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MD in Structure-Based Lead Optimization

• Heavier MD methods staged to offer more value later in triaging

Computational
Cost Generative Modeling

à Posed ligands

Filtering, Clustering
Force Field Refinement

Light, Fast
MD Screening

Free Energy Calcs



MD in Structure-Based Lead Optimization

• Heavier MD methods staged to offer more value later in triaging

Computational
Cost Generative Modeling

à Posed ligands

Filtering, Clustering
Force Field Refinement

Short Traj MD:
MMPBSA ; BintScore

RBFE: 
Non-Equilib Switching

NEW!



Short Trajectory MD: Pose Testing

• Improved evaluation of a bound pose
o Samples protein, ligand, and explicit water motion
o Short Trajectory (2 ns)

o Only the immediate region of the bound pose
o Does the pose remain stable? 
o Do the protein-ligand interactions remain as designed?

• High throughput ; light calculation
o Orion: 1 hr/ligand (~$1), highly parallel



Short Trajectory MD in Orion: The Floe

April 30, 2021
©2018 OpenEye Scientific Software

Spruce

2 ns
GROMACS

OpenMM

OpenFF,
GAFF, GAFF2



MCL1 Dataset* : STMD Floe Report

• 42 congeneric ligands

*Wang et al., JACS 2015, 137, 2695



Aggregate Analysis of Ligand Trajectories

• Aggregate Analysis for all poses for a ligand
• Reduces variance in Ensemble scoring : <MMPBSA>
• Consensus clustering yields a more global view of bound microstates



MCL1 Dataset : Orion Analysis page

• Ligands show varying degrees of pose stability
• Fitting a model is required: <MMPBSA> score itself is not useful

Wang et al., JACS 2015, 137, 2695



Modeling DG with <MMPBSA>:  MCL1 Dataset

• Huber or Thiel-Sen estimators: robust linear models for DG



Huber Modeling of DG with <MMPBSA>:  9  Datasets

• Huber model gives better Mean Absolute Error (MAE) for datasets 
where Kendall’s t correlation is better

Huber model

Better

Better



MAE is Sensitive to Mean Absolute Deviation

• Mean Absolute Deviation (MAD): property of the data (Exptl DG)
• Narrower affinity range (poorer dataset) à lower MAEs ! 

Huber model



Use Relative MAE instead of MAE

• Relative Mean Absolute Error:   RMAE = MAE/MAD
• Normalizes MAE between datasets (and dimensionless!)

Huber model

=
MAE

MAD



Modeling DG with <MMPBSA>:  9  Datasets

• Huber model tends to give better Relative Mean Absolute Error 
(RMAE) for datasets where Kendall’s t correlation is better

Huber model

Better

Better



Short Trajectory MD: Pose Testing

• Improved evaluation of a bound pose
o Samples protein, ligand, and explicit water motion
o Short Trajectory (2 ns)

o Only the immediate region of the bound pose
o Does the pose remain stable? 
o Do the protein-ligand interactions remain as designed?

• High throughput ; light calculation
o Orion: 1 hr/ligand (~$1), highly parallel

Historically by 

visual inspection 

(Merck Frosst)



Short Trajectory MD: Pose Testing

• Improved evaluation of a bound pose
o Samples protein, ligand, and explicit water motion
o Short Trajectory (2 ns)

o Only the immediate region of the bound pose
o Does the pose remain stable? 
o Do the protein-ligand interactions remain as designed?

• High throughput ; light calculation
o Orion: 1 hr/ligand (~$1), highly parallel

“MD Trajectory” property:
Ensemble Average

Qualitative assessment of 
protein-ligand  interactions

Based on the “goodness” 
of the ligand’s Initial Pose



“Do the Protein-Ligand interactions …

• OEInteractions: Qualitative protein-ligand binding interactions
• Knowledge-based approach
• OEChem TK à Grapheme TK

…
OEInteraction Type: contact
<ligand: 0 O protein:3561 C>

OEInteraction Type: hbond:protein2ligand
<ligand: 2 O protein:4300 N> 

OEInteraction Type: hbond: non-ideal-protein2ligand
<ligand: 0 O protein:3555 N>

…

OEInteractions:



“Do the Protein-Ligand interactions …

• Use OEInteractions of the initial ligand Pose
• Principle: The more good OEInteractions there are, the better
• Prerequisite to relate to affinity

• Scoring the Initial Pose:
• With good OEInteraction Types j having weightj
• For i OEInteractions of Type j:

BintScore = sumj ( i * weightj )

Binding
interactions

Bint



“… remain as designed?”
• Initial Pose BintScore: Reference OEInteractions
• Initial Pose = “the design”
• Initial Pose BintScore = “goodness” of the design

• Trajectory BintScore = <BintScore>
• Per-frame occupancy of Reference OEInteractions
• Simple ensemble average

• A change in binding interactions, even if good, is rejected
à “Does the pose remain stable?”: No

• <BintScore> strongly depends on the Initial Ligand Pose



<MMPBSA>, <BintScore>, and InitBintScore:  
MCL1 Dataset

<MMPBSA> <BintScore> InitBintScore



<MMPBSA>, <BintScore>, and InitBintScore:  
Tyk2 Dataset

<MMPBSA> <BintScore> InitBintScore



Huber Models of DG :  9  Datasets

• <MMPBSA> and <BintScore> have similar aggregate performance
• Complimentarity on specific targets

• InitBintScore performs less well à pose stability matters

Better

Better



A

RBFE with Non-Equilibrium Switching (NES)
Equilibrium

Non-Equilibrium A → B
Non-Equilibrium A → B

Non-Equilibrium A → B

W A → B 

W A → B 

W A → B 

Gapsys et al., Chem. Sci., 2020, 11, 1140-1152

Bert L.
De Groot

Vytautas
Gapsys

B



A

RBFE with Non-Equilibrium Switching (NES)
• Very fast transitions through intermediate states
• Non-equilibrium

• Sampling: many, very short trajectories
Beautifully parellelizable !

Equilibrium

Non-Equilibrium B → A

Non-Equilibrium B → A

Non-Equilibrium B → A

W B → A 

W B → A 

W B → A 

Gapsys et al., Chem. Sci., 2020, 11, 1140-1152
B



RBFE with Non-Equilibrium Switching (NES)

BAR:
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Runs

Runs



RBFE-NES Floe: Bird’s eye view

• Almost entirely based on existing OE Orion infrastructure for MD
• User input Edge mapping will come from RBFE mapper (LOMAP)
• Stages 1 and 2 can be from a prior MD run

Spruce

3B >> 3A
3C >> 3B
3F >> 3C
3H >> 3A
3K >> 3B
3I >> 3B
3J >> 3B

Stage 1: System Setup Stage 2: End-point 
Equilibration

Stage 3: NES



RBFE-NES Floe: NES Stage for PTP1B (49 edges)

• Orion scheduler dynamically allocates spot instances (availability)
• Not a concern for the user: everything finishes!
• Runtime may vary based on availability

NES runs



NES Protocol mainly followed Gapsys et al.
• Gromacs 2020
• OpenFF 1.3 (Parsley) with Amber ff14
• Equilibrium runs done separately
• Bound and unbound ligand
• 1X 6 ns, no clustering 
• No NES knowledge embedded

• NES runs: 80 frames with 50ps switching per frame 
• OpenEye alchemical chimeric A/B ligands
• DDG correlations symmetrized around AàB | BàA

• Schrodinger JACS ‘15 datasets: 8 targets
• Hunt ‘13 Bace dataset

*Gapsys et al., Chem. Sci., 2020, 11, 1140-1152



Tyk2
• 16 ligands
• 24 edges
• Equil: $15
• NES: $232, 6h
• NES failures
• Bound 8%
• Unbound 7%



Thrombin
• 11 ligands
• 16 edges
• Equil: $9
• NES: $144, 2.7h
• NES failures
• None



JACS15 p38
• 34 ligands
• 56 edges
• Equil: $39
• NES: $660 6.1h
• NES failures:
• Bound 3%
• Unbound 3%



Direct Predictions of DG :  9  Datasets

• OE NES has comparable accuracy to literature benchmarks

Better

Better

Wang et al., JACS 2015, 137, 2695 Gapsys et al., Chem. Sci., 2020, 11, 1140-1152



Modeling DG with DG_NES:  Thrombin Dataset

• Huber or Thiel-Sen estimators: robust linear models for DG



Modeling DG with DG_NES:  9 Datasets

• Robust Linear (Huber) Modeling of Modeling DG with DG_NES 
substantially improves RMAE compared to direct prediction

Better



Kendall’s t for <MMPBSA>, <BintScore>, and DG_NES

• Kendall’s t correlation between <MMPBSA> ,<BintScore>, and DG_NES 
show no significant differences in aggregate performance.
• Sometimes large differences on individual targets.

Better
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Modeling DG with <MMPBSA>, <BintScore>, and DG_NES

• Huber Models of <MMPBSA> ,<BintScore>, and DG_NES show no 
significant differences in aggregate performance.
• Sometimes large differences on individual targets.

Better



Modeling DG with <MMPBSA>, <BintScore>, and DG_NES

• Huber Models of <MMPBSA> ,<BintScore>, and DG_NES show no 
significant differences in aggregate performance.
• Sometimes large differences on individual targets.

Better

Better



Conclusions
• OpenEye will have a massively parallel Relative Binding Free 

Energy (RBFE) floe available in the upcoming Orion release
• Non-Equilibrium Switching (NES) 
• Comparable accuracy to literature RBFE benchmarks (limited testing)

• Pose Evaluation using Short Trajectory MD will be improved by 
the addition of Ensemble BintScore.
• New knowledge-based evaluation 

• DG_NES, Ensemble BintScore, and Ensemble MMPBSA can all be 
effectively used in Robust Linear Modeling of Affinity
• Aggregate performance is similar
• Specific targets may (strongly) favor one model
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