To Affinity... and Beyond!

Christopher Bayly April 2021

MD in Structure-Based Lead Optimization

• Heavier MD methods staged to offer more value later in triaging

MD in Structure-Based Lead Optimization

• Heavier MD methods staged to offer more value later in triaging

Short Trajectory MD: Pose Testing

- Improved evaluation of a bound pose
 - Samples protein, ligand, and explicit water motion
 - Short Trajectory (2 ns)
 - $\circ~$ Only the immediate region of the bound pose
 - $\,\circ\,$ Does the pose remain stable?
 - o Do the protein-ligand interactions remain as designed?
- High throughput ; light calculation
 Orion: 1 hr/ligand (~\$1), highly parallel

Short Trajectory MD in Orion: The Floe

MCL1 Dataset* : STMD Floe Report

• 42 congeneric ligands

Aggregate Analysis of Ligand Trajectories

- Reduces variance in Ensemble scoring : < MMPBSA>
- Consensus clustering yields a more global view of bound microstates

<BintScore>^a -19.4 ± 0.3

 -15.6 ± 0.3

 -15.5 ± 0.4

 -13.7 ± 0.6

 -16.1 ± 0.5

<MMPBSA>a,b

 -44.7 ± 0.2

 -44.5 ± 0.2

 -46.6 ± 0.3

 -41.5 ± 0.5

 -44.3 ± 0.4

Size

44.1%

18.6%

11.5%

20.3%

5.6%

0

2

Otherc

MCL1 Dataset : Orion Analysis page

- Ligands show varying degrees of pose stability
- Fitting a model is required: <MMPBSA> score itself is not useful

Wang et al., JACS 2015, 137, 2695

Modeling ΔG with <MMPBSA>: MCL1 Dataset

Correlations Between Experimental AG and Ensemble MMPBSA

Metric	Value	Median [5%,95%] ^a	<i>p</i> -value
Pearson's <i>r</i> ²	0.295	0.301 [0.097, 0.526]	0.000
Kendall's τ ^b	0.339	0.341 [0.143, 0.517]	0.002

^aMedian with confidence intervals of 5% to 95% estimated using bootstrapping (2000 samples). ^bKendall's τ is a recommended metric to assess rank ordering.

Robust Linear Models of Experimental AG

Metric	Theil-Sen	Huber
Slope	0.170	0.202
Intercept	0.186	1.930
MAE ^a	0.731	0.700
Relative MAE ^b	0.810	0.775

^aMean Absolute Error. ^bMAE divided by the Absolute Average Deviation of Experimental Δ G.

• Huber or Thiel-Sen estimators: robust linear models for ΔG

Huber Modeling of ΔG with <MMPBSA>: 9 Datasets

- Huber model gives better Mean Absolute Error (MAE) for datasets where Kendall's τ correlation is better

MAE is Sensitive to Mean Absolute Deviation

- Mean Absolute Deviation (MAD): property of the data (Exptl Δ G)
- Narrower affinity range (poorer dataset) → lower MAEs !

Use Relative MAE instead of MAE

- Relative Mean Absolute Error: **RMAE** = **MAE/MAD**
- Normalizes MAE between datasets (and dimensionless!)

Modeling ΔG with <MMPBSA>: 9 Datasets

• Huber model tends to give better Relative Mean Absolute Error (RMAE) for datasets where Kendall's τ correlation is better

Short Trajectory MD: Pose Testing

- Improved evaluation of a bound pose
 - Samples protein, ligand, and explicit water motion
 - Short Trajectory (2 ns)
 - $\circ~$ Only the immediate region of the bound pose
 - $\,\circ\,$ Does the pose remain stable?
 - $\,\circ\,$ Do the protein-ligand interactions remain as designed?
- High throughput ; light calculation
 Orion: 1 hr/ligand (~\$1), highly parallel

Short Trajectory MD: Pose Testing

"Do the Protein-Ligand interactions ...

OEInteractions:

...

...

```
OEInteraction Type: contact <ligand: 0 O protein:3561 C>
```

OEInteraction Type: hbond:protein2ligand ligand: 2 O protein:4300 N>

OEInteraction Type: hbond: non-ideal-protein2ligand <ligand: 0 O protein:3555 N>

- OEInteractions: Qualitative protein-ligand binding interactions
 - Knowledge-based approach
 - OEChem TK \rightarrow Grapheme TK

"Do the Protein-Ligand interactions ...

- Use OEInteractions of the initial ligand Pose
 - Principle: The more **good** OEInteractions there are, the better
 - Prerequisite to relate to affinity
- Scoring the Initial Pose:
 - With good OEInteraction Types j having weight;
 - For *i* OEInteractions of Type *j*:

BintScore = sum_j (*i* * weight_j)

"... remain as designed?"

- Initial Pose BintScore: Reference OEInteractions
 - Initial Pose = "the design"
 - Initial Pose BintScore = "goodness" of the design
- Trajectory BintScore = <BintScore>
 - Per-frame occupancy of **Reference** OEInteractions
 - Simple ensemble average
- A change in binding interactions, even if good, is rejected
 → "Does the pose remain stable?": No
- <BintScore> strongly depends on the Initial Ligand Pose

<MMPBSA>, <BintScore>, and InitBintScore: MCL1 Dataset

<BintScore>

InitBintScore

<MMPBSA>, <BintScore>, and InitBintScore: Tyk2 Dataset

Huber Models of ΔG : 9 Datasets

- <MMPBSA> and <BintScore> have similar aggregate performance
 - Complimentarity on specific targets
- InitBintScore performs less well \rightarrow pose stability matters

RBFE with Non-Equilibrium Switching (NES)

RBFE with Non-Equilibrium Switching (NES) Very fast transitions through intermediate states Non-equilibrium Equilibrium Sampling: many, very short trajectories **Beautifully parellelizable !** W $_{B \rightarrow A}$ Non-Equilibrium $B \rightarrow A$ W $_{B \rightarrow A}$ Non-Equilibrium $B \rightarrow A$ W $_{B \rightarrow A}$ Non-Equilibrium $B \rightarrow A$ Α B Gapsys et al., Chem. Sci., 2020, 11, 1140-1152

RBFE with Non-Equilibrium Switching (NES)

RBFE-NES Floe: Bird's eye view

- Almost entirely based on existing OE Orion infrastructure for MD
- User input Edge mapping will come from RBFE mapper (LOMAP)
- Stages 1 and 2 can be from a prior MD run

RBFE-NES Floe: NES Stage for PTP1B (49 edges)

- Orion scheduler dynamically allocates spot instances (availability)
 - Not a concern for the user: everything finishes!
 - Runtime may vary based on availability

NES Protocol mainly followed Gapsys et al.

- Gromacs 2020
- OpenFF 1.3 (Parsley) with Amber ff14
- Equilibrium runs done separately
 - Bound and unbound ligand
 - 1X 6 ns, no clustering
 - No NES knowledge embedded
- NES runs: 80 frames with 50ps switching per frame
 - OpenEye alchemical chimeric A/B ligands
 - $\Delta\Delta G$ correlations symmetrized around $A \rightarrow B \mid B \rightarrow A$
- Schrodinger JACS '15 datasets: 8 targets
- Hunt '13 Bace dataset

Tyk2

- 16 ligands
- 24 edges
- Equil: \$15 lacksquare
- NES: \$232, 6h \bullet
- **NES** failures \bullet
 - Bound 8% •
 - Unbound 7% •

Method	ΔΔG kJ/mol	Method	ΔG kJ/mol
MAE	3.51 [3.86 5.13]	MAE	2.12 [1.38 3.04]
Relative MAE	0.87 [0.66 0.96]	Relative MAE	0.48 [0.30 0.74]
RMSE	3.95 [4.84 6.34]	RMSE	2.78 [1.72 3.70]
Relative RMSE	0.79 [0.66 0.94]	Relative RMSE	0.52 [0.35 0.72]
Pearson's R ²	0.44 [0.26 0.62]	Pearson's R ²	0.73 [0.60 0.90]
Spearman's p	0.66 [0.51 0.78]	Spearman's p	0.86 [0.77 0.94]
Kendall's T	0.45 [0.32 0.57]	Kendall's T	0.72 [0.50 0.89]

10

5

ł

Thrombin

- 11 ligands
- 16 edges
- Equil: \$9
- NES: \$144, 2.7h
- NES failures
 - None

Experimental $\Delta\Delta G$ kJ/mol

Experimental $\Delta G kJ/mol$

Method	ΔΔG kJ/mol	Method	∆G kJ/mol
MAE	3.33 [3.66 5.09]	MAE	2.42 [1.35 3.59]
Relative MAE	2.10 [1.43 2.60]	Relative MAE	1.38 [0.80 2.17]
RMSE	3.83 [4.48 6.18]	RMSE	3.12 [1.88 4.11]
Relative RMSE	1.89 [1.47 2.50]	Relative RMSE	1.44 [0.93 2.29]
Pearson's R ²	0.69 [0.51 0.82]	Pearson's R ²	0.86 [0.71 0.99]
Spearman's p	0.83 [0.72 0.90]	Spearman's p	0.93 [0.85 0.99]
Kendall's T	0.60 [0.52 0.72]	Kendall's τ	0.82 [0.53 1.00]

JACS15 p38

- 34 ligands
- 56 edges
- Equil: \$39
- NES: \$660 6.1h
- NES failures:
 - Bound 3%
 - Unbound 3%

Method	ΔΔG kJ/mol	Method	ΔG kJ/mol
MAE	4.56 [5.55 7.15]	MAE	4.08 [3.11 5.10]
Relative MAE	1.06 [0.90 1.27]	Relative MAE	1.24 [0.94 1.64]
RMSE	5.59 [6.89 8.95]	RMSE	5.04 [3.84 6.06]
Relative RMSE	1.08 [0.91 1.26]	Relative RMSE	1.20 [0.98 1.52]
Pearson's R ²	0.24 [0.14 0.37]	Pearson's R ²	0.10 [0.00 0.35]
Spearman's p	0.49 [0.37 0.60]	Spearman's p	0.31 [-0.03 0.57]
Kendall's T	0.36 [0.25 0.44]	Kendall's T	0.22 [-0.02 0.46]

Direct Predictions of ΔG : 9 Datasets

• OE NES has comparable accuracy to literature benchmarks

Wang et al., JACS 2015, **137**, 2695

Gapsys et al., Chem. Sci., 2020, 11, 1140-1152

Modeling ΔG with ΔG _NES: Thrombin Dataset

Correlations Between Experimental AG and Predicted AG (NES)

Metric	Value	StdErr;[5%,95%] ^a	<i>p</i> -value
MAE ^b	0.580	0.143 [0.358, 0.826]	n/a
RMAE ^c	1.464	0.360 [0.930, 2.075]	n/a
Pearson's r ²	0.859	0.071 [0.741, 0.978]	4.051e-05
Kendall's τ	0.818	0.117 [0.600, 1.000]	1.323e-04

Robust Linear Models of Experimental ΔG

Metric	Theil-Sen	Huber
Slope	0.382	0.375
Intercept	-0.015	-0.006
MAE ^a	0.126	0.127
Relative MAE ^b	0.299	0.302

• Huber or Thiel-Sen estimators: robust linear models for ΔG

Modeling ΔG with ΔG _NES: 9 Datasets

• Robust Linear (Huber) Modeling of Modeling ΔG with ΔG_NES substantially improves RMAE compared to direct prediction

Kendall's τ for <MMPBSA>, <BintScore>, and Δ G_NES

- Kendall's τ correlation between <MMPBSA> ,<BintScore>, and Δ G_NES show no significant differences in **aggregate** performance.
 - Sometimes large differences on individual targets.

Modeling ΔG with <MMPBSA>, <BintScore>, and ΔG_NES

- Huber Models of <MMPBSA> ,<BintScore>, and ∆G_NES show no significant differences in aggregate performance.
 - Sometimes large differences on individual targets.

Modeling ΔG with <MMPBSA>, <BintScore>, and ΔG_NES

- Huber Models of <MMPBSA> ,<BintScore>, and ∆G_NES show no significant differences in aggregate performance.
 - Sometimes large differences on individual targets.

Conclusions

- OpenEye will have a massively parallel Relative Binding Free Energy (RBFE) floe available in the upcoming Orion release
 - Non-Equilibrium Switching (NES)
 - Comparable accuracy to literature RBFE benchmarks (limited testing)
- Pose Evaluation using Short Trajectory MD will be improved by the addition of Ensemble BintScore.
 - New knowledge-based evaluation
- ∆G_NES, Ensemble BintScore, and Ensemble MMPBSA can all be effectively used in Robust Linear Modeling of Affinity
 - Aggregate performance is similar
 - Specific targets may (strongly) favor one model

Acknowledgements

- Gaetano Calabro
- Geoff Skillman, Burt Leland (chimeric molecule)
- Jack Delany (Gromacs compilation)
- Matt Bagwell (floe report)
- Gunther Stahl, James Haigh
- David Mobley & lab (UC Irvine)
 - David Hahn (Janssen)
- John Chodera & lab (MSKCC)
- Bert de Groot & Vytautas Gapsys (Max Planck Inst.)

