

WESTERN STATES METAL ROOFING

(877) 787-5467 • WESTERNSTATESMETALROOFING.COM

Finishes You've Never Seen Before®

STANDING SEAM METAL ROOF PANEL

MS2[®]

UL TESTS:

ANSI/UL 580, Uplift Resistance of Roof Assembly ANSI/UL 790, Fire Tests of Roof Coverings UL 2218A, Impact Resistance of Roof Systems

WSMR UL Certificate Number: R40094

Issue Date: 7/23/2020

See attached UL Report and Test Results from our Roll Forming Machinery vendor for this specific panel type referenced as "SS 210A (ARMCO) Panel" with UL report number R14692

REQUEST A FREE METAL COLOR SAMPLE

Affordable Delivery throughout USA, Canada, and Mexico

Phoenix: 901 W Watkins St., Phoenix, AZ 85007 ☎ (602) 495-0048 ⊠ sales@westernstatesmetalroofing.com

CERTIFICATE OF COMPLIANCE

Certificate Number Report Reference Issue Date R40094 R40094-20191126 2020-JULY-23

Issued to: Western States Metal Roofing 901 W. Watkins St, Phoenix AZ 85007

This certificate confirms that representative samples of

Systems; Impact Resistance Models: "7/8" Corrugated", "Western Rib", "Western R-Panel", "MS2®", "Thin Lock®", "Western Lock®", and "Western Seam®".

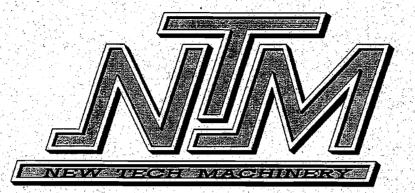
Metal Roof Deck Panels; Wind Uplift Resistance; Roofing

Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate.

Standard(s) for Safety:	ANSI/UL 580, Tests for Uplift Resistance of Roof Assemblies
	ANSI/UL 790, Test Methods or Fire Tests of Roof
	Coverings
	UL 2218A, Impact Resistance of Roofing Systems
Additional Information:	See the UL Online Certifications Directory at
	https://iq.ulprospector.com for additional information.

This *Certificate of Compliance* does not provide authorization to apply the UL Mark. Only the UL Follow-Up Services Procedure provides authorization to apply the UL Mark.

Only those products bearing the UL Mark should be considered as being UL Certified and covered under UL's Follow-Up Services.


Look for the UL Certification Mark on the product.

Barnally

Bruce Mahrenholz, Director North American Certification Program

Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at http://ul.com/aboutul/locations/

SS 210A (ARMCO) PANEL

UL LISTED CONSTRUCTION NUMBERS

#90 #180 #176 #238 #238A

SECTION ANALYSIS REPORT AND SPAN LOAD TABLES

1300 40TH DENVER, CO 80205-3311

PH 303-294-0538 **** 800-574-1717 **** FAX 303-294-9407

File R14692	Vol. 2	Sec. 1	Page 1	Issued:	1997-12-01
				Revised:	2003-11-18

DESCRIPTION

PRODUCT COVERED:

This section of the Procedure covers a coated steel roof panel which is identified as "Panel 210A". The panel is produced at job sites by portable rolling machines.

The panel is roll formed from No. 24 MSG minimum gauge coated steel to the configuration shown in ILL. 1. The panel may also have a paint finish over the coating.

SPECIFICATIONS OF FINISHED PRODUCT:

THICKNESS

The base metal thickness of the steel used in the fabrication of the panel shall be not less than .0225 in. (No. 24 MSG minimum gauge). This thickness shall not include the coating or any paint finish.

DIMENSIONS

The cross-section dimensions of the panel piece shall be in accordance with the cross-section shown in ILL. 1.

STRENGTH

The strength records of the steel shall be reviewed. The steel used shall conform to ASTM A653 Grade 50 specifications or the minimum yield point of the steel shall be 50,000 psi.

333 Pfingsten Road Northbrook. Illinois 60062–2096 (847) 272–5800 FAX No. (847) 272–8129 MCI Mail No. 254–3343 Telex No. 6502543343

Underwriters Laboratories Inc. a

File R14692 Project 97NK2305

November 13, 1997

CLASSIFICATION BY REPORT

of

METAL ROOF DECK PANEL AND ROOF DECK FASTENERS IN ROOF DECK CONSTRUCTIONS

> New Tech Machinery Corp. Denver, CO

Copyright © 1997 Underwriters Laboratories Inc.

Underwriters Laboratories Inc. authorizes the above named company to reproduce this Report provided it is reproduced in its entirety.

> A not-for-profit organization codicated to public safety and committed to quality service

<u>JH:tjm</u> NKDLS

<u>GENERAL</u>

The subject of this Report is a Roof Deck Panel which is identified as "Panel 210A". The panel is used in Construction Nos. 90, 176, 180, 238 and 238A as described in UL's Roofing Materials and Systems Directory. In addition to the roof deck panels, all constructions utilized steel purlins, Classified panel clips and screw fasteners.

The panel in this Report was previously Classified for New Tech Machinery Corp. by Underwriters Laboratories Inc. for the same construction numbers. The panel was identified previously as "210 Panel". The panel in this Report is the same as previously Classified.

The roof deck panels are roll-formed at the construction site. Therefore, the information provided in this Report replaces the Laboratories' usual factory Follow-Up Service Program for metal roof deck panels for which Follow-Up Service is normally conducted at the point of manufacture. The program for companies that are "Classified by Report" consists of keeping supplies of up-to-date Reports that are to be distributed to any interested party and requiring the roll forming machines to be covered by the Underwriters Laboratories Inc. Certificate Service.

The roof deck panel clips are covered by the usual Follow-Up Service Program of Underwriters Laboratories Inc. with factory monitored quality control. The method of use and a description of the Classified panel clips are shown in the Roof Deck Constructions.

DESCRIPTION

Metal Roof Deck Panels - The roof deck panel is 16 in. wide and 2 in. high at the female rib. The panel is fabricated from coated steel having a minimum thickness of 0.0225 in. (No. 24 MSG) and a minimum yield strength of 50,000 psi (ASTM A653, Grade 50). The panel will be Classified as "Metal Roof Deck Panels" in Underwriters Laboratories Inc.'s Roofing Materials and Systems Directory and will be covered under our Follow-Up Service. The panel is designated as "Panel 210A" by the manufacturer and is shown in ILL. 1.

CONCLUSION

The following conclusions represent the judgement of Underwriters Laboratories Inc., based upon the results of the examination presented in this Report as they relate to established principles and previously recorded data.

UPLIFT RESISTANCE:

The roof deck assemblies constructed of the materials and in the manner described in Roof Deck Construction Nos. 90, 176, 180, 238 and 238A will afford a Class 90 uplift resistance rating based on the method of test.

Secondary supports (beams, purlins, joists, bulb tees, lateral bracing, etc.), connections of these assemblies to the main structural members (girders, columns, etc.), and construction details along the edges of the roof or around roof openings (mechanical equipment, chimneys, etc.) have not been evaluated.

PRACTICABILITY:

The materials used in the assemblies can be readily installed by qualified workmen with tools and methods commonly used for construction work of a similar nature.

The materials and installation procedures for the original test assemblies described in these tests were judged to be significant factors in the uplift resistance of the constructions.

CONFORMITY:

The original assemblies were tested in accordance with the Standard UL 580, entitled "Tests For Uplift Resistance Of Roof Assemblies."

CLASSIFICATION AND FOLLOW-UP SERVICE:

The roof deck panel, as described herein, is judged to be eligible for Classification and Follow-Up Service of Underwriters Laboratories Inc. Under the Service, the manufacturer is authorized to use the Laboratories' Certification of Classification on the forming machine to produce products which comply with the fabrication specifications in this Report, as shown by ILL. 1, and any other applicable requirements of Underwriters Laboratories Inc. Only those products which are produced with a Certified machine are considered as Classified by Underwriters Laboratories Inc.

In addition, UL Classification Report Reference No. R14692, Project 97NK2305, dated November 13, 1997, should be consulted for compliance with material specifications and metal panel design.

See UL Roofing Materials and Systems Directory

Report by:

JAMES HATCHER Staff Engineer

Reviewed by:

KENNETH RHODES Associate Managing Engineer

Northbrook Division 333 Pfingsten Road Northbrook, IL 60062-2096 USA www.ul.com . tel: 1 847 272 8800 fax: 1 847 272 8129 Customer service: 1 877 854 3577

NEW TECH MACHINERY CORP MR G BATTISTELL 1300 40TH ST DENVER CO 80205

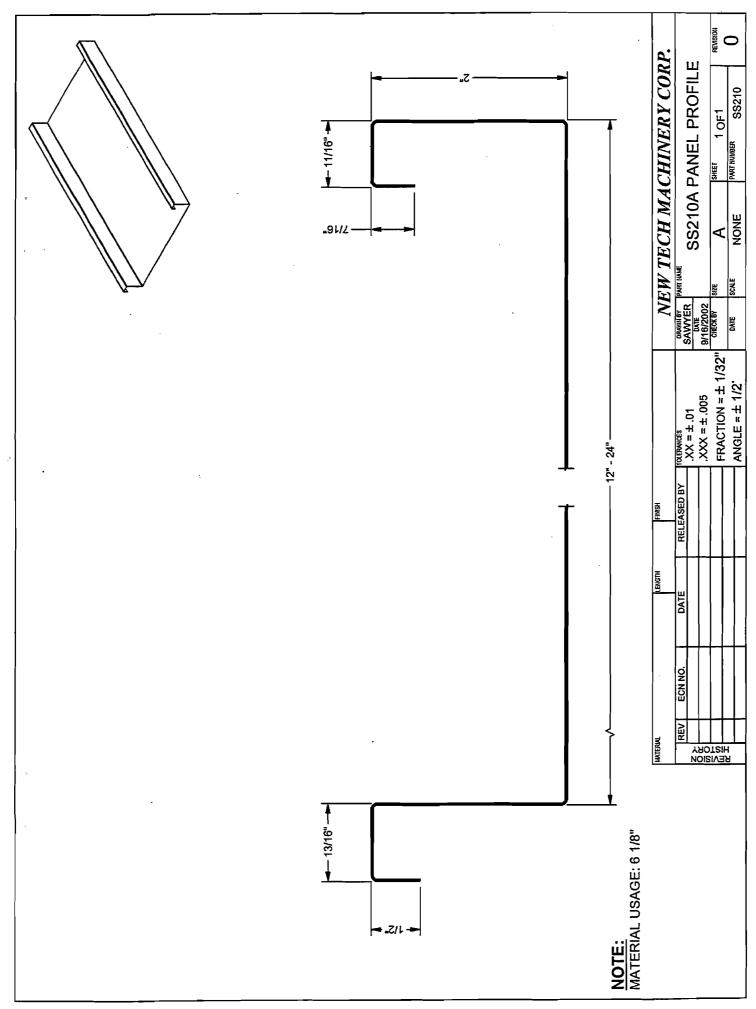
RE: Project Number(s) - 03NK22866

Your most recent Certification is shown below. You may also view this information, or a portion of this information (depending on the product category), on UL's Online Certifications Directory at www.ul.com/database. Please review the text and contact the Conformity Assessment Services staff member who handled your project if revisions are required. For instructions on placing an order for this information in a 3 x 5-inch format, you may refer to the enclosed order form for UL Card Service.

TIPV Metal Roof Deck Panels

November 21, 2003

NEW TECH MACHINERY CORP 1300 40TH ST, DENVER CO 80205


Coated steel panels, field - formed.

Underwriters Laboratories Inc. Metal Roof Deck Panels, Fabricated, installed and used in the following roof dec sponding panel identifications: Coated steel panels identified as "Snap Panel 550" for use in Construction No. 373 . Coated steel panels identified as "Panel 210A" for use in Construction Nos. 90, 176, 180, 238, 238A. Coated steel or aluminum panels identified as "Snap Panel 675" for use in Construction Nos 254, 255, 261, 303. Coated steel panels identified as "SS675" for use in Construction Nos. 343, 508 and 508A. Coated steel panels identified as "SS450" for use in Construction No. 370. Coated steel panels identified as "SS150" for use in Construction No. 554. Coated steel panels identified as "SS100" for use in Construction No. 575. Coated steel panels identified as "FF100" for use in Construction No. 529. Underwriters Laboratories Inc. Metal Roof Deck Panels, Fabricated, installed and used in the following roof deck constructions with corre-

See Roof Deck Construction for description of construction numbers. LOOK FOR LISTING MARK ON PRODUCT

R14692

Online Certifications Directory

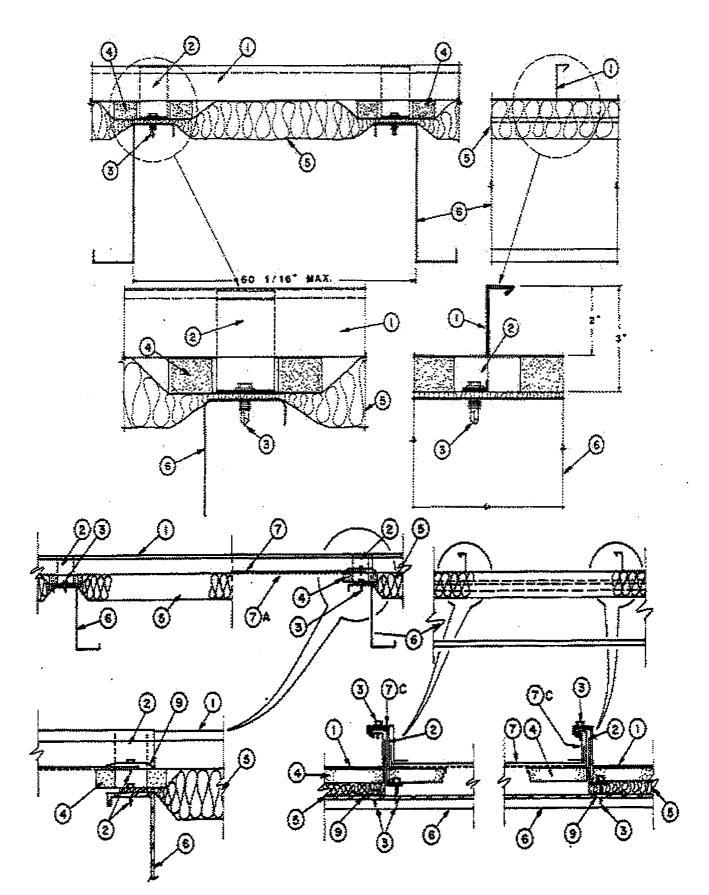
TGKX.90 Roof Deck Constructions

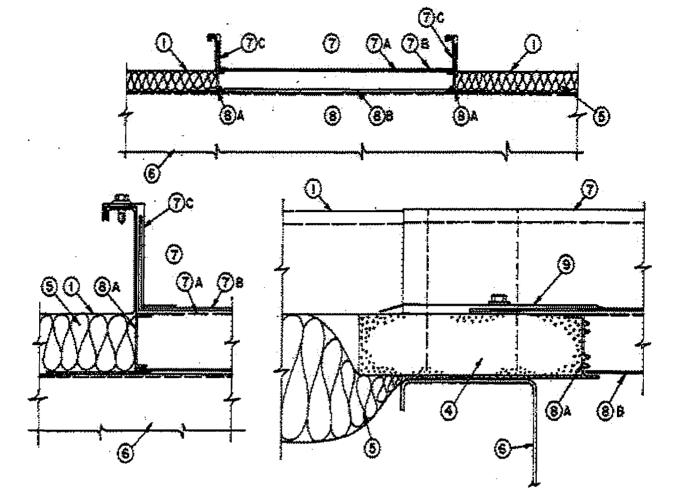
Page Bottom

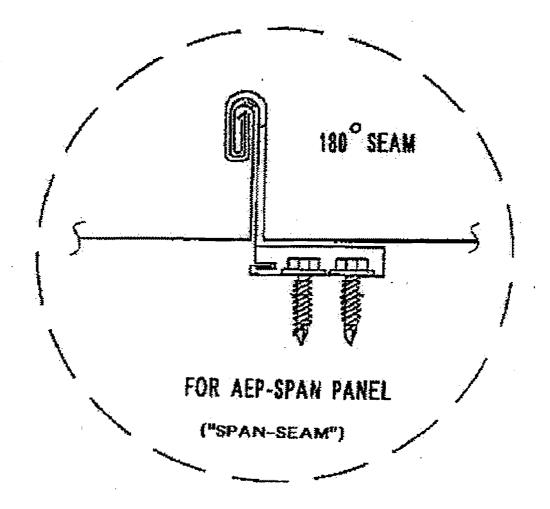
Questions?

Previous Page

Roof Deck Constructions


Guide Information


Construction No. 90


March 30, 2004

Uplift - Class 90

Fire Not Investigated

1. Metal Roof Deck Panels* — No. 24 MSG min gauge coated steel, max width 16 in. Panels continuous over two or more spans. End lap to occur over purlins and to include End Lap Back-up Plate (Item 2B or 2C.) Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machine at a minimum 45 degree angle with crimping process to include tabs of Panel Clips (Item 2). A bead of sealing compound may be used at panel end and side laps.

A & M BUILDERS/ROOFING

TECHNOLOGIES L L C --- "SS200"

A & S BUILDING SYSTEMS L P — "BattenLok " or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF

ASC PROFILES — "SL-216" (90° Seam), "SPS-216" (180° Seam)

ALLWINE ROOFING & CONSTRUCTION INC — "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

ARCHITECTURAL BUILDING COMPONENTS INC ---- "JSM 200"

ARCHITECTURAL SHEETMETAL PRODUCTS INC --- "ASP-2500"

CECO BUILDING SYSTEMS, DIV OF

ROBERTSON-CECO CORP — "CRP 16"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY — "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF

ALUMINUM SERVICE INC — "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC --- "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION & METAL ROOFING --- "3D Forever Lock"

ENGLERT INC — "Series 2500"

HCI STEEL BUILDING SYSTEMS INC --- "Mark 1622" and "Mark 1624"

HI-TEC ROOFING INC — "MRS 210A"

J M METALS ROOFING MFRS — "JM 2.0"

KNUDSON MFG INC — "ULTRALOK"

MBCI — "BattenLok" or "SuperLok"

MESCO METAL BUILDINGS --- "BattenLok" or "SuperLok"

METAL-FAB MFG LLC — "Met-Fab III"

METAL PANEL SYSTEMS INC — "MP-200"

METAL SALES MFG CORP — "T-Span" or "T-Span 180" (180° Seam)

METAL WORX SYSTEMS INC — "SS 2000"

NCI BUILDING SYSTEMS L P — "BattenLok" or "SuperLok"

NEW TECH MACHINERY CORP — "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC — "Series 2500"

PETERSEN ALUMINUM CORP — "Tite-Loc" and "Tite-Loc Plus"

ROL-TEC SYSTEMS INC --- "UltraLok"

R S S P INC — "SS2000"

STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC — "SMS 416"

UNITED STRUCTURES OF AMERICA INC — "Sure-Lok" or "Supreme-Lok"

2. Roof Deck Fasteners* (Panel Clips) — Two part assembly: Base, 1 in. wide approximately 1-1/4 in. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel.

STEELOX SYSTEMS L L C — "CF Sliding Clip"

Spacing for clip to be 5 ft 0-1/16 in. OC with clips located over purlins (Item 6).

2A. **Roof Deck Fasteners*** — (Panel Clips)(Not Shown) — No. 22 MSG min coated steel. Clips located at panel sides. Guide Holes in bottom of clip to accommodate two screw fasteners (Item 3).

ARCHITECTURAL BUILDING COMPONENTS INC ---- "JSM 200 Utility"

CECO BUILDING SYSTEMS, DIV OF

ROBERTSON-CECO CORP — "CL3, CL4, CL7, CL8 Series""CRP16 Panel Clips"

HCI STEEL BUILDING SYSTEMS INC — "SS16 High or Low Stationary Clip" or "SS16 High or Low Expansion Clip"

NCI BUILDING SYSTEMS L P — "BattenLok High or Low, Fixed or Floating Clip"; "BattenLok Utility Clip" — "SuperLok High or Low, Fixed or Floating Clip"; "SuperLok Utility Clip"

2B. End Lap Back-Up Plate* — (Not shown) — No. 18 MSG min gauge coated steel. Max length 48 in. Width varies with type of purlin with a max of 6-1/2 in.

STEELOX SYSTEMS L L C — "End Lap Backing Plate".

2C. End Lap Back-Up Plate* — (Not shown) — No. 16 MSG min coated steel.

NCI BUILDING SYSTEMS L P — "BattenLok Back-Up Plate" or "SuperLok Back-Up Plate".

2D. End Lap Back up Plate — (Not shown) — used with HCI Steel Products' Panels - 6 in. wide, 15-1/2 in. long, fabricated from 16 MSG min thick steel (50,000 psi min yield strength).

2E. **Roof Deck Fastener*** — (End Lap Back up Plate) — (Not Shown) — Used with AEP-Span "SL-216" panels. Length 10-1/2 in., width 15-3/4 in., No. 16 MSG min thick coated steel. Slipped under lower panel at end lap. Panels fastened together using four No. 1/4-14 by 1-1/8 in. long self-drilling, self-tapping, hex-washer head, plated steel screws with a 5/8 in. OD steel washer and a sealing washer. Screws spaced 4 in. OC beginning 2 in. from ribs.

AEP SPAN, DIV OF

ASC PROFILES --- "SL-216 End-Lap Back-Up Plate"

2F. **Roof Deck Fasteners*** — (Panel Clip) — (Not Shown) — Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22MSG min coated steel. Clips fastened to purlins with two fasteners per clip. See Item No. 3 for description of fasteners.

AEP SPAN, DIV OF

ASC PROFILES — "SL-2.5 in. Standard Clip"

2G Roof Deck Fasteners* — (Panel Clip) — (Not Shown) — Two part assembly; A base fabricated from No. 16 MSG min coated steel and upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP — " T-Span Clip"

2H. Roof Deck Fasteners* — (Panel Clips) — (Not Shown) — Used with "Tite-Loc" or "Tite-Loc Plus" panels.

One piece assembly; 3 in. wide, approximately 2 in. high with two or three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP — " Tite-Loc Utility Clip" and "Tite-Loc Plus Utility Clip"

One piece assembly; 3 in. wide, approximately 2-3/8 in. or 3 in. high, with three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP — " Tite-Loc Low/High Fixed Clip" and "Tite-Loc Plus Low/High Fixed Clip"

Two piece assembly; base approximately 2 in. wide, 1-11/16 in. long formed to engage upper tab. Fabricated from No. 16 MSG coated steel. Tab approximately 4-5/16 in. wide; 2-3/8 in. or 2-7/8 in. high, formed to engage base. Fabricated from No.

22 MSG coated steel. Base to have two guide holes.

PETERSEN ALUMINUM CORP — " Tite-Loc Sliding Clip" and "Tite-Loc Plus Sliding Clip"

3. Fasteners — (Screws) — For attaching panel clips to purlins- 1/4 - 14 by 1 in. long shoulder or stand off type, self-drilling, self-tapping, hex-head plated steel screws. One screw per clip to be used. As an alternate fastener for panel clip to purlin attachment a No. 12-14 by 1 in. long self-drilling, self-tapping, hex-head plated steel screw may be used. Fasteners used at end laps-1/4 - 10 by 1 in. long self-drilling, selftapping, hex-head plated steel screws with 1/2 in. OD metal backed sealing washer, spaced on a 1, 3, 3-1/2, 3-1/2, 3, 1 in. pattern.

For Building Unit-to-Panel side lap connections-No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate 1/2 in. OD plated steel washer and a neoprene sealing washer. One fastener required at each end and one at midspan of each rib of the Building Unit.

For Reinforcing Plate-to-Building Unit end lap connection-No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate 1/2 in. OD plated steel washer and a neoprene sealing washer. Spacing to be nom 2-1/2, 5-1/2, 5-1/2 in. beginning at the female rib of the Building Unit.

4. Thermal Spacer Block — Used over purlins. Expanded polystyrene 1 in. thick, 5 in. wide, 48 in. long with cutout to accommodate panel clips.

4A. Thermal Spacer Block — (Optional) — (Not Shown) — Used over purlins. Expanded polystyrene 1 in. thick max, 3 in. wide, cut to fit between panel clips (For use with Item 2A only.

5. Insulation — (Optional) — Any compressible blanket type 4 in. max thickness before compression. An additional 2 in. max thickness of compressible blanket insulation may be used between purlins. The additional insulation shall not be sandwiched between the upper flange of the Purlin and the Metal Roof Deck Panel.

As an alternate method of installation, a max of 6 in. of compressible blanket insulation may be used. The insulation is to be laid over the purlins and slit along the purlins to a depth of 5 in. (1 in. above the purlin) in such a manner that no material in excess of 4 in. is sandwiched between the purlins and the Roof Deck Panels.

6. **Purlins** — Z-shaped, 0.056 in. min thickness steel (40,000 psi min yield strength) or min "H" series open web steel joists. Maximum spacing 60-1/4 in.

7. **Building Units** — * (Optional) — Prefabricated assemblies of a Skylight Panel, (Item 7B), mounted in a Perforated Metal Roof Deck Panel, (Item 1), with Flashings, (Item 7C). Assembly continuous over two spans erected in the same manner as for Metal Roof Deck Panels.

STEELOX SYSTEMS L L C — "264 Steelox-Skylight".

NCI BUILDING SYSTEMS L P — "BattonLok Light Transmitting Panel" or "SuperLok Light Transmitting Panel".

7A. **Perforated Metal Roof Deck Panels** — No. 24 MSG min gauge coated steel perforated in the flat portion.

7B. **Plastic Skylight** — * (Translucent, glass fiber reinforced plastic panel) — Thickness 0.04 in. (nom) formed to fit the Perforated Metal Roof Deck Panel, (Item 7A).

7C. Flashing — No. 20 MSG min gauge coated steel. Attached to the Building Unit to retain and flash the Plastic Skylight to the Perforated Metal Roof Deck Panel.

8. Insulating Units — (Optional) — Prefabricated assemblies of a Plastic Insulating Skylight Pan, (Item 8B), mounted in an Aluminum Frame, (Item 8A). Assembly spans between adjacent Purlins beneath a Building Unit only.

8A. Aluminum Frame — Extruded aluminum alloy, 0.055 in. min thickness, shop assembled.

8B. Plastic Insulating Skylight Pan — (Translucent, glass fiber reinforced modified acrylic plastic panel). Shop assembled in Aluminum Frame, (Item 8A).

9. Insulation Trim — No. 24 MSG min gauge coated steel. Used at the sides of the Building Unit.

10. **Reinforcing Plate** — (Not Shown) — Min 0.05 in. thick coated steel. Max length 15-1/2 in., width 5-1/4 in. Used at downslope end lap of Building Unit to Metal Roof Deck Panel.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.

*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page
UL Listed and Classified	UL Recognized	Products Certified for
Products	Components	Canada

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any

manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

TGKX.176 Roof Deck Constructions

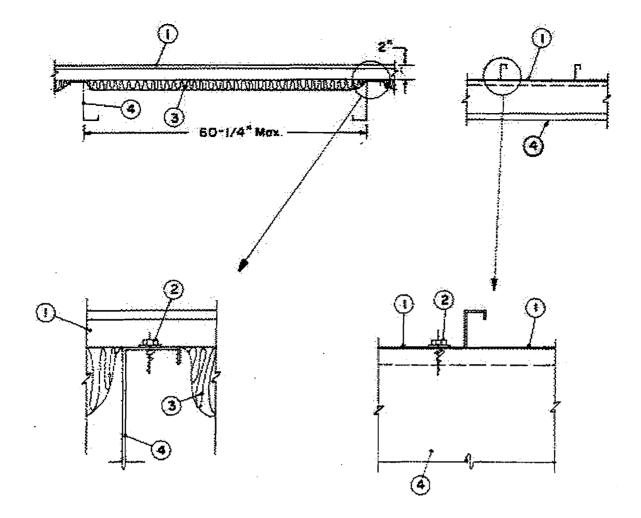
Page Bottom

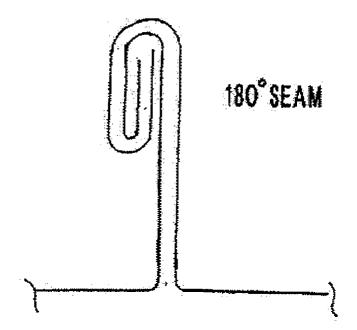
Questions?

Previous Page

Roof Deck Constructions

Guide Information


Construction No. 176


March 30, 2004

Uplift — Class 90

Fire Not Investigated

Page 1 of 6

FOR AEP-SPAN PANEL

("SPAN-SEAM")

1. Metal Roof Deck Panels* — No. 24 MSG min gauge coated steel, 16 in. max width. Panels continuous over two or more spans. End lap to occur over purlins with panels overlapped 6 in. with lap beginning 1 in. from purlin rib and extending across purlin flange. Side joints to be crimped with a special motorized crimper to a minimum 45 degree angle. A bead of sealing compound may be used at panel end and side laps. For Morin Corp., seams may be 45°, 90°, or 180°.

A & M BUILDERS/ROOFING

TECHNOLOGIES L L C --- "SS200"

A & S BUILDING SYSTEMS L P — "BattenLok" or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS --- "A-Lert Loc"

AEP SPAN, DIV OF

ASC PROFILES — "SL 216" (90° Seam), "SPS-216" (180° Seam)

ALLWINE ROOFING & CONSTRUCTION INC — "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

ARCHITECTURAL BUILDING COMPONENTS INC --- "JSM 200"

ARCHITECTURAL SHEETMETAL PRODUCTS INC --- "ASP-2500"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY — "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF

ALUMINUM SERVICE INC — "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC — "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION & METAL ROOFING --- "3D Forever Lock"

ENGLERT INC — "Series 2500"

HCI STEEL BUILDING SYSTEMS INC - "Mark 1622", "Mark 1624"

HI-TEC ROOFING INC ---- "MRS 210A"

J M METALS ROOFING MFRS — "JM 2.0"

KNUDSON MFG INC — "ULTRALOK"

MBCI — "BattenLok" or "SuperLok"

MESCO METAL BUILDINGS — "BattenLok" or "SuperLok"

METAL-FAB MFG LLC — "Met-Fab III"

METAL PANEL SYSTEMS INC — "MP-200"

METAL SALES MFG CORP — "T-Span" or "T-Span 180" (180° Seam)

MORIN CORP — "SLR-12", "SLR-14", "SLR-16"

NCI BUILDING SYSTEMS L P — "BattenLok" or "SuperLok"

NEW TECH MACHINERY CORP — "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC — "Series 2500"

PETERSEN ALUMINUM CORP — " Tite-Loc" and "Tite-Loc Plus"

ROL-TEC SYSTEMS INC — "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC — "SMS 416"

UNITED STRUCTURES OF AMERICA INC --- "Sure-Lok" or "Supreme-Lok"

ZIMMERMAN METALS INC — "SS2000"

2. Fasteners — For panel to purlin connections to be No. 12-14 by 1 in. self-drilling,

http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/showpage.html?name=TG... 4/7/2004

self-tapping, hex-head plated steel screws with a separate 1/2 in. OD plated steel washer and a neoprene sealing washer. Spacing to be 16 in. OC with one fastener located 2 in. from the female side of each panel. Spacing at end lap to be in a 1-1/2, 3, 3-1/2, 3-1/2, 1 in. pattern beginning from the female side rib.

3. **Insulation** — (Optional) — Any compressible blanket insulation, 4 in. max thickness before compression.

3A. (**Optional**) — An additional 2 in. max thickness of compressible blanket insulation may be used between purlins. The additional insulation shall not be sandwiched between the upper flange of the purlin and the roof deck panel.

4. Purlins — 0.056 in. min thickness steel (40,000 psi min yield strength).

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.

*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page
<u>UL Listed and Classified</u>	<u>UL Recognized</u>	<u>Products Certified for</u>
Products	<u>Components</u>	<u>Canada</u>

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

TGKX.180 Roof Deck Constructions

Page Bottom

Questions?

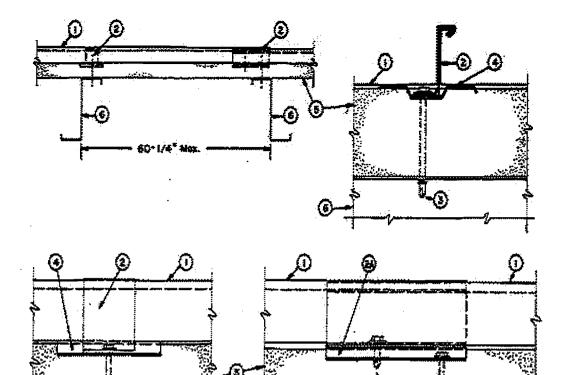
Previous Page

Roof Deck Constructions

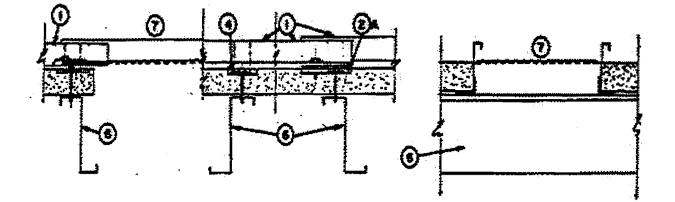
Guide Information

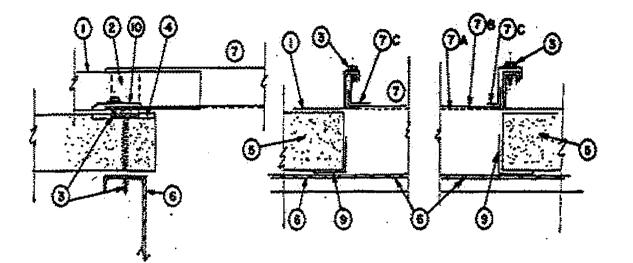
Construction No. 180

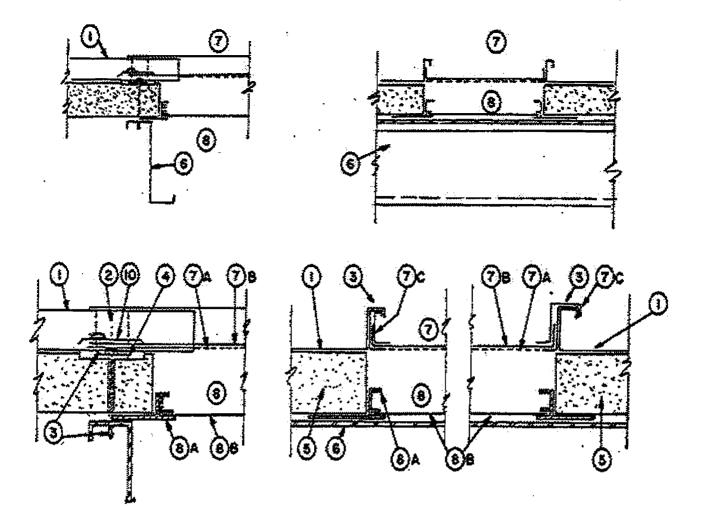
1

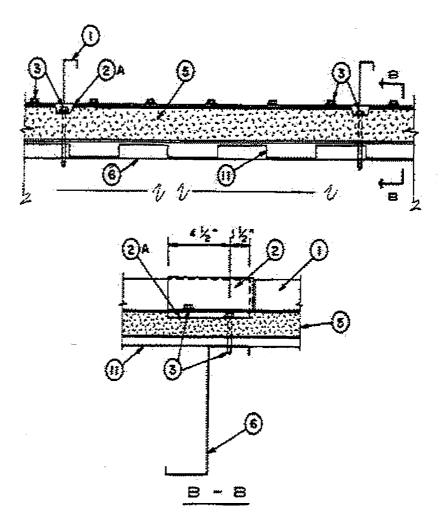

March 30, 2004

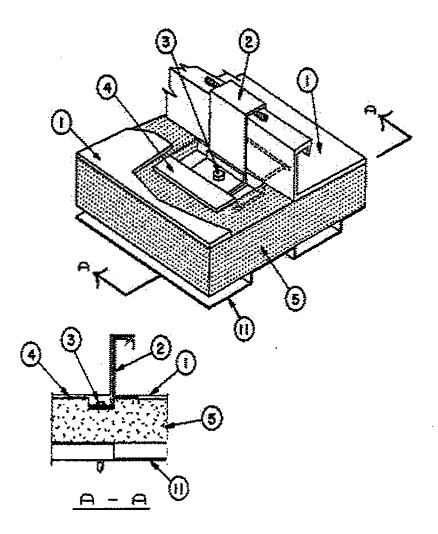
Uplift - Class 90

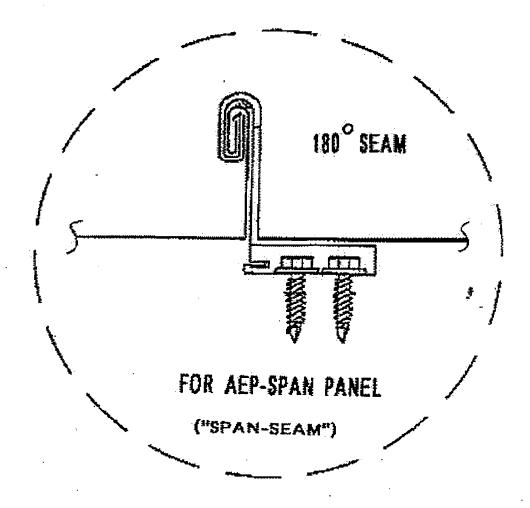

Fire Not Investigated


0


<u>j</u>o




6



1. Metal Roof Deck Panels — * — No. 24 MSG min gauge coated steel, 16 in. max width. Panels continuous over two or more spans. End lap to occur over purlins and to include End Lap Back-Up Plate (Item 2A or 2B). Ends of panels overlapped 6 in. beginning 1 in. from purlin web and extending across purlin upper flange. Side laps to be tightened and crimped with special motorized crimping machine to a minimum 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel laps and side joints. For Morin Corp., seams may be 45°, 90°, or 180°.

A & M BUILDERS/ROOFING

TECHNOLOGIES L L C — "SS200"

A & S BUILDING SYSTEMS L P — "BattenLok" or "SuperLok"

A-LERT STANDING SEAM ROOF SYSTEMS — "A-Lert Loc"

AEP SPAN, DIV OF

http://database.ul.com/cgi-bin/XYV/template/LISEXT/1FRAME/showpage.html?name=TG... 4/7/2004

ASC PROFILES — "SL-216" (90° Seam), "SPS-216" (180° Seam)

ALLWINE ROOFING & CONSTRUCTION INC — "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200"

ARCHITECTURAL SHEETMETAL PRODUCTS INC - "ASP-2500"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY — "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF

ALUMINUM SERVICE INC — "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC --- "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION & METAL ROOFING --- "3D Forever Lock"

ENGLERT INC — "Series 2500"

HI-TEC ROOFING INC — "MRS 210A"

J M METALS ROOFING MFRS — "JM 2.0"

KNUDSON MFG INC — "ULTRALOK"

MBCI — "BattenLok" or "SuperLok"

MESCO METAL BUILDINGS — "BattenLok" or "SuperLok"

METAL-FAB MFG LLC — "Met-Fab III"

METAL PANEL SYSTEMS INC — "MP-200"

METAL SALES MFG CORP --- "T-Span" or "T-Span 180" (180° Seam)

METAL WORX SYSTEMS INC --- "SS 2000"

MORIN CORP — "SLR-12", "SLR-14", "SLR-16"

NCI BUILDING SYSTEMS L P — "BattenLok" or "SuperLok"

NEW TECH MACHINERY CORP — "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC — "Series 2500"

PETERSEN ALUMINUM CORP — " Tite-Loc" and "Tite-Loc Plus"

ROL-TEC SYSTEMS INC — "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

UNITED STRUCTURES OF AMERICA INC --- "Sure-Lok" or "Supreme-Lok"

ZIMMERMAN METALS INC — "SS2000"

2. Roof Deck Fasteners* (Panel Clips) — Two part assembly: Base, 1 in. wide approximately 1-1/4 in. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel.

Spacing for clip to be 5 ft 0-1/16 in. OC with clips located over purlins (Item 6).

STEELOX SYSTEMS L L C — "CF Sliding Clip"

2A. Roof Deck Fasteners* (End Lap Back-Up Plate) — (Not shown) — No. 18 MSG min gauge coated steel. Max length 48 in. Width varies with type of purlin with a max of 6-1/2 in.

STEELOX SYSTEMS L L C — "Backing Plate"

2B. End Lap Back-Up Plate* — (Not Shown) — No. 16 MSG min coated steel.

NCI BUILDING SYSTEMS L P — "BattenLok Back-Up Plate" or "SuperLok Back-Up Plate"

2C. **Roof Deck Fasteners*** — (Panel Clip) (Not Shown) — Either of the following: Fixed or Utility Clip-one piece assembly fabricated from No. 22 MSG min gauge steel, 3 in. wide. Floating Clip-two piece assembly with a base fabricated from No. 16 MSG min gauge steel, 1-5/8 in. wide, and a top fabricated from No. 22 MSG min gauge steel, 4-1/4 in. wide. One clip to be used per panel at each purlin location.

NCI BUILDING SYSTEMS L P — "BattenLok High or Low, Fixed or Floating Clip"; "BattenLok Utility Clip"--- "SuperLok High or Low, Fixed or Floating Clip"; "SuperLok Utility Clip"

ARCHITECTURAL BUILDING COMPONENTS INC — "JSM 200 Utility"

2D. **Roof Deck Fastener*** — (End Lap Back up Plate) — (Not Shown) — Used with AEP-Span "SL-216" (90° Seam), "SPS-216" (180° Seam) panels. Length 10-1/2 in., width 15-3/4 in., No. 16 MSG min thick coated steel. Slipped under lower panel at end lap. Panels fastened together using four No. 1/4-14 by 1-1/8 in. long self-drilling, self-tapping, hex-washer head, plated steel screws with a 5/8 in. OD steel washer and a sealing washer. Screws spaced 4 in. OC beginning 2 in. from ribs.

AEP SPAN, DIV OF

ASC PROFILES — "SL-216 End-Lap Back-Up Plate"

2E. **Roof Deck Fasteners*** — (Panel Clip) (Not Shown) — Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22MSG min coated steel. Clips fastened to purlins with two fasteners per clip. See Item No. 3 for description of fasteners.

AEP SPAN, DIV OF

ASC PROFILES — "SL-2.5 in. Standard Clip"

2F. Roof Deck Fasteners* — (Panel Clip) (Not Shown) Used with "Tite-Loc" or "Tite-Loc Plus" Panels.

One piece assembly; 3 in. wide, approximately 2 in. high with two or three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP — "Tite-Loc Utility Clip", "Tite-Loc Plus Utility Clip"

One piece assembly; 3 in. wide, approximately 2-3/8 in. or 3 in. high, with three guide holes in base. Fabricated from No. 22 MSG coated steel.

PETERSEN ALUMINUM CORP — "Tite-Loc Low/High Fixed Clip", "Tite-Loc Plus Low/High Fixed Clip"

Two piece assembly; base approximately 2 in. wide, 1-11/16 in. long formed to engage upper tab. Fabricated from No. 16 MSG coated steel. Tab approximately 4-5/16 in. wide; 2-3/8 in. or 2-7/8 in. high, formed to engage base. Fabricated from No. 22 MSG coated steel. Base to have two guide holes.

PETERSEN ALUMINUM CORP — "Tite-Loc Sliding Clip", "Tite-Loc Plus Sliding Clip"

. 2G. Roof Desk Fasteners* — (Panel Clip) (Not Shown) — Two part assembly; A base fabricated from No. 16 MSG min coated steel and upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP — T-Span Clip

2H. **Roof Deck Fasteners** — (Panel Clips) - Two types, both two piece assemblies. Type 330 base approximately 1.88 in. by 1.70 in.; Type 330B base approximately 1.11 in. by 2.00 in. Both types fabricated from No. 16 MSG coated steel and formed to fold over upper tab. Type 330 upper tab 4.30 in. wide and 2.91 in. high max. Type 330B upper tab 4.30 in. wide and 3.34 in. high max. Both types formed to engage base. Clips spaced 5 ft, 0-1/16 in. maximum.

MORIN CORP — "SLR-330 Clip" (for 45° seam)

MORIN CORP — "SLR-330B Clip" (for 90° & 180° seam)

3. Fasteners (Screws) — For attaching panel clips to purlins-to be 1/4-14 shoulder or stand-off type; self-drilling, self-tapping, hex-head, plated steel screws. Fastener length to vary with thickness of insulation and to be min of 3/4 in. longer than nom thickness of rigid insulation. One fastener per clip to be used at each purlin. As an alternate fastener for panel clip to purlin attachment, a No. 12-14 self-drilling, self-tapping, hex-head plated steel screw may be used. Same length detail as for 1/4-14 screws to apply. Fasteners used at end laps to be 1/4-10 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with 1/2 in. OD metal backed sealing washers. Spaced in a 1, 3, 3-1/2, 3-1/2, 3, 1 in. pattern.

For Building Unit-to-Panel side lap connections — No. 18-9 by 1 in. long selfdrilling, self-tapping, hex-head plated steel screws with a separate 1/2 in. OD plated steel washer and a neoprene sealing washer. One fastener required at each end and one at midspan of each rib of the Building Units.

For Reinforcing Plate-to-Building Unit end lap connection — No. 18-9 by 1 in. long self-drilling, self-tapping, hex-head plated steel screws with a separate 1/2 in. OD. plated steel washer and a neoprene sealing washer.

4. Roof Deck Fastener * (Bearing Clip) — No. 18 MSG min gauge coated steel; 3 in. wide by 3-1/4 in. long with 3/8 in. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three 1/4 in. dia guide holes located in base.

STEELOX SYSTEMS L L C --- "Bearing Clip"

5. Foamed Plastic*(Rigid insulation) — Rigid type. Supplied in 4 ft wide sheets. Min thickness 1 in., max thickness 3 in. Butt joints to occur over purlins.

ATLAS ROOFING CORP — "Classic Shield".

6. **Purlins** — 0.056 in. min thickness steel (min yield strength 40,000 psi) or min "H" series open web steel joists. Maximum spacing 60-1/4 in.

7. **Building Units** — * — (Optional) — Prefabricated assemblies of a Skylight Panel, (Item 7B), mounted in a Perforated Metal Roof Deck Panel, (Item 7A), with Flashings, (Item 7C). Assembly continuous over two spans erected in the same manner as Metal Roof Deck Panels.

STEELOX SYSTEMS L L C — "264 Steelox-Skylight"

NCI BUILDING SYSTEMS L P — "BattonLok Light Transmitting Panel" or "SuperLok Light Transmitting Panel".

7A. Perforated Metal Roof Deck Panels — No. 24 MSG min gauge coated steel perforated in the flat portion.

7B. Plastic Skylight* (Translucent, Glass Fiber Reinforced Plastic Panel) — Thickness 0.04 in. (nom) formed to fit the Perforated Metal Roof Deck Panel, (Item 7A).

7C. Flashing — No. 20 MSG min gauge coated steel. Attached to the Building Unit to retain and flash the Plastic Skylight to the Perforated Metal Roof Deck Panel.

8. Insulating Units — (Optional) — Prefabricated assemblies of a Plastic Insulating Skylight Pan, (Item 8B), mounted in an Aluminum Frame, (Item 8A). Assembly spans between adjacent purlins beneath a Building Unit only.

8A. Aluminum Frame — Extruded aluminum alloy, 0.055 in. min thickness shop assembled.

8B. Plastic Insulating Skylight Pan — (Translucent, glass fiber reinforced modified acrylic plastic panel). Shop assembled in Aluminum Frame (Item 8A).

9. Insulation Trim — No. 24 MSG min gauge coated steel. Used at the sides of the Building Unit.

10. **Reinforcing Plate** — Min 0.05 in. thickness coated steel. Max length 15-1/2 in., width 5-1/4 in. Used at downslope end lap of Building Unit to Metal Roof Deck Panel.

Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.

11. Liner Panel — (Optional) — The following liner panel types may be used:

A. No. 27 MSG min coated steel; 7 in. deep with major ribs having a 2 in. wide crest and spaced 8 in. O.C. cover width 32 in. Panel to be installed with major ribs down. (Min. yield strength to be 40,000 psi.)

B. No. 29 MSG min coated steel; 9/16 in. deep with ribs having a 3/4 in. wide crest and spaced 2.667 in. O.C. (Min. yield strength to be 80,000 psi.)

C. 0.018 in. min thickness aluminum (3105 H 194 alloy). 9/16 in. deep with ribs having a 3/4 in. wide crest and spaced 2.667 in. O.C. (Min. yield strength 30,000 psi)

All types to have adjacent widths overlapped min. of one corrugation at sides. End laps to be located over purlins with min. overlap to be 3 in. Liner panels to be fastened to purlins using No. 18-9 by 1 in. self-drilling, self-tapping, hex-head plated steel screws with an optional 1/2 in. O.D. plated steel washer and a neoprene sealing washer. Fasteners to be located one at each side lap and one in the approximate center of each panel width. Refer to General Information, Roof Deck Constructions (Roofing Materials and Systems Directory) for items not evaluated.

*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page
UL Listed and Classified	UL Recognized	Products Certified for
<u>Products</u>	<u>Components</u>	<u>Canada</u>

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

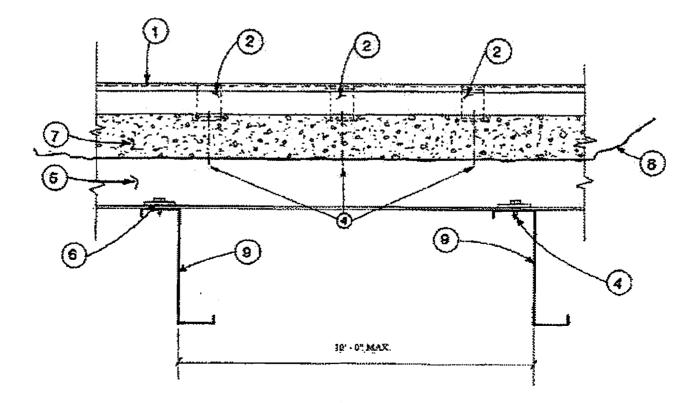
TGKX.238 Roof Deck Constructions

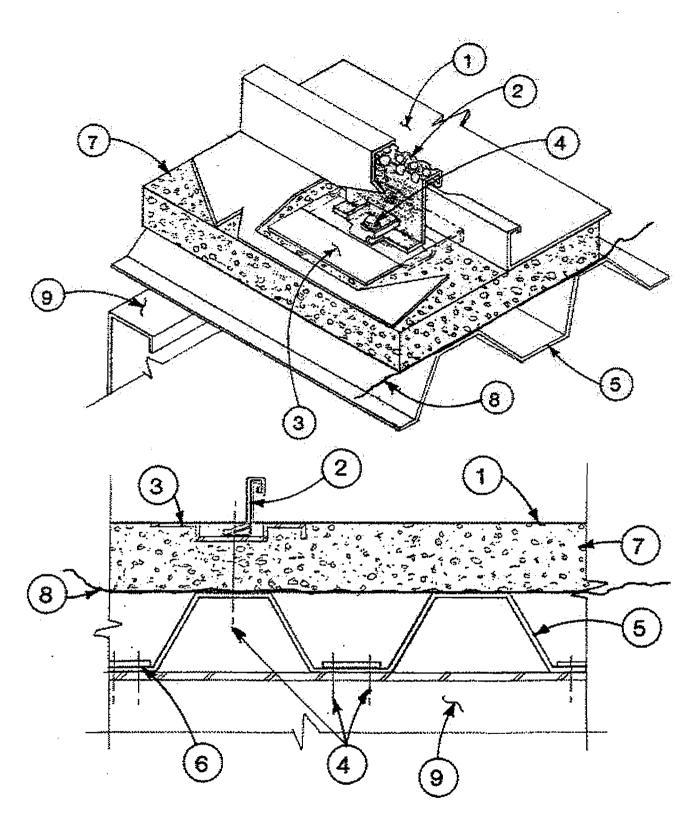
Page Bottom

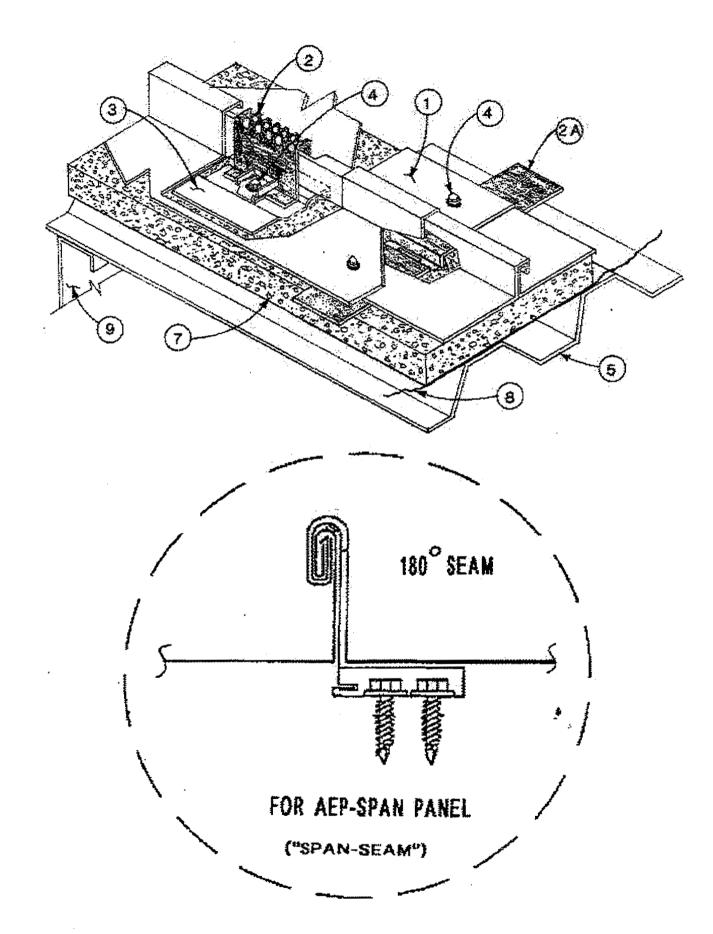
Questions?

Previous Page

Roof Deck Constructions


Guide Information


Construction No. 238


March 30, 2004

Uplift --- Class 90

Fire Not Investigated

1. Metal Roof Deck Panels* — No. 24 MSG min coated steel. Panels 16 in. wide, 2 in. high at side ribs. Panels continuous over two or more spans. End laps to occur near panel clip locations and to include end lap back up plate (Item 2A). Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machined at an approximate 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel end laps and side joints. For Morin Corp., seams may be 45°, 90°, or 180°.

A & M BUILDERS/ROOFING

TECHNOLOGIES L L C — "SS200"

A-LERT STANDING SEAM ROOF SYSTEMS — "A-Lert Loc"

AEP SPAN, DIV OF

ASC PROFILES — " SL-216" (90° Seam), "Span-Seam" (180° Seam)

ALLWINE ROOFING & CONSTRUCTION INC — "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

AMERICAN BUILDINGS CO — "Loc-Seam,""Loc-Seam 360."

ARCHITECTURAL SHEETMETAL PRODUCTS INC — "ASP-2500"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY — "Centurion 1624M"

CONSOLIDATED METALS OF FLORIDA, DIV OF

ALUMINUM SERVICE INC — "CSS-210A"

CONSTRUCTION METAL PRODUCTS INC --- "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION & METAL ROOFING — "3D Forever Lock"

ENGLERT INC — "Series 2500"

HI-TEC ROOFING INC --- "MRS 210A"

J M METALS ROOFING MFRS — "JM 2.0"

KNUDSON MFG INC --- "ULTRALOK"

METAL-FAB MFG LLC --- "Met-Fab III"

METAL PANEL SYSTEMS INC - "MP-200"

METAL SALES MFG CORP — "T-Span" or "T-Span 180" (180° Seam)

METAL WORX SYSTEMS INC --- "SS 2000"

MORIN CORP — "SLR-12", "SLR-14", "SLR-16"

NEW TECH MACHINERY CORP — "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC - "Series 2500"

ROL-TEC SYSTEMS INC — "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC — "SMS 416"

ZIMMERMAN METALS INC — "SS2000"

2. Roof Deck Fasteners (Panel Clips) — Two part assembly: Base, 1 in. wide approximately 1-1/4 in. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel.

STEELOX SYSTEMS L L C — "CF Sliding Clip"

2A. Roof Deck Fasteners (End Lap Back-Up Plate) — (Not Shown) — No. 18 MSG min gauge coated steel. Max length 48 in., width 6-1/2 in.

METAL SALES MFG CORP — "T-Span Clip"

STEELOX SYSTEMS L L C — "Backing Plate"

2B. **Roof Deck Fasteners** — (Panel Clips) - Two types, both two piece assemblies. Type 330 base approximately 1.88 in. by 1.70 in.; Type 330B base approximately 1.11 in. by 2.00 in. Both types fabricated from No. 16 MSG coated steel and formed to fold over upper tab. Type 330 upper tab 4.30 in. wide and 2.91 in. high max. Type 330B upper tab 4.30 in. wide and 3.34 in. high max. Both types formed to engage base. Clips spaced 48 in. maximum.

MORIN CORP — "SLR-330 Clip" (for 45° seam)

MORIN CORP — "SLR-330B Clip" (for 90° & 180° seam)

3. Roof Deck Fastener* (Bearing Clip) — No. 18 MSG min gauge coated steel; 3 in. wide by 3-1/4 in. long with 3/8 in. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three 1/4 in. dia guide holes located in base.

STEELOX SYSTEMS L L C — "Bearing Clip"

4. Fasteners (screws) — Fasteners used to attach the bearing plates to the liner panels to be No. 11 by 3-3/4 in. long self-drilling, stand-off plated steel, flat torx-head screws. Three fasteners per bearing plate used, driven into liner panel. Fasteners used to attach panel clips (Item No. 2) to the bearing plates (Item 3) to be No. 18 by 1 in. long self-drilling, self-tapping, hex-washer-head, plated steel screws. One screw used for each panel clip. Fasteners used to attach the liner panels to the purlin supports to be No. 12-14 by 1-1/4 in. self-drilling, self-tapping, hex-head, plated steel screws with a separate 5/8 in. diameter steel washer and a neoprene sealing washer. Two fasteners to be used at each support with fasteners located in every valley. Fasteners used at liner panel side laps to be the same type as liner panel screws and spaced 20 in. OC. Fasteners used at end laps to be 1/4-10 by 1 in. long self-drilling, self-tapping, hex-head, plated steel screws with 1/2 in. OD. metal backed sealing washers. Spacing to be in a 1, 3, 3-1/2, 3-1/2, 3, 1 in. pattern.

5. Liner Panel — The liner panel to be 3 in. deep and fabricated from No. 22 MSG min steel. Top of crests to be 5-1/2 in. wide, valleys to be 2-1/2 in. wide at top. Yield strength to be min 33,000 psi. Liner panel to be fastened to supports with screws indicated under Item 4 or with welds and weld washers of type indicated by manufacturer of liner panel. Welds to be located in every valley.

6. Fastener Reinforcement (Bearing Plate) — The reinforcements used with the screws attaching the liner panels to the purlins to be 0.125 in. min thick and to have an area of approximately 2 sq in.

7. Foamed Plastic — (Rigid Insulation) — Supplied in 4 ft wide sheets. Min thickness to be 1 in. Density to be min of 2.0 PCF or see products Classified under TJBX.

8. Vapor Barrier — Used between the liner panel and the foamed plastic to be a 6 mil plastic sheeting.

9. **Purlins** — No. 12 MSG min gauge steel (min yield strength 40,000 psi) or min type H open web joists.

Refer to General Information, Roof Deck Construction, (Roofing Materials and Systems Directory) for Items not evaluated.

*Bearing the UL Classification Mark

Page Top	Notice of Disclaimer	Questions? Previous Page
<u>UL Listed and Classified</u>	<u>UL Recognized</u>	<u>Products Certified for</u>
<u>Products</u>	<u>Components</u>	<u>Canada</u>

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

Online Certifications Directory

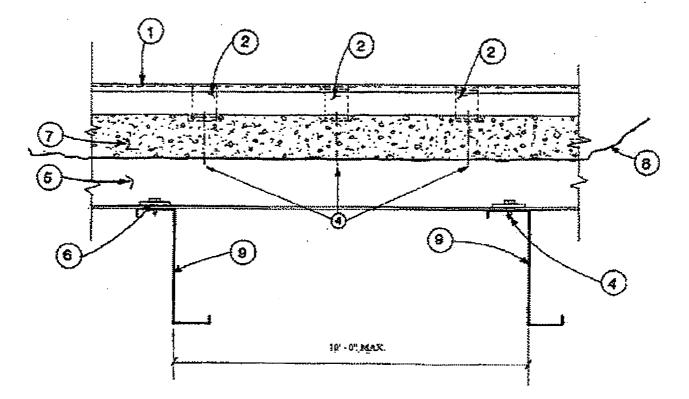
TGKX.238A Roof Deck Constructions

Page Bottom

Questions?

Previous Page

Roof Deck Constructions


<u>Guide</u> Information

Construction No. 238A

March 30, 2004

Uplift — Class 90

Fire Not Investigated

1. Metal Roof Deck Panels* — No. 24 MSG min coated steel. Panels 16 in. wide, 2 in. high at side ribs. Panels continuous over two or more spans. End laps to occur near panel clip locations and to include end lap back-up plate (Item 2A). Ends of panels overlapped 6 in. Side laps to be tightened and crimped with a special motorized crimping machine at an approximate 45 degree angle with crimping process to include tabs of panel clips (Item 2). A bead of sealing compound may be used at panel end laps and side joints. For Morin Corp., seams may be 45°, 90°, or 180°.

A & M BUILDERS/ROOFING

TECHNOLOGIES L L C — "SS200"

A-LERT STANDING SEAM ROOF SYSTEMS - "A-Lert Loc"

AEP SPAN, DIV OF

ASC PROFILES — "SL-216" (90° Seam), "SPS-216" (180° Seam)

ALLWINE ROOFING & CONSTRUCTION INC — "A2-16", "A2-16 Fluted" and "A2-16 with Clip Offset"

AMERICAN BUILDINGS CO — "Loc-Seam,""Loc-Seam 360."

CONSOLIDATED METALS OF FLORIDA, DIV OF

ALUMINUM SERVICE INC --- "CSS-210A"

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200"

CONSTRUCTION METAL PRODUCTS INC — "CMP Series 2500"

CSC SALES INC — "CSC-SS2000"

DALEY CONSTRUCTION & METAL ROOFING — "3D Forever Lock"

ENGLERT INC — "Series 2500"

HI-TEC ROOFING INC — "MRS 210A"

J M METALS ROOFING MFRS — "JM 2.0"

KNUDSON MFG INC — "ULTRALOK"

METAL-FAB MFG LLC — "Met-Fab III"

METAL PANEL SYSTEMS INC — "MP-200"

METAL SALES MFG CORP — T-Span or "T-Span 180" (180° Seam)

MORIN CORP — "SLR-12", "SLR-14", "SLR-16"

NEW TECH MACHINERY CORP — "Panel 210A"

NORTH COAST COMMERCIAL

ROOFING SYSTEM OF PA INC — "Series 2500"

ROL-TEC SYSTEMS INC --- "ULTRALOK"

R S S P INC — "SS 2000"

STEELOX SYSTEMS L L C — "Steelox LRX 262", "Steelox LRX 264", "Steelox PRX 262" or "Steelox PRX 264" (Fabricated from either coated or stainless steel)

SUPERIOR METAL SYSTEMS INC — "SMS 416"

CENTURION INDUSTRIES INC, DBA

TFC CANOPY — "Centurion 1624M"

ZIMMERMAN METALS INC — "SS2000"

2. Roof Deck Fasteners* (Panel Clips) — Two part assembly: Base, 1 in. wide approximately 1-1/4 in. long with upper segment folded over lower end of tab. Fabricated from 0.050 in. thick coated or stainless steel. Upper tab 3 in. wide, maximum tab height 3-1/2 in. with lower end formed to engage base. Fabricated from 0.023 in. thick coated or stainless steel. Clips spaced 30 in. OC.

ARCHITECTURAL BUILDING COMPONENTS INC - "JSM 200 Utility"

STEELOX SYSTEMS L L C --- "CF Sliding Clip"

SUPERIOR METAL SYSTEMS INC - "SMS-24SCC"

2A. Roof Deck Fasteners* (End Lap Back-Up Plate) — No. 18 MSG min gauge coated steel. Max length 48 in., width 6-1/2 in.

STEELOX SYSTEMS L L C --- "Backing Plate"

2B. Roof Deck Fasteners* (Panel Clips) — (Not Shown) — Two part assembly. A base fabricated from No. 16 MSG min thick coated steel and a tab fabricated from No. 22 MSG min thick coated steel. Clips spaced 30 in. OC maximum. Clips fastened to liner panel (Item 5). Two screws used per clip. (See Item 4 for description of screws).

As an alternate the following described clip may be used: Two part assembly consisting of a base with a vertical leg 5 in. long and either 2 in. or 3 in. high and a tapered upper tab maximum 3 in. long formed to interlock with the base. Base fabricated from No. 18 MSC coated steel and to have two 1/4 in. guide holes. Upper tab fabricated from No. 24 MSC coated steel.

AEP SPAN, DIV OF

ASC PROFILES --- "SL-2.5 in. Standard Clip", "SL-2 in. Profile Clip"

2C. Roof Deck Fasteners* (Back-Up Plates) — (Not Shown) — Used with AEP-Span "SL-216" panels. No. 16 MSG coated steel length 10-1/2 in., width 15-3/4 in. slipped under lower panel at end-lap. Panels fastened together at end-lap using four No. 1/4 - 14 by 1-1/8 in. long self-drilling self-tapping, hex-washer-head, plated steel screws with a 5/8 OD steel washer and a sealing washer. Screws spaced 4 in. OC beginning 2 in. from ribs.

AEP SPAN, DIV OF

ASC PROFILES — "SL-216 End-Lap Back-Up Plate"

2D. Roof Deck Fasteners* (Panel Clip) — (Not Shown) — Two part assembly; A base fabricated from No. 16 MSG min coated steel and an upper tab fabricated from No. 22 MSG min coated steel. Clips fastened to purlins using two fasteners per clip. See Item No. 3 for description of fasteners.

METAL SALES MFG CORP — "T-Span Clip"

3. Roof Deck Fastener* (Bearing Clip) — No. 18 MSG min gauge coated steel; 3 in. wide by 3-1/4 in. long with 3/8 in. legs. Used under Panel Clips (Item 2) over purlins and rigid insulation. Three 1/4 in. dia guide holes located in base.

STEELOX SYSTEMS L L C — "Bearing Clip"

3A. Roof Deck Fasteners* (Bearing Plate) — (Not Shown) — No. 18 MSG min gauge coated steel. 4 in. wide, 8 in. long used under each panel clip (Item 2B).

AEP SPAN, DIV OF

ASC PROFILES — "SL Bearing Plate"

4. Fasteners (Screws) — Fasteners used to attach panel clips (Item No. 2) to the liner panels (Item No. 5) to be No. 11 by min 3-3/4 in. long self-drilling, plated steel flat Phillips head screws. One screw used for each panel clip. Fasteners used to be No. 12-14 by 1-1/4 in. self-drilling, self-tapping, hex-head, plated steel screws with a separate 5/8 in. diameter steel washer and a neoprene sealing washer. Two fasteners to be used at each support with fasteners located in every valley. Fasteners used at liner panel side laps to be the same type as liner panel screws and spaced 20 in. OC. Fasteners used at metal roof deck panel end laps to be 1/4-10 by 1 in. long self-drilling, self-tapping, hex-head, plated steel screws with 1/2 in. OD metal backed sealing washers. Spacing to be in a 1, 3, 3-1/2, 3-1/2, 2, 1 in. pattern.

5. Liner Panel — The liner panel to be min 1-1/2 in. deep Type A, B, F, or N Deck fabricated from No. 22 MSG min gauge steel. Yield strength to be min 33,000 psi. Liner panel to be fastened to supports with screws indicated under Item 4 or with welds and weld washers of type indicated by manufacturer of liner panel. Welds to be located in every valley.

6. Fastener Reinforcement (Bearing Plate) — The reinforcements used with the screws attaching the liner panels to the purlins to be 0.125 in. thick and to have an area of approximately 2 sq/in.

7. Foamed Plastic (Rigid Insulation) — Supplied in 4 ft wide sheets. Min thickness to be 1 in. Density to be min of 2.0 lb/cu ft or see products Classified under TJBX.

8. Vapor Barrier — Used between the liner panel and the foamed plastic to be a 6 mil plastic sheeting.

9. **Purlins** — No. 12 MSG min gauge steel (min yield strength 40,000 psi) or min Type H Open web joists.

Refer to General Information, Roof Deck Construction, (Roofing Materials and Systems Directory) for Items not evaluated.

*Bearing the UL Classification Mark

<u>Page Top</u>	Notice of Disclaimer	Questions? Previous Page
<u>UL Listed and Classified</u>	<u>UL Recognized</u>	<u>Products Certified for</u>
<u>Products</u>	<u>Components</u>	<u>Canada</u>

This page and all contents are Copyright © 2004 by Underwriters Laboratories Inc.®

The appearance of a company's name or product in this database does not in itself assure that products so identified have been manufactured under UL's Follow-Up Service. Only those products bearing the UL Mark should be considered to be Listed and covered under UL's Follow-Up Service. Always look for the Mark on the product.

UL permits the reproduction of the material contained on UL's Website subject to the following conditions: 1. The Guide Information, Designs and/or Listings (files) must be presented in their entirety and in a non-misleading manner, without any manipulation of the data (or drawings). 2. The statement "Reprinted from the Online Certifications Directory with permission from Underwriters Laboratories Inc." must appear adjacent to the extracted material. In addition, the reprinted material must include a copyright notice in the following format: "Copyright © 2004 Underwriters Laboratories Inc.®"

JOHN F. BUTTS & ASSOC., INC.

CONSULTING ENGINEERS 2480 VANTAGE DRIVE COLORADO SPRINGS, CO 80919 (719) 598-7666 FAX (719) 598-0258

April 22, 1999

New Tech Machinery Corporation 1300 40th Street Denver, CO 80205-3311

Re: Panel Analysis Report New Tech SS150 Panel New Tech SS200 Panel New Tech SS210-A Panel New Tech SS550 Panel New Tech SS675 Panel JFBA Job No. 183-04

Gentlemen:

Per your request, we have completed an analysis of the above referenced panels. The panels, with the structural properties indicated in this report, is certified to meet or exceed the requirements of the following design specifications:

American Iron and Steel Institute, Specifications for the Design of Cold-Formed Steel Structural Members, 1996 edition.

The following documents are enclosed for your records:

Panel cross-section Panel analysis, pages 1 to 183 Panel Span Load tables, pages S1 to S71

Panels widths greater than 14 inches exceed the AISI allowable ratios for the panel width element. The AISI specifications, Section B1.1(a) states:

"...stiffened elements having w/t ratios larger than 500 can be used with adequate design strength to sustain the required loads; however; substantial deformations of such elements usually will invalidate the design equations of this specification."

Before using the enclosed panel span tables, you will need to review the analysis reports for each panel. It is our opinion that the panels with w/t ratio elements exceeding 500 should be verified by testing before using the respective panel span tables.

Please note that the panel analysis and Load Tables have been evaluated based on the assumption that the proper bearing, side laps, end laps, bracing, anchorage and structural supports are being utilized in the member's installation. We do not certify the installation method, attachment and supporting materials.

If you have any questions, please call or write the undersigned.

Sincerely,

3.tto

John F. Butts, PE President

PAGE NO. 73 DATE: 04-20-1999

John F. Butts & Associates, Inc. 2480 Vantage Drive Colorado Springs, CO 80919 (719) 598-7666

PROFILE ANALYSIS & DESIGN

Per AISI Cold-Formed Steel Design Manual, 1996 Edition

New Tech SS210-A Panel

FILE NAME: NT210

DIMENSIONS

Line # 1 Angle	(R) =	-90.000	deg	Line # 1	Angle	(L) =	90.000 deg
Radius	(R) =	0.040	in		Radius	(L) =	0.040 in
Length	(R) =	1.872	in		Length	(L) =	1.872 in
Line # 2 Angle	(R) =	90.000	deg	Line # 2	Angle	(L) =	90.000 deg
Radius	(R) =	0.040	in		Radius	(L) =	0.040 in
Length	(R) =	0.671	in		Length	(L) =	0.546 in
Line # 3 Angle	(R) =	90.000	deg	Line # 3	Angle	(L) =	90.000 deg
Radius	(R) =	0.070	in		Radius	(L) =	0.070 in
Length	(R) =	0.406	in		Length	(L) =	0.174 in
Panel Bottom Wid	ith =	11.872	in				
Panel Overall Wi	idth =	12.000	in				

Panel Overall Height= 2.000 in

-

SPECIAL CONDITIONS

Seam Rotation : 90 deg.

Alloy: ASTM A653, G50 Fy = 50.00 ksi Fv = 21.18 ksi

QUALIFICATIONS PER AISI SPECIFICATIONS

(a) Maximum w/t Ratio's Exceeded [SEC. Bl.1(a)] No
(b) Maximum h/t Ratio's Exceeded [SEC. Bl.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES

Aweb=	0.098	in2								
Sxp =	0.123	in3	Sxp	(per	ft.	of	width)	=	0.123	in3
Sxn =	0.078	in3	Sxn	(per	ft.	of	width)	=	0.078	in3
Ixp =	0.214	in4	Ixp	(per	ft.	of	width)	=	0.214	in4
Ixn =	0.115	in4	Ixn	(per	ft.	of	width)	=	0.115	in4
Weight=	1.47	lb/lf								

PAGE NO. 74 DATE: 04-20-1999

New Tech SS210-A Panel

		Men	mber - N	lew Tech	ss210-	-A Pane	1				
Туре	Name	Gage	Hgt (in)	Width (in)	Lip (in)	t (in)	Weight lb/ft	Coil Width (in)			
Panel	PNL	24	2.000	12.000	0.000	0.0240	1.470	18.00			
	Gross Section Properties										
Area (in2)	Ix (in4)	Sx (in3)	Rx (in)	Ycg (in)	Iy (in4)	Sy (in3)	Ry (in)	Xcg (in)			
0.432	0.432 0.226 0.146 0.723 0.454 8.707 1.316 4.490 6.166										
	Effective Properties										
Ix (in4)	Sx (in3)	Iy (in4)	Sy (in3)	Mnx (in-k)	Mny (in-)	Vn: (kij	K Pne				
0.214	0.123	0.000	0.000	3.92	0.0	2.06	59 0.18	31 0.159			
			Torsi	onal Pr	opertie	25	,				
Xo (in)	Ro (in)	Beta	Cw (in6)	Jv*100 (in4)		Fu (ksi)	E (ksi)	G (ksi)			
-1.198	4.703	0.935	. 6.00	0.083	50	• 65	2,9500	0 11300			

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety	(ASD)	Resistance Factors (L	RFD)
Ω (Compression)	= 1.80	ϕ (Compression) = 0.	.85
Ω (Tension)	= 1.67	ϕ (Tension) = 0	.95
Ω (Web Crippling)	= 1.85	ϕ (Web Crippling) = 0.	.75
Ω (Bending)	= 1.67	ϕ (Bending) = 1	.11
Ω (Shear)	= 1.67	ϕ (Shear) = 0	.90

PAGE NO. 75 DATE: 04-20-1999

ELEMENT	L	Y	LY	LYY	Io
1	0.082	11.969	0.978	11.702	0.0000
2	1.872	11.988	22,442	269.029	0.000
3	0.082	12.007	0.981	11.776	0.0000
4	0.671	12.375	8.304	102.766	0.0252
- 5	0.129	12.763	1.644	20.982	0.0001
6	0.406	12.793	5.194	66.446	0.000
14	11.872	6.000	71.232	427.392	139.4410
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	0.012	0.022	0.000	0.000
23	0.082	0.031	0.003	0.000	0.000
24	0.546	0.337	0.184	0.062	0.0136
25	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.000
	17.997		111.193	910.297	139.4800

.

1

New Tech SS210-A Panel

Ix = 8.707 in4 Ycg= 6.178 in

Moment of Inertia @ 90 degree Rotation

	ELEMEN	r values for	POSITIVE BEN	DING	
ELEMENT	L	¥	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.580	1.340 '	-0.777	-1.041	-0.016
3	0.082	1.969	0.161	0.317	0.000
· 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.000
6	0.292	1.760	0.514	0.904	0.005
14	11.872	0.012	0.142	0.002	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.580	1.340	-0.777	-1.041	-0.016
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000
	16.723		6.439	9.672	1.066

New Tech SS210-A Panel

Sx = 0.123 in3 Ix = 0.198 in4 Ycg= 0.385 in

Webs Fully Effective [SEC. B2.3(a)] No

	DEFLECTION							
	ELEMENT	VALUES FOR	POSITIVE BEN	DING				
ELEMENT	L	Y	LY	LYY	Io			
1	0.082	0.031	0.003	0.000	0.000			
2	1.872	1.000	1.872	1.872	0.5467			
2a	-0.235	1.417	-0.333	-0.472	-0.0011			
3	0.082	1.969	0.161	0.317	0.000			
· 4	0.671	1.988	1.334	2.652	0.000			
5	0.129	1.958	0.252	0.494	0.0001			
6	0.369	1.721	0.636	1.095	0.0056			
14	11.872	0.012	0.142	0.002	0.000			
21	0.082	0.031	0.003	0.000	0.000			
22	1.872	1.000	1.872	1.872	0.5467			
22a	-0.235	1.417	-0.333	-0.472	-0.0011			
23	0.082	1.969	0.161	0.317	0.000			
24	0.546	1.988	1.085	2.158	0.000			
25	0.075	1.958	0.148	0.289	0.0001			
26	0.227	1.964	0.447	0.877	0.000			
	17.491		7.449	10.999	1.0970			

New Tech SS210-A Panel

Sx = 0.136 in3 Ix = 0.214 in4 Ycg= 0.426 in

Webs Fully Effective [SEC. B2.3(a)] No

	LOAD								
	ELEMENT VALUES FOR NEGATIVE BENDING								
ELEMENT	L	Y	LY	LYY	Io				
1	0.082	0.031	0.003	0.000	0.0000				
2	1.872	1.000	1.872	1.872	0.5467				
2a	-0.355	0.510	-0.181	-0.092	-0.0037				
3	0.082	1.969	0.161	0.317	0.000				
· 4	0.671	1.988	1.334	2.652	0.000				
5	0.129	1.958	0.252	0.494	0.0001				
6	0.406	1.703	0.691	1.177	0.0056				
14	1.086	0.012	0.013	0.000	0.000				
21	0.082	0.031	0.003	0.000	0.000				
22	1.872	1.000	1.872	1.872	0.5467				
22a	-0.355	0.510	-0.181	-0.092	-0.0037				
23	0.082	1.969	0.161	0.317	0.000				
24	0.546	1.988	1.085	2.158	0.000				
25	0.075	1.958	0.148	0.289	0.0001				
26	0.227	1.964	0.447	0.877	0.000				
	6.501		7.679	11.840	1.0917				

Sx = 0.078 in3Ix = 0.093 in4Ycg= 1.181 in

Webs Fully Effective [SEC. B2.3(a)] No

New Tech SS210-A Panel

PAGE NO. 79 DATE: 04-20-1999

	ELEMENT VALUES FOR NEGATIVE BENDING								
ELEMENT	L	Y	LY	LYY	Io				
1	0.082	0.031	0.003	0.000	0.000				
2	1.872	1.000	1.872	1.872	0.5467				
3	0.082	1.969	0.161	0.317	0.0000				
4	0.671	1.988	1.334	2.652	0.0000				
· 5	0.129	1.958	0.252	0.494	0.0001				
6	0.406	1.703	0.691	1.177	0.0056				
14	1.652	0.012	0.020	0.000	0.000				
21	0.082	0.031	0.003	0.000	0.0000				
22	1.872	1.000	1.872	1.872	0.5467				
23	0.082	1.969	0.161	0.317	0.0000				
24	0.546	1.988	1.085	2.158	0.000				
25	0.075	1.958	0.148	0.289	0.0001				
26	0.227	1.964	0.447	0.877	0.0000				
	7.777		8.048	12.025	1.0992				

Sx = 0.111 in3 Ix = 0.115 in4 Ycg= 1.035 in

.

Webs Fully Effective [SEC. B2.3(a)] Yes

New Tech SS210-A Panel

PAGE NO. 80 DATE: 04-20-1999

New Tech SS210-A Panel

```
_____
   MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
       Mnx [positive bending] =
                                   +6.137 k-in
       Mnx [negative bending] = -3.923 k-in
   MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1]
       N/t = 83.33
       k = 1.515
       C1 = 0.887
       C2 = 0.960
       C3 = 0.830
       C4 = 0.900
       C9 = 1.000
       C0 = 1.000 - Element 2, 22
       Pend= t^2*k*C3*C4*C9*C0[217 - 0.28(h/t)][0.71 + 0.015(N/t)]
       h/t = 78.00 | Pe(2) = 1 * 0.249 kips = 0.249 kips
       h/t = 78.00 | Pe(22) = 1 * 0.249 kips = 0.249 kips
       Pend= 0.499 kips
       Pint = t^2 * k * C1 * C2 * C9 * C0 [538 - 0.74(h/t)][0.75 + 0.011(N/t)]
       h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
       Pint= 1.189 kips
   MAXIMUM NOMINAL SHEAR - [Section C3.2]
       E = 29,500 ksi
       Fy = 50.00 ksi
       kv = 5.34
                        - for unreinforced webs
       0.960*Sqr(Ekv/Fy) = 53.88
       1.415 \times Sqr(Ekv/Fy) = 79.42
       h/t = 78.00 | V(2) = 1 * 1.035 \text{ kips} = 1.035 \text{ kips} (Eq. C3.2-2)
       h/t = 78.00 | V(22) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
       Vn = 2.069 kips
```

PAGE NO. 81 DATE: 04-20-1999

New Tech SS210-A Panel

Sheet Gauge = 0.0240 in, 24 gauge

PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS

Element No. 14 : w/t>250 -Actual w/t = 495

NOTE: AISI Specifications, Section B1.1(a) states

stiffened compression elements that have w/t ratios exceeding approximately 250 are likely to develop noticeable deformation at the full design strength, without affecting the ability of the member to develop the required strength.

PAGE NO. 82 DATE: 04-20-1999

John F. Butts & Associates, Inc. 2480 Vantage Drive Colorado Springs, CO 80919 (719) 598-7666

PROFILE ANALYSIS & DESIGN

Per AISI Cold-Formed Steel Design Manual, 1996 Edition

New Tech SS210-A Panel

FILE NAME: NT210

DIMENSIONS

Line # 1	Angle	(R)	=	-90.000	deg	Line	#	1	Angle	(L)	=	90.000	deg
	Radius	(R)	=	0.040	in				Radius	(L)	=	0.040	in
	Length	(R)	=	1.872	in				Length	(L)	=	1.872	in
Line # 2	Angle	(R)	=	90.000	deg	Line	#	2	Angle	(L)	=	90.000	deg
	Radius	(R)	=	0.040	in				Radius	(L)	=	0.040	in
	Length	(R)	=	0.671	in				Length	(L)	=	0.546	in
Line # 3								3	Angle	(L)	=	90.000	deg
	Radius	(R)	=	0.070	in				Radius	(L)	=	0.070	in
				0.406					Length	(L)	=	0.174	in
			•								-		
Panel Bot	tom Wid	lth	=	13.872	in								

Panel Overall Width = 14.000 in Panel Overall Height= 2.000 in

SPECIAL CONDITIONS

Seam Rotation : 90 deg.

Alloy: ASTM A653, G50 Fy = 50.00 ksi Fv = 21.18 ksi

QUALIFICATIONS PER AISI SPECIFICATIONS

(a) Maximum w/t Ratio's Exceeded [SEC. Bl.1(a)] No (b) Maximum h/t Ratio's Exceeded [SEC. Bl.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES

Aweb=	0.098	in2								
Sxp =	0.123	in3	Sxp	(per	ft.	of	width)	=	0.105	in3
Sxn =	0.079	in3	Sxn	(per	ft.	of	width)	=	0.067	in3
Ixp =	0.221	in4	Ixp	(per	ft.	of	width)	=	0.189	in4
Ixn =	0.115	in4	Ixn	(per	ft.	of	width)	=	0.099	in4
Weight=	1.63	lb/lf								

PAGE NO. 83 DATE: 04-20-1999

Member - New Tech SS210-A Panel											
Туре	Name	Gage	Hgt (in)	Width (in)	Lip (in)	t (in)	Weight lb/ft	Coil Width (in)			
Panel	PNL	24	2.000	14.000	0.000	0.0240	1.633	20.00			
Gross Section Properties											
Area (in2)	Ix (in4)	Sx (in3)	Rx (in)	Ycg (in)	Iy (in4)	Sy (in3)	Ry (in)	Xcg (in)			
0.480	0.234	0.147	0.699	0.410	12.620	1.657	5.128	7.166			
Effective Properties											
Ix (in4)	Sx (in3)	Iy (in4)	Sy (in3)	Mnx (in-k)	Mny (in-)	Vn: (kij	k Pne				
0.221	0.123	0.000	0.000	3.93	0.0	2.06	59 0.18	31 0.159			
Torsional Properties											
Xo (in)	Ro (in)	Beta	Cw (in6)	Jv*100 (in4)		Fu (ksi)	E (ksi)	G (ksi)			
-1.102	5.291	0.957	8.44	0.092	: 50	65	29500) 11300			

New Tech SS210-A Panel

•

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety	(ASD)	Resistance Factors (LRFD)
Ω (Compression)	= 1.80	ϕ (Compression) = 0.85
Ω (Tension)	= 1.67	ϕ (Tension) = 0.95
Ω (Web Crippling)	= 1.85	ϕ (Web Crippling) = 0.75
Ω (Bending)	= 1.67	ϕ (Bending) = 1.11
Ω (Shear)	= 1.67	ϕ (Shear) = 0.90

ELEMENT	L	Y	LY	LYY	Io
1	0.082	13.969	1.141	15.939	0.0000
2	1.872	13.988	26.186	366.283	0.0000
3	0.082	14.007	1.144	16.025	0.0000
4	0.671	14.375	9.646	138.665	0.0252
- 5	0.129	14.763	1.902	28.073	0.0001
6	0.406	14.793	6.006	88.846	0.0000
14	13.872	7.000	97.104	679.728	222.4518
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	0.012	0.022	0.000	0.0000
23	0.082	0.031	0.003	0.000	0.0000
24	0.546	0.337	0.184	0.062	0.0136
25	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.0000
	19.997		143.547	1333.765	222.4908

New Tech SS210-A Panel

Moment of Inertia @ 90 degree Rotation

Ix = 12.620 in4 Ycg= 7.178 in

PAGE NO. 85 DATE: 04-20-1999

		LOA	D		
	ELEMENT	VALUES FOR	POSITIVE BEN	DING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.0000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.613	1.321	-0.810	-1.069	-0.0192
3	0.082	1.969	0.161	0.317	0.0000
.4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.0001
6	0.292	1.760	0.514	0.904	0.0056
14	13.872	0.012	0.166	0.002	0.0000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.613	1.321	-0.810	-1.069	-0.0192
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.0000
	18.657		6.397	9.615	1.0608

New Tech SS210-A Panel

Sx = 0.123 in3 Ix = 0.204 in4 Ycg= 0.343 in

New Tech SS210-A Panel

					Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.258	1.402	-0.362	-0.507	-0.001
3	0.082	1.969	0.161	0.317	0.000
. 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.000
6	0.370	1.721	0.637	1.097	0.005
14	13.872	0.012	0.166	0.002	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.258	1.402	-0.362	-0.507	-0.001
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000

DEFLECTION

Sx = 0.136 in3 Ix = 0.221 in4 Ycg= 0.381 in

PAGE NO. 87 DATE: 04-20-1999

		LOA	D		
	ELEMENT	VALUES FOR	NEGATIVE BEN	DING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.5467
2a	-0.355	0.510	-0.181	-0.092	-0.0037
3	0.082	1.969	0.161	0.317	0.000
· 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.089	0.012	0.013	0.000	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.5467
22a	-0.355	0.510	-0.181	-0.092	-0.0037
23.	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.0000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.000
	6.504		7.679	11.841	1.0917

New Tech SS210-A Panel

Sx = 0.079 in3 Ix = 0.093 in4 Ycg= 1.181 in

.

	ELEMENT	ELEMENT VALUES FOR NEGATIVE BENDING						
ELEMENT	L	¥	LΫ	LYY	Io			
1	0.082	0.031	0.003	0.000	0.000			
2	1.872	1.000	1.872	1.872	0.546			
3	0.082	1.969 '	0.161	0.317	0.000			
4	0.671	1.988	1.334	2.652	0.000			
-5	0.129	1.958	0.252	0.494	0.000			
6	0.406	1.703	0.691	1.177	0.005			
14	1.660	0.012	0.020	0.000	0.000			
21	0.082	0.031	0.003	0.000	0.000			
22	1.872	1.000	1.872	1.872	0.546			
23	0.082	1.969	0.161	0.317	0.000			
24	0.546	1.988	1.085	2.158	0.000			
25	0.075	1.958	0.148	0.289	0.000			
26	0.227	1.964	0.447	0.877	0.000			
	7.785		8.048	12.025	1.099			

New Tech SS210-A Panel

Sx = 0.112 in3 Ix = 0.115 in4 Ycg= 1.034 in

PAGE NO. 89 DATE: 04-20-1999

```
MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
       Mnx [positive bending] = +6.142 k-in
       Mnx [negative bending] = -3.930 k-in
   MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1]
       N/t= 83.33
       k = 1.515
       C1 = 0.887
       C2 = 0.960
       C3 = 0.830
       C4 = 0.900
       C9 = 1.000
       CO = 1.000 - Element 2, 22
       Pend= t<sup>2</sup>*k*C3*C4*C9*C0[217 - 0.28(h/t)][0.71 + 0.015(N/t)]
       h/t = 78.00 Pe(2)= 1 * 0.249 kips = 0.249 kips
       h/t = 78.00 | Pe(22) = 1 * 0.249 kips = 0.249 kips
       Pend= 0.499 kips
       Pint= t^2*k*C1*C2*C9*C0[538 - 0.74(h/t)][0.75 + 0.011(N/t)]
       h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
       Pint= 1.189 kips
   MAXIMUM NOMINAL SHEAR - [Section C3.2]
       E = 29,500 \text{ ksi}
       Fy = 50.00 \text{ ksi}
       kv = 5.34
                       - for unreinforced webs
       0.960 \times Sqr(Ekv/Fy) = 53.88
       1.415 \times Sqr(Ekv/Fy) = 79.42
       h/t = 78.00 | V(2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
       h/t = 78.00 | V(22) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
       Vn = 2.069 kips
```

PAGE NO. 90 DATE: 04-20-1999

New Tech SS210-A Panel

Sheet Gauge = 0.0240 in, 24 gauge

PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS

Element No. 14 : w/t > 500 -Actual w/t = 578

NOTE: AISI Specifications, Section B1.1(a) states

 stiffened elements having w/t ratios larger than 500 can be used with adequate design strength to sustain the required loads; however; substantial deformations of such elements usually will invalidate the design equations of this Specification.

PAGE NO. 91 DATE: 04-20-1999

John F. Butts & Associates, Inc. 2480 Vantage Drive Colorado Springs, CO 80919 (719) 598-7666

PROFILE ANALYSIS & DESIGN

Per AISI Cold-Formed Steel Design Manual, 1996 Edition

New Tech SS210-A Panel

FILE NAME: NT210

.

DIMENSIONS

Line # 1 Angle	(R)	=	-90.000	deg	Line	#	1	Angle	(L)	=	90.000	deg
Radius	(R)	=	0.040	in				Radius	(L)	=	0.040	in
Length	(R)	=	1.872	in				Length	(L)	=	1.872	in
Line # 2 Angle	(R)	=	90.000	deg	Line	#	2	Angle	(L)	=	90.000	deg
Radius	(R)	=	0.040	in				Radius	(L)	=	0.040	in
Length	(R)	=	0.671	in				Length	(L)	=	0.546	in
Line # 3 Angle	(R)	=	90.000	deg	Line	#	3	Angle	(L)	=	90.000	deg
Radius	(R)	=	0.070	in				Radius	(L)	=	0.070	in
Length	(R)	=	0.406	in				Length	(L)	=	0.174	in
Panel Bottom Wid	lth	Ξ	15.872	in								
Panel Overall Wi	ldth	=	16.000	in								

Panel Overall Width = 16.000 in Panel Overall Height= 2.000 in

SPECIAL CONDITIONS

Seam Rotation : 90 deg.

Alloy: ASTM A653, G50 Fy = 50.00 ksi Fv = 21.18 ksi

QUALIFICATIONS PER AISI SPECIFICATIONS

(a) Maximum w/t Ratio's Exceeded [SEC. Bl.1(a)] No
(b) Maximum h/t Ratio's Exceeded [SEC. Bl.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES

Aweb=	0.098	in2								
Sxp =	0.123	in3	Sxp	(per	ft.	of	width)	=	0.092	in3
Sxn =	0.079	in3	Sxn	(per	ft.	of	width)	=	0.059	in3
Ixp =	0.226	in4	Ixp	(per	ft.	of	width)	=	0.169	in4
Ixn =	0.115	in4	Ixn	(per	ft.	of	width)	=	0.087	in4
Weight=	1.80	lb/lf		. –						

PAGE NO. 92 DATE: 04-20-1999

New	Tech	SS210-A	Panel
-----	------	---------	-------

		Men	nber - N	ew Tech	n SS210-	-A Pane	 נ		
Туре	Name	Gage	Hgt (in)	Width (in)	Lip (in)	t (in)	Weight lb/ft	Coil Width (in)	
Panel	PNL	24	2.000	16.000	0.000	0.0240	1.796	22.00	
	Gross Section Properties								
Area (in2)	Ix (in4)	Sx (in3)	Rx (in)	Ycg (in)	Iy (in4)	Sy (in3)	Ry (in)	Xcg (in)	
0.528	0.241	0.148	0.676	0.374	17.493	2.031	5.756	8.166	
			Effect	ive Pro	perties	5			
Ix (in4)	Sx (in3)	Iy (in4)	Sy (in3)	Mnx (in-k)	Mny (in-)	Vn: (kig	c Pne		
0.226	0.123	0.000	0.000	3.93	0.0	0 2.06	59 0.18	31 0.159	
			Torsi	onal Pr	opertie	es	,		
Xo (in)	Ro (in)	Beta	Cw (in6)	Jv*100 (in4)		Fu (ksi)	E (ksi)	G (ksi)	
-1.021	5.885	0.970	. 11.36	0.101	50	• 65	29500	0 11300	

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Factors of Safety	(ASD)	Resistance Factors (LRFD)
Ω (Compression)	= 1.80	ϕ (Compression) = 0.85
Ω (Tension)	= 1.67	ϕ (Tension) = 0.95
Ω (Web Crippling)	= 1.85	ϕ (Web Crippling) = 0.75
Ω (Bending)	= 1.67	ϕ (Bending) = 1.11
Ω (Shear)	= 1.67	ϕ (Shear) = 0.90

PAGE NO. 93 DATE: 04-20-1999

ELEMENT	L	Y	LY	LYY	Io
1	0.082	15.969	1.304	20.830	0.0000
2	1.872	15.988	29.930	478.513	0.000
3	0.082	16.007	1.307	20.928	0.000
4	0.671	16.375	10.988	179.933	0.0252
-5	0.129	16.763	2.159	36.195	0.0001
6	0.406	16.793	6.818	114.494	0.0000
14	15.872	8.000	126.976	1015.808	333.2067
21	0.082	0.031	0.003	0.000	0.0000
22	1.872	0.012	0.022	0.000	0.000
23	0.082	0.031	0.003	0.000	0.0000
24	0.546	0.337	0.184	0.062	0.0136
25	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.0000
	21.997		179.901	1866.906	333.2457

,

New Tech SS210-A Panel

Moment of Inertia @ 90 degree Rotation

<u>~~~~~</u>

Ix = 17.493 in4 Ycg= 8.178 in

.

	ELEMEN	VALUES FOR	POSITIVE BEN	DING	
ELEMENT	L	Ŷ	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.648	1.301	-0.843	-1.097	-0.022
3	0.082	1.969	0.161	0.317	0.000
- 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.000
6	0.292	1.760	0.514	0.904	0.005
14	15.872	0.012	0.190	0.002	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.648	1.301	-0.843	-1.097	-0.022
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000
	20.587		6.355	9.560	1.0538

New Tech SS210-A Panel

Sx = 0.123 in3 Ix = 0.208 in4 Ycg= 0.309 in

Webs Fully Effective [SEC. B2.3(a)] No

•

PAGE NO. 95 DATE: 04-20-1999

		DEFLEC			
	ELEMENT	VALUES FOR	POSITIVE BEN	DING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.291	1.381	-0.402	-0.555	-0.002
3	0.082	1.969	0.161	0.317	0.000
- 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.000
6	0.371	1.720	0.639	1.099	0.005
14	15.872	0.012	0.190	0.002	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.291	1.381	-0.402	-0.555	÷0.002
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000
	21.381		7.362	10.838	1.095

.

New Tech SS210-A Panel

Sx = 0.136 in3 Ix = 0.226 in4 Ycg= 0.344 in

.

.

Webs Fully Effective [SEC. B2.3(a)] No

.

		LOA	D		
	ELEMENT	VALUES FOR	NEGATIVE BEN	IDING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.355	0.510	-0.181	-0.092	-0.0031
3	0.082	1.969	0.161	0.317	0.000
· 4	0.671	1.988	1.334	2.652	0.000
5 6	0.129	1.958	0.252	0.494	0.000
6	0.406	1.703	0.691	1.177	0.005
14	1.091	0.012	0.013	0.000	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.355	0.510	-0.181	-0.092	-0.003
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000
	6.507		7.679	11.841	1.091

Sx = 0.079 in3 Ix = 0.093 in4 Ycg= 1.180 in

Webs Fully Effective [SEC. B2.3(a)] No

PAGE NO. 97 DATE: 04-20-1999

	DEFLECTION								
	ELEMENT	VALUES FOR	NEGATIVE BEN	NDING					
ELEMENT	L	Y	LY	LYY	Io				
1	0.082	0.031	0.003	0.000	0.000				
2	1.872	1.000	1.872	1.872	0.5467				
3	0.082	1.969	0.161	0.317	0.000				
4	0.671	1.988	1.334	2.652	0.0000				
· 5	0.129	1.958	0.252	0.494	0.0001				
6	0.406	1.703	0.691	1.177	0.0056				
14	1.666	0.012	0.020	0.000	0.`0000				
21	0.082	0.031	0.003	0.000	0.000				
22	1.872	1.000	1.872	1.872	0.5467				
23	0.082	1.969	0.161	0.317	0.000				
24	0.546	1.988	1.085	2.158	0.000				
25	0.075	1.958	0.148	0.289	0.000				
26	0.227	1.964	0.447	0.877	0.000				
	7.791		8.048	12.025	1.0992				

•

0.112 in3 Sx = 0.115 in4 Ix =Ycg= 1,033 in

_

Webs Fully Effective [SEC. B2.3(a)] Yes

PAGE NO. 98 DATE: 04-20-1999

```
New Tech SS210-A Panel
```

```
MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)]
        Mnx [positive bending] =
                                      +6.139 k-in
        Mnx [negative bending] = -3.934 k-in
   MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1]
        N/t = 83.33
        k = 1.515
        C1 = 0.887
        C2 = 0.960
        C3 = 0.830
        C4 = 0.900
        C9 = 1.000
        CO = 1.000 - Element 2, 22
        Pend= t<sup>2</sup>*k*C3*C4*C9*C0[217 - 0.28(h/t)][0.71 + 0.015(N/t)]
        h/t = 78.00 | Pe(2)=1 * 0.249 kips = 0.249 kips
        h/t = 78.00 | Pe(22) = 1 * 0.249 kips = 0.249 kips
       Pend= 0.499 kips
        Pint= t<sup>2</sup>*k*C1*C2*C9*C0[538 - 0.74(h/t)][0.75 + 0.011(N/t)]
        h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips
        Pint= 1.189 kips
   MAXIMUM NOMINAL SHEAR - [Section C3.2]
        E = 29,500 \text{ ksi}
        Fy = 50.00 \text{ ksi}
        kv = 5.34
                         - for unreinforced webs
        0.960 \times Sqr(Ekv/Fy) = 53.88
        1.415 \times Sqr(Ekv/Fy) = 79.42
       h/t = 78.00 | V(2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
h/t = 78.00 | V(22) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)
        Vn = 2.069 kips
```

PAGE NO. 99 DATE: 04-20-1999

New Tech SS210-A Panel

Sheet Gauge = 0.0240 in, 24 gauge

PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS

Element No. 14 : w/t > 500 -Actual w/t = 661

NOTE: AISI Specifications, Section B1.1(a) states

stiffened elements having w/t ratios larger than 500 can be used with adequate design strength to sustain the required loads; however; substantial deformations of such elements usually will invalidate the design equations of this Specification.

PAGE NO. 100 DATE: 04-20-1999

John F. Butts & Associates, Inc. 2480 Vantage Drive Colorado Springs, CO 80919 (719) 598-7666

PROFILE ANALYSIS & DESIGN

Per AISI Cold-Formed Steel Design Manual, 1996 Edition

New Tech SS210-A Panel

FILE NAME: NT210

DIMENSIONS

Line # 1 Angle	(R) =	-90.000	deg	Line # 1	Angle	(L)	=	90.000 d	leg
Radius	(R) =	0.040	in		Radius	(L)	=	0.040 i	n
Length	(R) =	1.872	in		Length	(L)	=	1.872 i	.n
Line # 2 Angle	(R) =	90.000	deg	Line # 2	Angle	(L)	=	90.000 d	leg
Radius	(R) =	0.040	in		Radius	(L)	=	0.040 i	n
Length	(R) =	0.671	in		Length	(L)	=	0.546 i	n
Line # 3 Angle	(R) =	90.000	deg	Line # 3	Angle	(L)	=	90.000 d	leg
Radius	(R) =	0.070	in		Radius	(L)	=	0.070 i	n
Length	(R) =	0.406	in		Length	(L)	=	0.174 i	n
-	•				-		-		
Panel Bottom Wid	ith =	17.872	in						
Panel Overall Wi	idth =	18.000	in						

Panel Overall Height= 2.000 in

SPECIAL CONDITIONS

Seam Rotation : 90 deg.

Alloy: ASTM A653, G50 Fy = 50.00 ksi Fv = 21.18 ksi

QUALIFICATIONS PER AISI SPECIFICATIONS

(a) Maximum w/t Ratio's Exceeded [SEC. Bl.1(a)] No
 (b) Maximum h/t Ratio's Exceeded [SEC. Bl.2(a)] No

PROPERTIES FOR LOAD/SPAN TABLES

	,									
Aweb=	0.098	in2								
Sxp =	0.123	in3	Sxp	(per	ft.	of	width)	=	0.082	in3
Sxn =	0.079	in3	Sxn	(per	ft.	of	width)	z	0.053	in3
Ixp =	0.229	in4	Ixp	(per	ft.	of	width)	=	0.153	in4
Ixn =	0.116	in4	Ixn	(per	ft.	of	width)	Ξ	0.077	in4
Weight=	1.96	lb/lf								

PAGE NO. 101 DATE: 04-20-1999

		Men	nber - N	ew Tech	n SS210-	-A Pane	1			
Туре	Name	Gage	Hgt (in)	Width (in)	Lip (in)	t (in)	Weight lb/ft	Coil Width (in)		
Panel	PNL	24	2.000	18.000	0.000	0.0240	1.960	24.00		
	Gross Section Properties									
AreaIxSxRxYcgIySyRyXcg(in2)(in4)(in3)(in)(in)(in4)(in3)(in)(in)										
0.576 0.247 0.149 0.655 0.343 23.421 2.436 6.377 9.166										
Effective Properties										
Ix (in4)	Sx (in3)	Iy (in4)	Sy (in3)	Mnx (in-k)	Mny (in-)	Vn: (kij	k Pne			
0.229	0.123	0.000	0.000	3.94	0.0	2.0	59 0.18	31 0.159		
			Torsi	onal Pr	opertie	25				
Xo (in)	Ro (in)	Beta	Cw (in6)	Jv*100 (in4)	-	Fu (ksi)	E (ksi)	G (ksi)		
-0.952	6.481	0.978	14.78	0.111	. 50	65	29500	0 11300		

New Tech SS210-A Panel

Shear, moment and bearing values shown are nominal values and must be modified by the appropriate factors of safety (ASD) or resistance factors (LRFD).

Fa	actors of Safety	(ASD)	Resistance Factors	(LRFD)
Ω	(Compression)	= 1.80	ϕ (Compression)	= 0.85
Ω	(Tension)	= 1.67	ϕ (Tension)	= 0.95
Ω	(Web Crippling)	= 1.85	ϕ (Web Crippling)	= 0.75
Ω	(Bending)	= 1.67	ϕ (Bending)	= 1.11
Ω	(Shear)	= 1.67	ϕ (Shear)	= 0.90

PAGE NO. 102 DATE: 04-20-1999

New Tech SS210-A Pa	ane	e1
---------------------	-----	----

ELEMENT	L	Y	LY	LYY	Io
1	0.082	17.969	1.468	26.374	0.0000
2	1.872	17.988	33.674	605.719	0.000
3	0.082	18.007	1.471	26.485	0.000
4	0.671	18.375	12.330	226.569	0.0252
. 5	0.129	18.763	2.417	45.347	0.0001
6	0.406	18.793	7.630	143.390	0.000
14	17.872	9.000	160.848	1447.632	475.7055
21	0.082	0.031	0.003	0.000	0.000
22	1.872	0.012	0.022	0.000	0.000
23	0.082	0.031	0.003	0.000	0.000
24	0.546	0.337	0.184	0.062	0.0136
25 .	0.075	0.662	0.050	0.033	0.0001
26	0.227	0.692	0.157	0.109	0.000
	23.997		220.256	2521.720	475.744

.

Moment of Inertia @ 90 degree Rotation

Ix = 23.421 in4 Ycg= 9.178 in

PAGE NO. 103 DATE: 04-20-1999

		LOA	D							
	ELEMENT VALUES FOR POSITIVE BENDING									
ELEMENT	L	Y	LY	LYY	Io					
1	0.082	0.031	0.003	0.000	0.0000					
2	1.872	1.000	1.872	1.872	0.5467					
2a	-0.676	1.285	-0.869	-1.116	-0.0257					
3	0.082	1.969	0.161	0.317	0.000					
. 4	0.671	1.988	1.334	2.652	0.0000					
5	0.129	1.958	0.252	0.494	0.0001					
6	0.292	1.760	0.514	0.904	0.0056					
14	17.872	0.012	0.214	0.003	0.000					
21	0.082	0.031	0.003	0.000	0.0000					
22	1.872	1.000	1.872	1.872	0.5467					
22a	-0.676	1.285	-0.869	-1.116	-0.0257					
23	0.082	1.969	0.161	0.317	0.000					
24	0.546	1.988	1.085	2.158	0.000					
25	0.075	1.958	0.148	0.289	0.0001					
26	0.227	1.964	0.447	0.877	0.0000					
	22.531		6.327	9.521	1.0477					

New Tech SS210-A Panel

Sx = 0.123 in3 Ix = 0.211 in4 Ycg= 0.281 in

.

.

.

-5

	DEFLECTION								
ELEMENT VALUES FOR POSITIVE BENDING									
ELEMENT	L	Y	LY	LYY	Io				
1	0.082	0.031	0.003	0.000	0.0000				
2	1.872	1.000	1.872	1.872	0.5467				
2a	-0.321	1.363	-0.437	-0.596	-0.0028				
3	0.082	1.969	0.161	0.317	0.000				
. 4	0.671	1.988	1.334	2.652	0.000				
5	0.129	1.958	0.252	0.494	0.0001				
6	0.372	1.720	0.639	1.100	0.005				
14	17.872	0.012	0.214	0.003	0.000				
21	0.082	0.031	0.003	0.000	0.000				
22	1.872	1.000	1.872	1.872	0.5467				
22a	-0.321	1.363	-0.437	-0.596	-0.0028				
23	0.082	1.969	0.161	0.317	0.000				
24	0.546	1.988	1.085	2.158	0.000				
25	0.075	1.958	0.148	0.289	0.0001				
26	0.227	1.964	0.447	0.877	0.0000				
	23.321		7.316	10.758	1.0937				

New Tech SS210-A Panel

Sx = 0.136 in3 Ix = 0.229 in4 Ycg= 0.314 in

Webs Fully Effective [SEC. B2.3(a)] No

PAGE NO. 105 DATE: 04-20-1999

-

		LOA	'n		
	ELEMEN	VALUES FOR	NEGATIVE BEN	DING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.546
2a	-0.354	0.509	-0.180	-0.092	-0.003
3	0.082	1.969	0.161	0.317	0.000
· 4	0.671	1.988	1.334	2.652	0.000
5	0.129	1.958	0.252	0.494	0.000
6	0.406	1.703	0.691	1.177	0.005
14	1.093	0.012	0.013	0.000	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.546
22a	-0.354	0,509	-0.180	-0.092	-0.003
23	0.082	1.969	0.161	0.317	0.000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.000
26	0.227	1.964	0.447	0.877	0.000
	6.511	<u> </u>	7.681	11.842	1.0918

.

~

New Tech SS210-A Panel

Sx = 0.079 in3 Ix = 0.093 in4 Ycg= 1.180 in

.

Webs Fully Effective [SEC. B2.3(a)] No

.

٠

	ELEMENT	VALUES FOR	NEGATIVE BEN	DING	
ELEMENT	L	Y	LY	LYY	Io
1	0.082	0.031	0.003	0.000	0.000
2	1.872	1.000	1.872	1.872	0.5467
3	0.082	1.969	0.161	0.317	0.0000
4	0.671	1.988	1.334	2.652	0.0000
- 5	0.129	1.958	0.252	0.494	0.0001
6	0.406	1.703	0.691	1.177	0.0056
14	1.670	0.012	0.020	0.000	0.000
21	0.082	0.031	0.003	0.000	0.000
22	1.872	1.000	1.872	1.872	0.5467
23	0.082	1.969	0.161	0.317	0.0000
24	0.546	1.988	1.085	2.158	0.000
25	0.075	1.958	0.148	0.289	0.0001
26	0.227	1.964	0.447	0.877	0.000
	7.796		8.048	12.025	1.0992

New Tech SS210-A Panel ~~~~~

> Sx = 0.112 in3 Ix = 0.116 in4 Ycg= 1.032 in

PAGE NO. 107 DATE: 04-20-1999

New Tech SS210-A Panel

MAXIMUM NOMINAL MOMENTS - [Section C3.1.1(a)] Mnx [positive bending] = +6.137 k-in Mnx [negative bending] = -3.939 k-in MAXIMUM ALLOWABLE REACTIONS - [Table C3.4-1] N/t = 83.33k = 1.515C1 = 0.887 C2 = 0.960C3 = 0.830C4 = 0.900C9 = 1.000CO = 1.000 - Element 2, 22Pend= $t^{2*k*C3*C4*C9*C0[217 - 0.28(h/t)][0.71 + 0.015(N/t)]}$ h/t = 78.00 | Pe(2)= 1 * 0.249 kips = 0.249 kips h/t = 78.00 | Pe(2)= 1 * 0.249 kips = 0.249 kips Pend= 0.499 kips Pint= t²*k*C1*C2*C9*C0[538 - 0.74(h/t)][0.75 + 0.011(N/t)] h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips h/t = 78.00 | Pi(2)= 1 * 0.595 kips = 0.595 kips Pint= 1.189 kips MAXIMUM NOMINAL SHEAR - [Section C3.2] E = 29,500 ksiFy = 50.00 ksi kv = 5.34- for unreinforced webs $0.960 \times Sqr(Ekv/Fy) = 53.88$ $1.415 \times Sqr(Ekv/Fy) = 79.42$ h/t = 78.00 | V(2) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2)h/t = 78.00 | V(22) = 1 * 1.035 kips = 1.035 kips (Eq. C3.2-2) Vn = 2.069 kips

PAGE NO. 108 DATE: 04-20-1999

New Tech SS210-A Panel

Sheet Gauge = 0.0240 in, 24 gauge

PANEL ELEMENTS EXCEEDING AISI ALLOWABLE RATIOS

Element No. 14 : w/t > 500 -Actual w/t = 745

NOTE: AISI Specifications, Section B1.1(a) states

stiffened elements having w/t ratios larger than 500 can be used with adequate design strength to sustain the required loads; however; substantial deformations of such elements usually will invalidate the design equations of this Specification.

PAGE NO. S29 DATE: 04-20-1999

		53, G50 24 in)		0 ksi)						
				ALLOWAB	LE STRE	NGTH DE	SIGN (A	SD)		
				Wind	Load Fa	actor =	1.0			
			A	LLOWABLI	E UNIFO	RM LOAD	(PSF)			
SPAN	DEFLECTIO	N		SP	AN LENG	TH (Fee	t)			
		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180	268	238	214	195	173	147	126	110	96
	L/240	268	238	214	195	173	147	126	110	96
	L/360	268	238	214	195	173	147	126	110	96
2	L/180	336	286	234	195	173	147	126	110	96
	L/240	336	286	234	195	173	147	126	110	96
	L/360	336	286	234	195	173	147	126	110	96
3	L/180	336	298	268	225	191	163	142	124	109
	L/240	336	298	268	225	191	163	142	124	109
	L/360	336	298	268	225	191	163	142	124	109

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Bending) = 1.67 Ω (Shear) = 1.67
 - Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.666 ft (L/180)Two Span : Max. Span = 10.411 ft (L/180)Three Span +: Max. Span = 10.666 ft (L/180)

PAGE NO. S30 DATE: 04-20-1999

New Tech SS210-A Panel

SPAN	Rotation : DEFLECTIO			Wind LLOWABLI	Load Fa E UNIFO	NGTH DE actor = RM LOAD TH (Fee	1.0 (PSF)	SD)		
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	 L/180	85	76	68	61	55	50	46	42	39
	L/240	85	76	68	61	55	50	46	42	` 39
	L/360	85	76	68	61	55	50	46	42	38
2	L/180	85	76	68	61	55	50	46	42	39
	L/240	85	76	68	61	55	50	46	42	39
	L/360	85	76	68	61	55	50	46	42	39
3	L/180	97	86	78	70	64	58	53	49	45
	L/240	97	86	78	70	64	58	53	.49	45
	L/360	97	86	78	70	64	58	53	49	45
	T T	la's use ne Span wo Span hree Spa odulas c	- Mp= - Mp= an - Mp=	= .125w] = .125w] = .080w]	<pre>L², Mn= L², Mn= L², Mn=</pre>	.125w1 .096w1 .107w1	$x^{2}, x = .0$ $x^{2}, x = .0$ $x^{2}, x = .0$	0130wl^	4/EI 4/EI	

2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3] c) Combined Bending & Web Crippling [AISI C3.5]

3. Factors of Safety used to determine uniform loads:

Ω (Bending) = 1.67 Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85

4. Allowance has been made for member Dead Weight.

5. Minimum panel support bearing length = 2.00 in

6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.666 ft (L/180)Two Span : Max. Span = 10.411 ft (L/180)Three Span +: Max. Span = 10.666 ft (L/180)

PAGE NO. S31 DATE: 04-20-1999

New Tech SS210-A Panel

	1=±===================================
Width	12.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
	otation : 90 deg.
	ALLOWABLE STRENGTH DESIGN (ASD)

SPAN	DEFLECTION		A	LLOWABL	E UNIFO	actor = RM LOAD TH (Feet	(PSF)			
		6.50	6.75	7.00	7.25	7.50	7.75	8.00	8.25	8.50
1	L/180	36	33	30	28	26	25	23	22	20
	L/240	36	33	30	28	26	25	23	22	20
	L/360	34	30	27	25	22	20	18	17	15
2	L/180	36	33	30	28	26	25	23	22	· 20
	L/240	36	33	30	28	. ²⁶	25	23	22	20
	L/360	36	33	30	28	26	25	23	22	20
3	L/180	41	38	35	33	31	29	27	25	24
	L/240	41	38	35	33	31	29	27	25	24
,	L/360	41	38	35	33	31	29	27	25	24

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Shear) = 1.67
 - Ω (Web Crippling) = 1.85

4. Allowance has been made for member Dead Weight.

- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.666 ft (L/180) Two Span : Max. Span = 10.411 ft (L/180) Three Span +: Max. Span = 10.666 ft (L/180)

PAGE NO. S32 DATE: 04-20-1999

	12.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam Ro	otation : 90 deg.

SPAN	DEFLECTIO	ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) FION SPAN LENGTH (Feet)										
		8.75	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75		
1	L/180 L/240 L/360	19 19 14	18 18 13	17 17 12	16 16 11	15 15 10	14 14 9	13 13 9	13 12 8	12 11 8		
2	L/180 L/240 L/360	19 19 . 19	18 18 18	17 17 17	16 16 15	15 15 14	14 14 13	13 13 12	13 13 11	12 12 11		
3	L/180 L/240 L/360	22 22 22	21 21 21	20 20 20	19 19 19 19	18 18 18	17 17 17 17	16 16 16	15 15 15	14 14 14		

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.666 ft (L/180)Two Span : Max. Span = 10.411 ft (L/180)Three Span +: Max. Span = 10.666 ft (L/180)

PAGE NO. S33 DATE: 04-20-1999

Gauge	ASTM A6 2 24 (0.0 Rotation :	24 in)		J ksi)						
SPAN	DEFLECTIO	'n		Wind LLOWABL	LE STREI Load Fa E UNIFO AN LENG	actor = RM LOAD	1.0 (PSF)	SD)		
		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180	230	204	183	167	148	126	108	94	83
	L/240	230	204	183	167	148	126	108	94	83
	L/360	230	204	183	167	148	126	108	94	83
2	L/180	287	245	201	167	148	126	108	94	83
	L/240	287	245	201	167	148	126	108	94	83
	L/360	287	245	201	167	148	126	108	94	83
3	L/180	287	255	230	193	164	140	121	106	94
	L/240	287	255	230	193	164	140	121	106	94
	L/360	. 287	255	230	193	164	140	121	106	94

- One Span Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following:
 a) Allowable Shear Stress (Fv) [AISI C3.2]
 b) Combined Bending and Shear [AISI C3.3]
 c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67 Ω (Shear) = 1.67
 - Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.302 ft (L/180) Two Span : Max. Span = 9.786 ft (L/180) Three Span +: Max. Span = 10.025 ft (L/180)

PAGE NO. S34 DATE: 04-20-1999

'n.

New Tech SS210-A Panel

					SS210-A					
Width Alloy Gauge	1	n 53, G50 24 in)	(Fy= 50							
SPAN	DEFLECTIO	N		Wind LLOWABLI	LE STREN Load Fa E UNIFOR AN LENGT	actor = RM LOAD	1.0 (PSF)	SD)		
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	L/180 L/240	73 73	65 65	58 58	52 52	47 47	43 43	39 39	36 36	33
	L/360	73	65	58	52	47	43	39	36	33
2	L/180 L/240 L/360	73 73 73	65 65 65	58 58 58	52 52 52	47 47 47	43 43 43	39 39 39	36 36 36	33 33 33
3	L/180 L/240 L/360	83 83 83	74 74 74	67 67 67	60 60 60	54 54 54	50 50 50	45 45 45	42 42 42	38 38 38
	Tt Tl Ma 2. Allowa a b	ne Span wo Span hree Spa odulas c	- Mp= - Mp= in - Mp= of Elast form lo ble She wed Bend	a .125w] .125w] .080w] .icity (pads are ar Stre ling and	2^{2} , Mn= 2^{2} , Mn= 2^{2} , Mn= E^{2} = 2 determess (Fv) d Shear	.125w12 .096w12 .107w12 9,500 k	2, x= .(2, x= .(3, x= .(2, x= .())))))))))))))))))))))))))))))))))))	0130w1^4 0092w1^4 0069w1^4 followin C3.2] C3.3]	4/EI 4/EI 4/EI	
	Ω	rs of Sa (Bendin (Shear) (Web Cr	g)	= 1.6 = 1.6	57 57	e unifo	orm load	ls:		
	4. Allowa	ance has	been m	ade for	member	Dead W	leight.			
	5. Minim	ım panel	suppor	t beari	ng leng	th = 2.	00 in			
	Tv	ntrated imple Sp wo Span nree Spa	an : Ma : Ma	.x. Spar .x. Spar	n = 8.3 n = 9.7	02 ft 86 ft	(L/180) (L/180))	in	

.

PAGE NO. S35 DATE: 04-20-1999

New Tech SS210-A Panel

Width Alloy Gauge Seam	ASTM A6	53, G50 24 in)	_	======== D ksi)			*****	******	******					
SPAN	ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN DEFLECTION SPAN LENGTH (Feet)													
		6.50	6.75	7.00	7.25	7.50	7.75	8.00	8.25	8.50				
1	L/180 L/240 L/360	30 30 30	28 28 27	26 26 24	24 24 22	23 23 20	21 21 18	20 20 16	18 18 15	17 17 13				
2	L/180 L/240		28 28	26 26	24 24	23 23	21 21	20 20	18 18	17 17				

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi

24

28

28

28

23

26

26

26

21

24

24

24

20

23

23

23

18

21

21

21

17

20

20

20

- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads:
 - Ω (Bending) = 1.67 Ω (Shear) = 1.67

L/360

L/180

L/240

L/360

.

3

ر•

30

35

35

35

.

28

33

33

33

26

30

30

30

- Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.302 ft (L/180) Two Span : Max. Span = 9.786 ft (L/180) Three Span +: Max. Span = 10.025 ft (L/180)

PAGE NO. S36 DATE: 04-20-1999

12

SPAN	DEFLECTION		ALLOWABLE STRENGTH DESIGN (ASD) Wind Load Factor = 1.0 ALLOWABLE UNIFORM LOAD (PSF) SPAN LENGTH (Feet)									
		8.75	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75		
1	L/180	16	15	14	13	13	12	11	11	10		
	L/240	16	15	14	13	13	12	. 11	11	10		
	L/360	12	11	10	10	9	8	8	7	7		
2	L/180	16	15	14	13	13	12	11	11	10		
	L/240	16	15	14	13	13	12	11	11	10		
	L/360	16	15	14	13	13	12	11	10	9		
3	L/180	19	18	17	16	15	14	13	13	12		
	L/240	19	18	17	16	15	14	13	13	12		
	L/360	: 19	18	17	. 16	15	14	13	13	12		
	Tw Th	e Span o Span ree Spa dulas c	- Mp= - Mp= in - Mp= of Elast	= .125w] = .125w] = .080w] :icity	$Mn = 1^{2}, Mn = 1^{2}$.125wl .096wl .107wl 29,500	² , x= . ² , x= . ² , x= . ksi	0130wl^ 0092wl^ 0069wl^	4/EI 4/EI 4/EI			

- b) Combined Bending and Shear [AISI C3.3]
- c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads:
 - Ω (Bending) = 1.67 Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 8.302 ft (L/180) Two Span : Max. Span = 9.786 ft (L/180) Three Span +: Max. Span = 10.025 ft (L/180)

PAGE NO. S37 DATE: 04-20-1999

New Tech SS210-A Panel

.

3

•••

Gauge	n 16.00 i 7 ASTM A6 2 24 (0.0 Rotation :	53, G50 24 in)	_) ksi)				-		
SPAN	DEFLECTIO	N		LOWABLE	Load Fa	actor = RM LOAD	1.0 (PSF)	SD)		
		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180 L/240 L/360	201 201 201	178 178 178	160 160 160	146 146 146	130 130 130	110 110 110	95 95 95	82 82 82	72 72 72
2	L/180 L/240 L/360	251 251 251	215 215 215	176 176 176	147 147 147	130 130 130	110 110 110	95 95 95	82 82 82 82	72 72 72
3	L/180 L/240 L/360	251 251 251	223 223 223	201 201 201	169 169 169	143 143 143	123 123 123	106 106 106	93 93 93	82 82 82
	T T	la's use ne Span wo Span hree Spa odulas o	- Mp= - Mp= an - Mp=	= .125w] = .125w] = .080w]	L ² , Mn= L ² , Mn= L ² , Mn=	.125w1 .096w1 .107w1	x^{2} , $x = .0$ x^{2} , $x = .0$ x^{2} , $x = .0$	0130wl^ 0092wl^	4/EI 4/EI	
	ъ	able uni) Allowa) Combin) Combin	able She ned Bend	ear Stre ling and	ess (Fv) 1 Shear		{AISI ({AISI (23.2] 23.3]	ng:	

- c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 7.849 ft (L/180) Two Span : Max. Span = 9.253 ft (L/180) Three Span +: Max. Span = 9.479 ft (L/180)

PAGE NO. S38 DATE: 04-20-1999

New Tech SS210-A Panel

		3, G50 4 in)		0 ksi)						
SPAN	DEFLECTION			Wind LLOWABL	LE STREI Load Fa E UNIFO AN LENG	actor = RM LOAD	1.0 (PSF)	SD)		
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.2
1	L/180	64	57	51	46	41	38	34	31	2
	L/240	. 64	57	51	46	41	38	34	31	2
	L/360	64	57	51	46	41	38	34	31	29
2	L/180	64	57	51	46	41	38	34	31	2
	L/240	64	57	51	46	41.	38	34	31	2
	L/360	64	57	51	46	41	38	34	31	2
3	L/180	73	65	58	52	48	43	40	36	3
	L/240	73	65	58	52	48	43	40	36	3
	L/360	. 73	65	58	52	48	43	40	36	3.

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads:
 - Ω (Bending) = 1.67 Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85

.

4. Allowance has been made for member Dead Weight.

- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 7.849 ft (L/180) Two Span : Max. Span = 9.253 ft (L/180) Three Span +: Max. Span = 9.479 ft (L/180)

PAGE NO. S39 DATE: 04-20-1999

New Tech SS210-A Panel

Width Alloy Gauge Seam	ASTM A65	3, G50 4 in)		O ksi)						
SPAN	DEFLECTION			Wind LLOWABL	Load Fa E UNIFO	NGTH DE: actor = RM LOAD IH (Feet	1.0 (PSF)	SD)		
		6.50	6.75	7.00	7.25	7.50	7.75	8.00	8.25	8.50
1	L/180	27	25	23	21	20	18	17	16	15
	L/240	27	25	. 23	21	20	18	17	16	15
	L/360	27	24	22	19	18	16	14	13	12
2	L/180	27	25	23	21	20	18	17	16	15
	L/240	27	25	23	21	20	18	17	16	15
	L/360	27	_ 25	23	21	20	18	17	16	15
3	L/180	31	28	26	25	23	21	20	19	18
	L/240	31	28	26	25	23	21	20	19	18
	L/360	31	28	26	25	23	21	20	19	18

1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi

- 2. Allowable uniform loads are determined per the following:
 - a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads:
 - Ω (Bending) = 1.67 Ω (Shear) = 1.67
 - Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 7.849 ft (L/180) Two Span : Max. Span = 9.253 ft (L/180) Three Span +: Max. Span = 9.479 ft (L/180)

PAGE NO. S40 DATE: 04-20-1999

۲,

	;₂≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈≈
Width	16.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
Seam Ro	otation : 90 deg.

SPAN	DEFLECTION	r		Wind LLOWABL	LE STRE Load F E UNIFO AN LENG	actor = RM LOAD	= 1.0 (PSF)	SD)		
		8.75	9.00	9.25	9.50	9.75	10.00	10.25	10.50	10.75
1	L/180	14	13	12	12	11	10	10	9	9
	L/240	14	13	· 12	12	11	10	10	9	9
	L/360	11	10	9	9	8	7	7	6	6
2	L/180	14	13	12	12	11	10	10	9	9
	L/240	14	13	12	12 '	11	10	10	9	9
	L/360	14	13	.12	12	11	10	10	9	8
3	L/180	16	16	15	14	13	12	12		10
	L/240	16	16	15	14	13	12	12	11	10
	L/360	. 16	16	15	14	13	12	12	11	10

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Shear) = 1.67
 - Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 7.849 ft (L/180) Two Span : Max. Span = 9.253 ft (L/180) Three Span +: Max. Span = 9.479 ft (L/180)

PAGE NO. S41 DATE: 04-20-1999

*******	≠₩₽₩₽≤₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽
Width	18.00 in
Alloy	ASTM A653, G50 (Fy= 50 ksi)
Gauge	24 (0.024 in)
	btation : 90 deg.
	ALLOWABLE STRENGTH DESIGN (ASD)
	Wind Load Factor = 1.0
	ALLOWABLE UNIFORM LOAD (PSF)

SPAN	DEFLECTIO	N		SP	AN LENG	TH (Fee	t)			
		2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4.00
1	L/180	178	158	142	129	115	98	84	73	64
	L/240	178	158	142	129	115	98	84	73	`64
	L/360	178	158	142	129	115	98	84	73	64
.2	L/180	223	191	156	130	·115	98	84	73	64
	L/240	223	191	156	130	115	98	84	73	64
	L/360	223	191	156	130	115	98	84	73	64
3	L/180	223	198	178	150	127	109	94	83	73
	L/240	223	198	178	150	127	109	94	83	73
	L/360	223	198	178	150	127	109	94	83	73

- 1. Formula's used in Load Tables for FLEXURE and DEFLECTION are: One Span - Mp= .125wl², Mn= .125wl², x= .0130wl⁴/EI Two Span - Mp= .125wl², Mn= .096wl², x= .0092wl⁴/EI Three Span - Mp= .080wl², Mn= .107wl², x= .0069wl⁴/EI Modulas of Elasticity (E) = 29,500 ksi
- 2. Allowable uniform loads are determined per the following: a) Allowable Shear Stress (Fv) [AISI C3.2] b) Combined Bending and Shear [AISI C3.3]
 - c) Combined Bending & Web Crippling [AISI C3.5]
- 3. Factors of Safety used to determine uniform loads: Ω (Bending) = 1.67
 - Ω (Shear) = 1.67 Ω (Web Crippling) = 1.85
- 4. Allowance has been made for member Dead Weight.
- 5. Minimum panel support bearing length = 2.00 in
- 6. Concentrated load = 150 lb at mid-span, load width = 4 in Simple Span : Max. Span = 7.462 ft (L/180) Two Span : Max. Span = 8.797 ft (L/180) Three Span +: Max. Span = 9.012 ft (L/180)

PAGE NO. S42 DATE: 04-20-1999

.

New Tech SS210-A Panel

.

Width | 18.00 in

Seam			7		LE STREM			SD)		
SPAN	DEFLECTIO	ON	AI	LOWABLE	UNIFOR N LENGT	RM LOAD	(PSF)			
		4.25	4.50	4.75	5.00	5.25	5.50	5.75	6.00	6.25
1	L/180	57	50	45	41	37	33	30	28	26
	L/240 L/360	57 57	50 50	- 45 45	41 41	37 37	33 33	30 30	28 28	26 26
								30		
2	L/180 L/240	57 57	50 50	45 45	41 41	37 37	33 33	30	28 28	26 26
	L/360	57	50	45	41	37	33	30	28	26
3	L/180	64	58	52	47	42	38	35	32	30
	L/240 L/360	64 64	58 58	52 52	47 47	42 42	38 38	35 35	32 32	30 30
		ila's use Dne Span Two Span	- Mp= - Mp=	= .125wl = .125wl	² , Mn= ² , Mn=	.125w12 .096w12	² , x= .0 ² , x= .0)130wl^4)092wl^4	4/EI 4/EI	
	2. Allov 2. Allov 3. Facto	One Span Two Span Three Spa Aodulas of vable uni a) Allowa b) Combir c) Combir c) Combir prs of Sa 2 (Bendir 2 (Shear)	- Mp= - Mp= of Elast form lo ble She ded Bend ded Bend	= .125w] = .125w] = .080wl :icity (pads are ar Stre ling and ling & W sed to d = 1.6 = 1.6	2, Mn= 2, Mn= 2, Mn= E) = 2 e determ ess (Fv) l Shear Veb Crip letermin 7	.125wl .096wl .107wl 29,500 k mined pe	2, x= .0 2,	0130w1^4 0092w1^4 0069w1^4 5011owin 53.2] 53.3] 53.5]	4/EI 4/EI 4/EI	
	2. Allov 2. Allov 3. Facto 5	One Span Two Span Three Spa Aodulas of vable uni a) Allowa b) Combir c) Combir c) Combir prs of Sa 2 (Bendir	- Mp= - Mp= of Elast form lo ble She bed Bend hed Bend hed Bend hety us fory us	= .125wl = .125wl = .080wl :icity (pads are ear Stre ling and ling & W sed to d = 1.6 = 1.6 () = 1.8	2, Mn= 2, Mn= 2, Mn= E) = 2 determ ess (Fv) Shear Web Crip determin 7 55	.125wl .096wl .107wl 29,500 k mined pe opling he unifo	2, x= .0 2, x= .0 3, x= .0 3, x= .0 4, x= .0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0130w1^4 0092w1^4 0069w1^4 5011owin 53.2] 53.3] 53.5]	4/EI 4/EI 4/EI	
	2. Allov 2. Allov 3. Facto 4. Allov	One Span Two Span Three Spa Aodulas of vable uni A) Allowa D) Combir C) Combir Drs of Sa 2 (Bendir 2 (Shear) 2 (Web Cr	- Mp= - Mp= of Elast form lo ble She bed Bend hed Bend hed Bend fety us g) s been m	<pre>= .125wl = .125wl = .080wl = .080wl = .080wl = .080wl = ar stree ling and ling & W = 1.6 = 1.6 = 1.6 = 1.8 = 1.8 = 1.8</pre>	2, Mn= 2, Mn= 2, Mn= E) = 2 determ ess (Fv) Shear Web Crip determin 57 55 member	.125wl .096wl .107wl 29,500 k nined pe opling ne unifo	e, x= .0 c, x=	0130w1^4 0092w1^4 0069w1^4 5011owin 53.2] 53.3] 53.5]	4/EI 4/EI 4/EI	