Multi-component and Finite Temperature Crystal Structure Prediction

Caitlin C. Bannan Spring 2021 miniCUP

2 Braun et al. : Cryst. Growth Des. 2019, 19, 2947–2962

2 Braun et al. : Cryst. Growth Des. 2019, 19, 2947–2962

2 Braun et al. : Cryst. Growth Des. 2019, 19, 2947–2962

Most drug molecules crystals are multi-component

Goal: find all accessible local minima

Successful blind challenges were successful

Successful blind challenges were successful

Successful blind challenges were successful

Finite Temperature Correction

Monohydrate blind prediction

Finite Temperature Correction

Monohydrate blind prediction

Finite Temperature Correction

Monohydrate blind prediction

Finite Temperature Correction

Evolving protocol now includes entropy calculations

Evolving protocol now includes entropy calculations

- Free energy of a crystal at finite temperature is due to vibrations
- Using a harmonic approximation, estimate entropy from the Hessian of the crystal

- Vibrational contribution to free energy
- Third party software Phonopy

Scripta Materialia Volume 108, November 2015, Pages 1-5

Viewpoint Paper

First principles phonon calculations in materials science

Atsushi Togo ^{a, b} 쯔, Isao Tanaka ^{a, b, c} 으 쯔

- Vibrational contribution to free energy
- Third party software Phonopy

Scripta Materialia Volume 108, November 2015, Pages 1-5

Viewpoint Paper

First principles phonon calculations in materials science

Atsushi Togo ^{a, b} 쯔, Isao Tanaka ^{a, b, c} 으 쯔

- Vibrational contribution to free energy
- Third party software Phonopy

Scripta Materialia Volume 108, November 2015, Pages 1-5

Viewpoint Paper

First principles phonon calculations in materials science

Atsushi Togo ^{a, b} 쯔, Isao Tanaka ^{a, b, c} 은 쯔

- Vibrational contribution to free energy
- Third party software Phonopy
- Computes finite difference Hessian to derive phonon internal energy and entropy
- Free energy at finite temperature (300K)

Viewpoint Paper

First principles phonon calculations in materials science

Atsushi Togo ^{a, b} 쯔, Isao Tanaka ^{a, b, c} 은 쯔

Compute gradients with FF or QM

Compute gradients with FF or QM

9

- Dimer expansion on each supercell
- Gradients can be computed with force fields or QM

Compute gradients with FF or QM

9

- Dimer expansion on each supercell
- Gradients can be computed with force fields or QM
- Highly parallelizable
- Used prospectively

Compare to sublimation entropies

- Absolute sublimation entropies computed with HF3c
- Experimental sublimation entropies for crystals of carboxylic acids
- Plot error in predicted entropy

R² = 0.91 [0.71,0.98] Robust Error = 0.57 kcal/mol

- Druglike molecule from GSK
 - 4 rotatable bonds and flexible ring
 - 3 tautomers

- Druglike molecule from GSK
 - 4 rotatable bonds and flexible ring
 - 3 tautomers
 - 2 Blind predictions start with QM enthalpy

- Druglike molecule from GSK
 - 4 rotatable bonds and flexible ring
 - 3 tautomers
 - 2 Blind predictions start with QM enthalpy
 - Force field finite temperature correction

- Druglike molecule from GSK
 - 4 rotatable bonds and flexible ring
 - 3 tautomers
 - 2 Blind predictions start with QM enthalpy
 - Force field finite temperature correction
 - Subset with QM finite temperature correction

Ranks change with finite temperature corrections

Ranks change with finite temperature corrections

Ranks change with finite temperature corrections

Ranks change with finite temperature corrections

Monohydrate first multi-components crystal prediction

Monohydrate first multi-components crystal prediction

Monohydrate first multi-components crystal prediction

- Sample waters around all conformers
- Pack molecule-water dimers as a single asymmetric unit

Sample water positions around all donors and acceptors

- Generate a set of 60 rotated waters
- Build a grid around each donor and acceptor

Sample water positions around all donors and acceptors

- Generate a set of 60 rotated waters
- Build a grid around each donor and acceptor
- Evaluate interaction energies using multipole FF
 - Keep waters within a set energy range
 - Deduplicate remaining waters

Sample water positions around all donors and acceptors

- Generate a set of 60 rotated waters
- Build a grid around each donor and acceptor
- Evaluate interaction energies using multipole FF
 - Keep waters within a set energy range
 - Deduplicate remaining waters
- Apply MinMax selection algorithm to pick 'N' most diverse water sites

Check dimer and FF crystal opt.

Check dimer and FF crystal opt.

1. Experimental conformer: N=10?

Check dimer and FF crystal opt.

OH

1. Experimental conformer: N=10?

Check dimer and FF crystal opt.

- 1. Experimental conformer: N=10?
- 2. Generated Conformers
 - a. N=10?

ΝH₂

OH

 $m{O}$

Check dimer and FF crystal opt.

- 1. Experimental conformer: N=10?
- 2. Generated Conformers
 - a. N=10?

ΝH₂

OH

 \mathbf{O}

Check dimer and FF crystal opt.

- 1. Experimental conformer: N=10?
- 2. Generated Conformers
 - a. N=10?
 - b. N=15?

ΝH₂

OH

 \mathbf{O}

Check dimer and FF crystal opt.

- 1. Experimental conformer: N=10?
- 2. Generated Conformers
 - a. N=10?
 - b. N=15?

NH₂

OH

 \mathbf{O}

Check dimer and FF crystal opt.

- 1. Experimental conformer: N=10?
- 2. Generated Conformers
 - a. N=10?
 - b. N=15?

• 1H-bond donor, 5 acceptors

- 1H-bond donor, 5 acceptors
- 100 conformers at 0.5A

- 1H-bond donor, 5 acceptors
- 100 conformers at 0.5A
- 15 waters/site \rightarrow 9,000 dimers

- 1H-bond donor, 5 acceptors
- 100 conformers at 0.5A
- 15 waters/site \rightarrow 9,000 dimers
- Change 'N' waters by site

- 1H-bond donor, 5 acceptors
- 100 conformers at 0.5A
- 15 waters/site \rightarrow 9,000 dimers
- Change 'N' waters by site

- 1H-bond donor, 5 acceptors
- 100 conformers at 0.5A
- 15 waters/site \rightarrow 9,000 dimers
- Change 'N' waters by site
- Submit MMFF and QM finite temperature predictions

17

Acknowledgements

- Anthony Nicholls and Geoff Skillman
- Physics Group Hari Muddana, Tom Darden, Grigory Ovanesyan
- GSK Collaborators Eric Manas, Deborah Loughney, Colin Edge, Alan Graves, Luca Russo, Peter Pogany
- Orion Group at OpenEye

Thank You

The End

