BI-POLAR IONIZATION

and O2- ions at high density

Bi-polar ionization is a process in which positive and negative ions, when generated in adequate quantities and delivered by injecting them into HVAC supply air, react with water vapor and break down pathogens, allergens, particles, smoke, odors, and VOCs (Volatile Organic Compounds). If appropriately

designed, bi-polar ionization systems treat the space where people are most affected, not just the ductwork or HVAC components. By breaking down and removing those components in the air, the environment where people work and live becomes safer and healthier.

air (H20) to create H202,

hydrogen peroxide

peroxide destroys the protective protein structure of the pathogens, rendering them harmless

Noble Associates Inc.

harmful pathogens both in the

air and on surfaces

Bi-polar ionization means that the ions are generated using two emitters to create equal amounts of positively and negatively charged ions. When these ions are injected into the air stream, they create a plasma region and break down passing pollutants and gases into harmless compounds like oxygen, carbon dioxide, nitrogen, and water vapor. When these ions meet viruses, bacteria, or mold, they remove the hydrogen molecules from the pathogens. Without hydrogen, the pathogens have no source of energy and die. The ions also attach to allergens such as pollen, smoke, and other particles, causing them to band together until they are large enough to be filtered out of the air or fall to surfaces where they will be removed in cleaning.

Proven Technology

Substance	Substance Name	Testing Organization	Removal
Bacteria*	Escherichia Coli*	EMSL Analytical, USA	99%
	Escherichia Coli ATCC*	Istanbul University, Turkey	91%
	Staphylococcus Aureus*	EMSL Analytical, USA	91%
	Pseudomonas Aeruginosa*	Istanbul University, Turkey	99%
	Staphylococcus Aureus (MRSA)*	EMSL Analytical, USA	99%
Fungi*	Aspergillus Niger*	EMSL Analytical, USA	97%
	Dichobotrys Abundans*	Prof. Joe F. Boatman, USA	90%
	Penicillium*	Prof. Joe F. Boatman, USA	95%
Mold*	Cladosporium Cladosporioides*	EMSL Analytical, USA	97%
Spores*	Bacillus Subtilis Var Niger *	Istanbul University, Turkey	89%
Viruses*	Influenza H1N1*	Kitasato Research Center, Japan	99%
	Influenza H5N1*	Kitasato University, Thailand	99%
	SARS-COV-2 (COVID-19)*	University of Patras, Greece	99.9%
	SARS-COV-2 (COVID-19)*	Innovative BioAnalysis, USA	99.998%

In a lab setting*

Noble Associates Inc.