

White Paper

Managed IntelligenceTM Shaping a Threat Hunt Program to Operationalize Data, Resource Accordingly, and Protect the Business

Actionable Intelligence

Deriving actionable intelligence to enhance organizational security is a challenge faced by all global companies and often further complicated by intertwined networks resulting from mergers and acquisitions. With the volumes of data, it's important to shape a threat hunting program to be able to consume and operationalize data collected from various sources.

Background

In today's threat landscape, standard tools and predefined compliance and risk policies are typically far too conventional to provide the appropriate risk deterrence against the threats an organization faces.

While many organizations have a plethora of tools through their network and application infrastructure that push data into a SIEM, they may not be appropriately scoped to collect the data necessary to detect likely threats.

Beyond detecting threats, organizations also need to identify risks and have the ability to address them. Understandably, not all organizations have the necessary resources to address risks; they might not even know the risks exist.

There are often cases where a tool deployment or policy change is the ultimate solution to an organization's security problems. However, threat actors have evolved just as defenders have. Tools can be subverted, and policies may be misconfigured, allowing attackers access to a network while the organization has a false sense of security.

Enter threat hunting, the proactive function of an organization's security program. The Threat Hunt team is mandated with discovering threat actors that have already bypassed currently deployed tools and policies.

This article describes how Nisos develops such a program and implements the proper metrics that will eventually allow an organization to operationalize many streams of intelligence to properly mitigate risk for the business.

Starting Out - Identify the Threat

Threat actors vary based on TTPs, targets, and motives, summarized in the below chart:

Threat Actor	Methods	Motives
Nation State	Highly advanced and difficult to detect. May utilize human enabled operations in order to obtain access into networks.	Espionage, sabotage, cyber war
Criminal Group	Often use "spray and pray" tactics. Will seek out targets of opportunity. May use commoditized exploit kits to develop tools.	Financial
Hacktivist	Denial of Service attacks, webpage defacement, hacking into social media accounts.	Political, Ideological
Insider Threat	Utilizes accesses granted. No tools needed. Can blend in with the noise.	Financial, Revenge
Script Kiddie	Simple to use tools freely available online.	Curiosity, fun, clout, financial.

Different organizations are targets of different threat actors. For example, a large R&D firm involved in developing weapons systems may be targeted by a nation state, while a large restaurant chain may not. Organizations may identify their likeliest threat based on previous breaches that involved their industry.

Organizations may also want to identify their "Crown Jewels." Information considered to be of such value that any sort of breach or compromise will be catastrophic to the business, either through loss of money, loss of client/public trust or legal action from regulatory agencies. In the world of GDPR, breaches are not only embarrassing, they are expensive.

Coverage Map - Collecting What Matters

Once an organization identifies the threat actor(s), it should create a coverage map with the purpose of identifying collection gaps. This does not have to be difficult; the MITRE ATT&CK Framework is a thorough matrix that covers tactics and techniques utilized by threat actors. In addition, MITRE has a list of threat actors along with the techniques and tactics they use. The team can easily map the MITRE ATT&CK framework to the organization's security controls as demonstrated in the example below.

Example Coverage Map - Criminal Organization

An organization identifies financially motivated criminal groups as their likeliest threat actor, singling out the groups FIN5, FIN6, FIN7 and FIN8 for specific attention. Using the information MITRE has on those groups and mapping detection capabilities to the MITRE ATT&CK Framework, they created the following coverage map:

Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery	Lateral Movement	Collection	Command And Control	Exfiltration	Impact
11 items	34 items	62 items	32 items	69 items	21 items	23 items	18 items	13 items	22 items	9 items	16 items
Drive-by Compromise	AppleScript	.bash_profile and .bashrc	Access Token Manipulation	Access Token Manipulation	Account Manipulation	Account Discovery	AppleScript	Audio Capture	Commonly Used Port	Automated Exfiltration	Account Access Removal
Exploit Public- Facing	CMSTP Command-Line	Accessibility Features	Accessibility Features	Binary Padding	Bash History	Application Window Discovery	Application Deployment Software	Automated Collection	Communication Through	Data Compressed	Data Destruction
Application	Interface	Account	AppCert DLLs	BITS Jobs	Brute Force	Browser Bookmark Discovery	Component	Clipboard	Removable Media	Data	Data Encrypted for Impact
External Remote	Compiled HTML File	Manipulation	AppInit DLLs	Bypass User Account Control	Credential Dumping	Domain Trust Discovery	Object Model and	Data	Connection	Encrypted	Defacement
Services	Component	AppCert DLLs	Application	Clear Command History	Credentials	File and Directory	Distributed COM	Data from Information	Proxy	Data Transfer Size Limits	Disk Content Wipe
Hardware Additions	Object Model and Distributed COM	AppInit DLLs	Shimming	CMSTP	from Web Browsers	Discovery Network Service	Exploitation of Remote	Repositories Data from	Custom Command and Control Protocol	Exfiltration	Disk Structure
Replication Through	Control Panel	Application Shimming	Bypass User Account Control	Code Signing	Credentials in Files	Scanning	Services	Local System	Custom	Over Alternative Protocol	Wipe Endpoint Denial of
Removable Media	Items	Authentication Package	DLL Search	Compile After Delivery	Credentials in	Network Share Discovery	Internal Spearphishing	Data from Network	Cryptographic Protocol	Exfiltration	Service
Spearphishing	Dynamic Data Exchange	BITS Jobs	Order Hijacking	Compiled HTML File	Registry	Network Sniffing	Logon Scripts	Shared Drive	Data Encoding	Over Command	Firmware Corruption
Attachment	Execution	Bootkit	Dylib	Component Firmware	Exploitation for Credential	Password Policy	Pass the Hash	Data from Removable	Data	and Control Channel	Inhibit System
Spearphishing Link	through API Execution	Browser	Hijacking	Component Object Model Hijacking	Access	Discovery	Pass the Ticket	Media Data Staged	Obfuscation Domain Fronting	Exfiltration Over Other	Recovery Network Denial of
Spearphishing via Service	through Module	Extensions Change Default	Execution with Prompt	Connection Proxy	Authentication	Peripheral Device Discovery	Remote Desktop	Email	Domain Fronting Domain	Network Medium	Service
Supply Chain	Exploitation for	File Association	Emond	Control Panel Items	Hooking	Permission Groups Discovery	Protocól	Collection	Generation	Exfiltration	Resource Hijacking
Compromise	Client Execution	Component Firmware	Exploitation	DCShadow	Input Capture	Process Discovery	Remote File Copy	Input Capture	Fallback	Over Physical Medium	Runtime Data Manipulation
Trusted Relationship	Graphical User Interface	Component	for Privilege Escalation	Deobfuscate/Decode Files or Information	Input Prompt	Query Registry	Remote Services	Man in the Browser	Channels Multi-hop Proxy	Scheduled Transfer	Service Stop
Valid Accounts	InstallUtil	Object Model Hijacking	Extra Window Memory	Disabling Security Tools	Kerberoasting	Remote System Discovery	Replication	Screen	Multi-hop Proxy Multi-Stage	Iranster	Stored Data Manipulation
	Launchctl	Create Account	Injection	DLL Search Order Hijacking	LLMNR/NBT-	Security Software	Through Removable	Capture	Channels		System
	Local Job Scheduling	DLL Search Order Hijacking	File System Permissions	DLL Side-Loading	NS Poisoning and Relay	Discovéry	Media	Video Capture	Multiband Communication		Shutdown/Reboot
	LSASS Driver	Dylib Hijacking	Weakness	Execution Guardrails	Network	Software Discovery	Shared Webroot		Multilayer		Transmitted Data Manipulation
	Mshta	Emond	Hooking Image File	Exploitation for Defense Evasion	Sniffing Password Filter	System Information Discovery	SSH Hijacking		Encryption Port Knocking		
	PowerShell	External Remote Services	Execution Options	Extra Window Memory	DLL	System Network Configuration	Taint Shared Content		Remote Access		
	Regsvcs/Regasm	File System	Injection	Injection	Private Keys	Discovery	Third-party		Tools		
	Regsvr32	Permissions Weakness	Launch Daemon	on Permissions	Securityd Memory	Connections Discovery	Software		Remote File Copy		
	Rundll32 Scheduled Task	Hidden Files and Directories	New Service	Modification File Deletion	Steal Web Session Cookie	System Owner/User Discovery	Windows Admin Shares		Standard Application		
	Scripting	Hooking	Parent PID Spoofing	File System Logical	Two-Factor	System Service	Windows Remote		Layer Protocol		
	Service Execution	Hypervisor	Path	Offsets	Authentication	Discovery	Management		Standard Cryptographic		
	Signed Binary	Image File	Interception	Gatekeeper Bypass		System Time Discovery			Protocol		
	Proxy Execution	Execution Options Injection	Plist Modification	Group Policy Modification		Virtualization/Sandbox Evasion			Standard Non- Application Layer Protocol		
	Signed Script Proxy Execution	Kernel Modules	Port Monitors	Hidden Files and Directories					Uncommonly		
	Source	and Extensions	PowerShell Profile	Hidden Users					Use 🖌	leg	end
	Space after Filename	Launch Agent	Process	Hidden Window					Wel #74c476	Full Detetci	on X
	Third-party Software	Launch Daemon	Injection Scheduled	HISTCONTROL					#140470	Puil Detetci	<u>~</u> ^
	Trap	LC_LOAD_DYLIB	Task	Image File Execution Options Injection					#fce93b	Partial Dete	ection ×
	Trusted	Addition	Service Registry	Indicator Blocking					#fc3b3b	No Detectio	x nc
Develop	Developer Utilities	Local Job Scheduling	Permissions Weakness	Indicator Removal from Tools						Add Item	Clear
	User Execution	Login Item	Setuid and Setgid	Indicator Removal on						Add Itelft	Ciedi
	Windows Management	Logon Scripts	SID-History	Host							
	Instrumentation	LSASS Driver	Injection	Indirect Command Execution							

(Sample Coverage Map. Above created using: https://mitre-attack.github.io/attack-navigator/enterprise/)

Note that specific TTPs are selected, allowing the organization to identify and address the gaps that matter. This may not always be possible due to a variety of reasons. The amount of logging necessary may be too much and impractical, or the TTP may require a tool that would require a significant financial investment that is not in budget.

Cyber Analytics Repository

A Cyber Analytics Repository (CAR) is a catalog of product-specific queries used to hunt TTPs identified in the coverage map. For example, if an organization uses Splunk the query will be in SPL, if an endpoint detection and response agent (Endgame for example) is used the query will be in EQL, etc. The CAR may also include Use Cases from which to create alerting rules. Use Cases can be described as the type of activity we expect from threat actors. An example Use Case may be PowerShell execution from a malicious word document. Alerts are then based on this Use Case.

One popular CAR template is available from MITRE's GitHub page: https://github.com/mitre-attack/ car. It includes queries for several TTPs in the MITRE ATT&CK framework.

Below is an example of the Powershell page from MITRE:

CAR-2014-04-003: Powershell Execution

PowerShell is a scripting environment included with Windows that is used by both attackers and administrators. Execution of PowerShell scripts in most Windows versions is opaque and not typically secured by antivirus which makes using PowerShell an easy way to circumvent security measures. This analytic detects execution of PowerShell scripts.

Powershell can be used to hide monitored command line execution such as:

- net use
- sc start

Submission Date: 2014/04/11 Information Domain: Host Data Subtypes: Process Analytic Type: TTP Applicable Platforms: Windows Contributors: MITRE

ATT&CK Detection

Technique	Tactic	Level of Coverage
PowerShell	Execution	High
Scripting	Defense Evasion	Moderate

Data Model References

Object	Action	Field
process	create	exe
process	create	parent_exe

Implementations

Pseudocode

Look for versions of PowerShell that were not launched interactively.

```
process = search Process:Create
powershell = filter process where (exe == "powershell.exe" AND parent_exe != "explorer.exe" )
output powershell
Splunk, Sysmon native
Splunk version of the above pseudocode.
index=_your_sysmon_index__ EventCode=1 Image="C:\\Windows\\*\\powershell.exe" ParentImage!="C:\\Windows\\explorer.exe" |stats values(Come
```


Hunting Begins

Ultimately, the goal of any security team is prevention of malicious activity through the deployment of security controls. This is not always possible, due either to lacking controls or the fact that not all malicious activity is distinguishable from normal user activity. This is where threat hunting comes in.

Threat hunters detect malicious activity and coverage gaps overlooked by security controls or auditing tools, but detection should not be their only role. They should drive threat and risk mitigation. It is not enough to discover a threat actor on a network or a coverage gap. They must reach out to the appropriate teams in an organization with suggestions on how to remove threats and close gaps.

Relationship Overview

Security teams at organizations are often split into the following:

Team

Security Operations Security Engineering Risk and Compliance Policy

Resposibile for:

Developing alerts and Incident Response Security tools deployed to systems (EDR, AV, firewalls) Tracking systemic risks and information assurance Creating and updating policies for organization, including acceptable use

Reporting Success - Measuring What Matters

Threat hunting carries an unusual value proposition. Unlike a development team or a product team, a Threat Hunt team's outcome is less tangible. The Threat Hunt team delivers findings, not products, divided into two sets; threats and risks. Threats include malicious or suspicious activity on the network. Risks include coverage gaps, missing logs or missing alerts. Both sets are tailored to an organization's requirements.

Not all findings will have equal value. For example, discovering an advanced threat actor on a network will have much more value than finding adware on an endpoint. It is important to define values for findings and to keep track of these values in order to demonstrate the return on investment that the Threat Hunt team brings to an organization.

Below is an example of one way to define and quantify Threats and Risks.

Values of Threats Discovered		
Value	Definition	
High	 Threat actors on the network Malware that may allow for the remote control of a system and/or further infections Unauthorized external access regardless of intent or motive Credential leaks which may lead to future compromise, whether leak is public or internal 	
Medium	1. Policy abuse 2. Risky software (e.g., RAT, unapproved AV) 3. Risky traffic (e.g., large transfers to drop sites	
Low	1. Potentially unwanted software	

Values of Risks Discovered		
Value	Definition	
High	 Requires a large financial investment to address and possible cultural change to address. Use Case Development Misconfiguration that may pose a risk to the environment 	
Medium	1. Missing patches that pose a risk to the environment 2. Missing logs	
Low	 Gaps that are quick fixes (i.e. missing security product or patch on a single host) 	

The Threat Hunt team uses the above metrics to demonstrate their value and organizational impact to management.

To ensure that findings are addressed the threat team must track closure. A ticketing system such as Jira is a useful tool for tracking closure. Assign each ticket with the responsible security team as well as its value metric. At the end of each quarter, the team can provide these metrics to management. In turn, management can use the metrics as a guide to allocate resources. For example, the Threat Hunt team may have discovered risks and gaps that fell under the onus of the security engineering team. By the end of the quarter, if the security engineering team has only actioned a small percentage, management can consider allocating additional resources to that team.

The chart below is a sample deliverable to management.

The above may suggest that the Security Engineering and Policy teams are capable of addressing the issues discovered by the Threat Hunt team, while the Security Operations or Risk and Compliance Team may require more investment and resources. Of course the Threat Hunt team would want to quantify its findings and present them as a chart to management and demonstrate ROI:

About this Campaign

One application of an actionable cyber threat intelligence program should inform where a security stack cannot detect. Over the coming month, Nisos will publish a variety of articles that go deeper building an actionable cyber intelligence program that builds on a hypotheses-led threat hunting program with limited resources allowing a program to scale over time. We will dig into more depth around how to effectively use risk findings, penetration testing results, threat intelligence feeds, and incident response reports to systematically report and track hypotheses that deliver actionable reporting and metrics. If captured appropriately, a security program can scale by reducing resources to the security unit teams but reducing time to respond which is the ultimate goal of any SOC.