

CryoEM & Drug Discovery Lessons learned, challenges and opportunities

Giovanna Scapin PhD

Nanolmaging Services

CryoEM: the process

CryoEM: the process

DATA COLLECTION and PROCESSING

Structural Biology in Drug Development

Scapin, G., Potter, C.S. & Carragher, B. (2018) Cell Chem Biol 25 (11), 1318-1325

Structural Biology in Drug Development

resolution are important

Scapin, G., Potter, C.S. & Carragher, B. (2018) Cell Chem Biol 25 (11), 1318-1325

CryoEM in Drug Development

Scapin, G., Potter, C.S. & Carragher, B. (2018) Cell Chem Biol 25 (11), 1318-1325

CryoEM in Drug Development

CryoEM in Drug Development

Atom positions Hydrogen bonds Ligand conformation Water molecules.....

EMDB Entries Released per Year

http://www.emdataresource.org/statistics.html

info@nanoimagingservices.com

http://www.emdataresource.org/statistics.html

2020

2021

5-10

Atom positions Hydrogen bonds Ligand conformation Water molecules.....

info@nanoimagingservices.com

3 Å

3.5 Å

http://www.emdataresource.org/statistics.html

Atom positions Hydrogen bonds Ligand conformation Water molecules.....

Released Entries (Cumulative)

Growth of EM Archives 2021-03-17

http://www.emdataresource.org/statistics.html

Model building & Validation

A map is a map, what we need for drug design is a structure

Maps at or better than 3.5 Å \rightarrow "Standard" MR, model building/rebuilding, real space refinement can be used; ligands are visible

Maps between ~5 and $3.5 \text{ Å} \rightarrow$ "Standard" MR still possible, but model building/rebuilding and refinement need to be "guided". Ligands are a guessing game

Maps worse than 5 Å \rightarrow "Standard" MR likely to fail, model building/rebuilding (when even possible) and refinement need to be "guided". Ligands? What ligands?

Model building & Validation

A map is a map, what we need for drug design is a structure

Maps at or better than 3.5 Å \rightarrow "Standard" MR, model building/rebuilding, real space refinement can be used; ligands are visible

- > Chimera, Coot, Phenix-Refine, Rosetta...
- CM&I Engagement and MD driven fitting

^{Mar} and VALIDATION! (PDB)

lding/rebuilding

→ Map-to-structure pipeline

Maps worse than 5 Å \rightarrow "Standard" MR likely to fail, model building/rebuilding (when even possible) and refinement need to be "guided". Ligands? What ligands?

info@nanoimagingservices.com

Even low-res maps are better than no maps

https://integrativemodeling.org/1.0/tutorial/multifit.html

Flexible Fitting of Small Molecules into Electron Microscopy Maps Using Molecular Dynamics Simulations with Neural Network Potentials

J. Chem. Inf. Model. 2020, 60, 5, 2591–2604

Local resolution

Nominal resolution 4.7 Ang

info@nanoimagingservices.com

Local resolution

Nominal resolution 4.7 Ang

Conformational changes Ligand binding Epitope mapping

Bottleneck # 1: cost and accessibility

Estimated cost: \$8-10M up front, \$2.5-3.0M/year running costs (Facilities costs, salaries, equipment service contracts, IT storage, software licensing and fees)

PACIFIC NORTHWEST Cryo-EM Center

Cambridge Pharmaceutical Cryo-EM Consortium

National Center for CryoEM Access and Training

S²C² | Stanford-SLAC Cryo-EM Center

ThermoFisher SCIENTIFIC

info@nanoimagingservices.com

Bottleneck #2: vitrification

Bottleneck #2: vitrification

New approaches to vitrification

info@nanoimagingservices.com

Size

Molecular weight trends for SP maps

Size

Absolute mass vs. ordered mass

info@nanoimagingservices.com

Increasing the size...

Absolute mass vs. ordered mass

- Increase size of ordered mass by complexing with
 - FAB

Size

- Biological partners
- Large substrates
- Stabilizing binders

• Ordered matter

Barnes, et al. Cell 182 (4) 2020, 828-842 (2020)

Average sample concentration in
Negative Staining0.05 - 0.2 nMVitrified grids3 - 50 nM

He et al., Science 367, 875-881 (2020)

Bussiere et al., www.biorxiv.org/content/10.1101/737510v1 (2020)

info@nanoimagingservices.com

Barnes, et al. Cell 182 (4) 2020, 828-842 (2020)

He et al., Science 367, 875–881 (2020)

Bussiere et al., www.biorxiv.org/content/10.1101/737510v1 (2020)

Average sample concentration in
Negative Staining0.05 - 0.2 nMVitrified grids3 - 50 nM

<u>Upper nM to low μ M Kd may result in complex dissociation</u> under cryoEM condition

Possible solutions:

Higher protein concentration Increase the ratio of one component Cross-linking Beware of Negative Staining results

info@nanoimagingservices.com

Flexibility

Discrete

Abeyrathne, et al. https://elifesciences.org/articles/14874 (2020)

Can be resolved by multiple rounds of classification (2D or 3D)

Focused refinement, local refinement or multibody refinement can be used to optimize the variable areas

Continuous

https://guide.cryosparc.com/processing-data/tutorials-and-case-studies/tutorial-3d-variability-analysis-part-one

Punjani, et al. bioRxiv. <u>https://doi.org/10.1101/2020.04.08.032466</u>, (2020)

3D Variability Analysis (3DVA) is a computational method to resolve continuous and discrete heterogeneity from single particle cryo-EM data of protein molecules.

Acknowledgements

Corey Strickland

Yacob Gomez-Llorente Chuan Hong Christina Cheng

Clint Potter & Bridget Carragher

All all the crew at NYSBC/SEMC

National Resource for Automated Molecular Microscopy http://nramm.nysbc.org

Questions?

info@nanoimagingservices.com

