best-in-class Pose-prediction
 - Protein-ligand clashes
- Relaxation
 - Good prospective results
 - Force-field implementation was not robust
- Robust
 - Amber14sb + Parsley
- Large-scale re-validation
 - Spruce cross-docking dataset
 - Tuccinardi method

Why Short Trajectory MD?

- What Christopher always told people:
 - Sample protein, ligand and explicit water
 - 2ns trajectory (short)
 - Examine the ligand trajectory \rightarrow predict quality
 - Better than docking & cheaper than Free-Energy
- What Ant responded:
 - "Implement that & prove it!"

Combining "Design Quality" and "Pose Stability"

- Identify each good OEInteraction, *i* in the Initial Pose:
- For each Frame of the trajectory:
 - For each OEInteraction *i* from the Initial Pose:
 - If the same OEInteraction is present in that Frame, increment *i*Count for that OEInteraction

- TrajScore_i = *i*Count/*n*Frames
- BintScore = sum_i(TrajScore_i)

- More interactions are better
- More stability is better

MMPBSA vs Bint Score

Initial Bint Score Insights

- Bint Score >? MMPBSA
- Simple scoring based on OEInteractions
 - Only good OEInteractions
 - Sum initial OEInteractions to estimate affinity
 - Stability of interactions under MD improves the estimate
- Learn more from Christopher Bayly's presentation

RBFE-NES for JACS'15 Thrombin dataset

Method	ΔG kJ/mol
MAE	2.04 [1.08 3.15]
Relative MAE	1.16 [0.72 1.98]
RMSE	2.65 [1.52 3.68]
Relative RMSE	1.22 [0.86 2.03]
Pearson's R ²	0.89 [0.78 0.97]
Spearman's p	0.94 [0.89 0.99]
Kendall's T	0.93 [0.75 1.00]

Hannah Bruce Macdonald, David Hanh https://github.com/choderalab/freeenergyframework

MD Affinity in 2021

- Validation & Testing
- Orion 2021.1
 - Bint floe
 - NES v1.0
 - Ligand-Ligand edges as an input parameter
- Orion 2021.2
 - Lomap for NES
 - Set of ligands as input
 - Preparation exceptions
- Beyond
 - NES science problems (trapped waters & residue conformations)
 - Integrate Mapper choices with Chimeric choices & NES needs

Drug Discovery Realms Targets Hit ID MPO Clinical Candidate

Candidate selection & Formulation

Typical physics-based modeling workflow of CSP

GSK Blind Challenge

Challenge	Dispersion	H-bonds	Flexibility (BSSE)	Space-groups, Tautomers & S	Ring sampling Finite-temp.	Hydrate
Rank	1	1	-	1	1	1
RMS_20	0.18	0.18	No conformer < 1A	0.16	0.23	RMS40=0.47
New	Constrained optimization	Hydroxyl sampling	Iterative conf. packing	Tautomer & torsion sampling	Loose QM opt. & Finite temperature	Water sampling

Parallelize Crystal QM

- Crystal expansion as a collection of gasphase dimers
- Select different levels of all-electron QM
- Treat short/long range differently

Energy Model	MA%D	MAD (kcal)	ME (kcal)	Rel time (Approx)
TPSS-D3	5.2	0.9	0.2	100,000
PBE-D3	5.75	1.1	0.4	100,000
PBEh-3C	6.3	1.3	0.1	100,000
IEFF+PBE-D3@SR	5.7	1.1	0.5	5,000
DFTB-D3	11.9	2.4	0.1	50
FIT (S. Price)	10.3	2.2	-1.9	1
IEFF (OE)	11.5	2.5	-0.8	1
W99rev (G.Day)	15.7	3.4	-3.3	1

Temperature-dependent relative stability of polymorphs

Temperature (K)

Parallel Hessian and entropy calculation

- Finite-difference Hessian using cluster of dimers calculated in parallel
- Phonon spectrum and entropy calculated using harmonic approximation

Togo et al, Phys. Rev B, 91(9):94306, 2015

OE-GSK 5th Blind Prediction Challenge

Energy(kcal/mol)

From CSP to Formulations

Building Experience

- Varied examples
 - CSP Challenge
 - More Z'=2
 - Salts
 - Hydrates
 - Cocrystals
- Paper
- Collaborative CSP
- CSP as a service

Solutions

- Structure -> polymorph risk
- Salt selection
- Formulation Properties
 - Solubility
 - Elasticity, Compressibility
 - Habit (Morphology)
 - Hygroscopicity
- Solvent selection
- Multiple stoichiometries

Acknowledgement

- Burt, Sayan, Nathan
- Perri, Dan
- Shyamal, Kristi, Jun, Stan
- Christopher, Gaetano
- Jesper, David, She, Jeff, Mark
- Hari, Grigory, Caitlin & Tom
- Matt, Phillip, Allison
- Steve, Samaneh, Gunther
- Cloud team

- GSK
 - Colin Edge, Alan Graves, Eric Manas

• NES

- David Mobley, David Hahn
- John Chodera
- Vytautas Gapsys, Bert de Groot
- Enhanced Sampling
 - Lillian Chong

Protein-Protein Interactions: PROTACs

Ubiquitin Proteasome Pathway

2021: Omega QM

- Identify rotatable bonds
- Fragment around that molecule maintaining environment
- Scan torsion in fragment
- Apply new torsion rules in conformer generation

Explainable AI

Given a data set, we want classification/regression models which:

• Interpret results at atomic/ligand level

-agnostic Explanations

Fragments making molecule Herg inactive

Fragments making molecule Herg Active

- Explain Neural Network trained on 2d molecule figure-print:
 - find out important bits

Monoclonal Antibodies as Drugs

of the top 10 best selling drugs in the US are monoclonal antibodies

Grilo and Mantalaris. 2019. Trends in Biotechnol OpenEue

2020: Relative Tautomer Energies

Gaussian Process Regression

- Nonparametric, Bayesian approach to regression
- Input Data: 2D fingerprint of Molecules
- Kernel for regression: 2d/3d Tanimoto Distance
- Regression prediction: Toxicity, logp, ic50 etc.

Variogram and QQPlot on Data

*QQPlots credit: Caitlyn Banner

A quick intro to passive permeability

- Important for ADME/tox
- Permeability is defined as:

$$P = \frac{J}{\Delta u} = \text{conc. of drug}$$

- P is reported in units of cm/s
- Difficult to estimate computationally
- Expensive and time consuming to observe experimentally

April 30, 2021

Hierarchical Clustering based on Dirichlet Process

- Input Data: Multiple conformers of separate molecules
- Hierarchical Clustering: Structurally similar molecules for further analysis
- Local and global parameter

CSP using PD spectrum: Carbamazepine

