
FinOps for
Kubernetes:
Unpacking container
cost allocation and
optimization
www.finops.org

FinOps for
Kubernetes:
Unpacking container
cost allocation and
optimization

Addressing how and why containers complicate how teams

manage the visibility and optimization of container costs, and

how to apply FinOps best practices to improve cloud financial

management.

Before you begin reading this paper

You should understand the basics of how cloud computing works, know the key services on your cloud
providers, including their common use cases, and have a basic understanding of billing and pricing models.
Being able to describe the basic value proposition of running in the cloud and understand the core concept
of using a pay-as-you-go consumption model are also necessary.

You’ll also need to have a base level of knowledge of at least one of the three main public cloud providers (AWS,
Azure, Google Cloud). For AWS, we recommend AWS Business Professional training or, even better, the AWS
Cloud Practitioner certification. For Google, check out the Google Cloud Platform Fundamentals course. For
Azure, try the Azure Fundamentals learning path. Each can usually be completed in a full day workshop.

Introduction

Since containers and container orchestrators are becoming a popular choice for many teams, it’s vital
to understand the fundamental impact of these containerized workloads on FinOps practices. Shared
resources, like containers, create challenges with cost allocation, cost visibility, and resource optimization.

In the containerized world, traditional FinOps cost allocation (e.g. mapping costs of resources back to
teams or projects one-to-one) doesn’t work. You can’t simply allocate the cost of a resource to a tag or label,
because resources may be running multiple containers, with each supporting a different application. They
also may be attached to different cost centers around the organization.

Whether you’re a part of a team with an established FinOps practice, or are building up the discipline,
everyone can relate to the challenges of mapping cloud utilization cost to their drivers one-to-one. And then
come containers and Kubernetes. All of a sudden, those foundational cloud finance management practices
need to be tweaked a bit. Have no fear though-- the same FinOps principles and practices can help your
teams track containerization spending accurately.

We created this whitepaper to cover key questions, challenges, and considerations that any FinOps teams
should understand before tackling containerization in the cloud. If you’re already using containerized
services, then use this guide to double check that your teams are operating with strong, modern FinOps best
practices.

This whitepaper will go over general container terms and concepts. It will also explore and address
Kubernetes and container costs from the lens of FinOps core practices:

•	 Inform: Understand how the public cloud providers charge for their Kubernetes services. Learn why
performing chargeback and cost allocation in environments with Kubernetes is challenging.

•	 Optimize: Look for ways to continuously optimize your Kubernetes clusters and pods.

•	 Operate: Determine your approach to container cost allocation and build policies to govern container
spending, and integrate tooling to help manage container costs alongside traditional cloud spending.

Let’s begin.

FinOps Foundation 1FinOps for Kubernetes: Unpacking container cost allocation and optimization

Looking at Kubernetes costs from
a FinOps angle

When you look at the challenges that containerization poses for FinOps—cost visibility, cost showback/
chargeback, and cost optimization—you quickly realize that you’re encountering the same difficulties you
faced as you moved into the cloud.

Containers represent another layer of virtualization on top of cloud virtualization, which creates a new
wrinkle of complexity when it comes to tracking its costs. We’ll be using fundamental FinOps practices to
solve these challenges.

This paper will walk through container and Kubernetes FinOps challenges into the same inform, optimize,
and operate lifecycle that you would apply to the broader cloud FinOps.

Relevant Terms and Concepts

Let’s quickly run through the basics for anyone not familiar with containers or Kubernetes before we go further.
It will also be helpful to create a common understanding of these components throughout this whitepaper.

Note: While there are many similarities between AWS Elastic Container Service (ECS) and Kubernetes, there are
different terms used within each. For simplicity—besides when talking about Kubernetes specifically—we refer to
“containers” and “server instances” where Kubernetes would refer to “pods” and “nodes.”

Containers are, quite simply, a way to package software. All of the requirements and settings are baked
into a deployable image. Container orchestration tools like Kubernetes help engineers deploy containers to
servers in a manageable and maintainable way.

There are a few key terms we will use throughout this chapter:

FinOps Foundation 2FinOps for Kubernetes: Unpacking container cost allocation and optimization

Term Definition

Image A template of a container with the software that needs to be run.

Container An instance of a container image; you can have multiple copies of the same image
running at the same time.

Server
instance/node

A cloud server (e.g., EC2 instance, virtual machine).

Pod This is a Kubernetes concept. A pod consists of a group of containers and treats
them as a single block of resources that can be scheduled and scaled on the cluster.

Container
orchestration

An orchestrator manages the cluster of server instances, and also maintains the
lifecycle of containers/pods. Part of the container orchestrator is the scheduler,
which schedules a container/pod to run on a server instance. Examples include
Kubernetes or AWS ECS.

Cluster A group of server instances, managed by container orchestration.

Namespace Another Kubernetes concept, a namespace is a virtual cluster where pods/containers
can be deployed separately from other namespaces.

Pod labels Pod labels are key/value pairs that can identify attributes of objects that are
meaningful and relevant to users, but do not directly imply semantics to the core
system. Each object can have a set of key/value labels defined. Each Key must be
unique for a given object. These can be helpful when you want to group more than
one namespace, for example.

Dev and Staging Cluster

Node0 Node1

Node2 Node3

Pod

Pod

Pod Pod

Pod Pod

Pod Pod

Pod Pod

Pod Pod

Pod Pod

Pod

Pod

Staging

DevTeam1

DevTeam2

Namespace

Figure 1: Basic view of a Kubernetes cluster

A Kubernetes cluster (see Figure at left) consists of a number of nodes
(server instances) that run containers inside pods. Each pod can be
made up of a varying number of containers. The nodes themselves
support namespaces used to isolate groups of pods.

FinOps Foundation 3FinOps for Kubernetes: Unpacking container cost allocation and optimization

Inform: How container and
Kubernetes costs are generated

Your first focus should be to generate reporting that determines the cost of individual containers on the clusters
that teams are operating. This is a foundational step toward building visibility into your container spending.

How container cost allocation is different

Cloud service providers will charge your teams for every server instance that makes up a cluster. These
charges are incurred when containers are deployed into a cluster, as they consume some amount of the cluster’s
resource capacity. The moment a process is run, a charge is incurred. It’s similar to when you provision a
server with your cloud service provider. You pay for that server resource, whether you use it or not.

In order to allocate the individual costs of a container that runs on a cluster, you’ll need some way to
determine how much of the underlying server the individual container consumed. You also need to understand
the satellite costs of a running cluster. These include management nodes, data stores used to track cluster
states, software licensing, backups, and potential disaster recovery costs. These costs are all part of running
clusters and must be taken into account in your cost allocation strategy.

Container features bring up cost complexity

What users enjoy about container orchestration services is that they can greatly simplify:

•	 Scheduling how your teams spin up containers based on utilization requirements

•	 Managing network scaling and connection at various granularities

•	 Autoscaling and automating node creation and deletion to adapt to your changing workloads

You can run Kubernetes on virtual machine (VM) services provided by all major cloud providers, or use their
native offerings to manage Kubernetes clusters. Examples include:

•	 Amazon Elastic Kubernetes Service (Amazon EKS) on AWS

FinOps Foundation 4FinOps for Kubernetes: Unpacking container cost allocation and optimization

•	 Google Kubernetes Engine (GKE) on Google Cloud

•	 Microsoft Azure: Azure Kubernetes Service (AKS)

•	 IBM Cloud: IBM Cloud Kubernetes Service

•	 Oracle Cloud Infrastructure: Oracle Container Engine for Kubernetes

•	 Alibaba Cloud: Container Service for Kubernetes (ACK)

Every provider will offer their own levels of support and service, including helping your teams migrate to
the cloud. All of these services are like other cloud services: pay-as-you-go. Though pay-as-you-go cloud
billing can be convenient, the ability of a cluster to run multiple projects from multiple teams can make cloud
financial management and cost allocation a challenge.

The traditional approach to billing for managed kubernetes services is to charge per cluster per hour, plus
the additional underlying resources that the cluster consumes. This makes container cost management
especially challenging since you can’t simply look at your cloud bill and see which resources are being
consumed by a container cluster.

Why is it harder to bill and report on Kubernetes costs?

Allocating costs in a container environment surfaces additional challenges than traditional cloud
environments. In a traditional cloud environment, FinOps practitioners can tag non-container resources one-
to-one, allowing reporting tools to easily map services to cost centers. Assigning accountability for those
apps is simply a mapping exercise of app vendor tags to a team.

With Kubernetes, one-to-one mappings of tags to teams don’t cover some of the complex use cases that
container utilization can create. Most Kubernetes clusters are shared services with applications run by any
number of teams. This means there’s no direct cost to a specific container; a series of them are coming together
to generate costs per cluster of work. There is no easy way to map cloud charges to specific container usage.

Workload A

Workload BBusiness Developers

Co
re

s

M
em

or
y

Di
sk

Eg
re

ss

Lo
ad

 b
al

an
ci

ngCost
Management

Dev
Tools

Workload C

Figure 2: A high-level look at how container

ized services can be labeled and mapped.

Source: Debo Aderibigbe, Billing Product

Manager, Google Compute Cloud, FinOps

Summit: Cost Visibility and Optimization

in Kubernetes, KubeCon, CloudNativeCon

EU 2020.

FinOps Foundation 5FinOps for Kubernetes: Unpacking container cost allocation and optimization

https://kccnceu20.sched.com/overview/type/FinOps+Summit
https://kccnceu20.sched.com/overview/type/FinOps+Summit
https://kccnceu20.sched.com/overview/type/FinOps+Summit

Containers are deployed in Kubernetes clusters, which consume cloud resources (such as compute) just as
any other tenant would. The challenge lies in the fact that, within each cluster, you generally have multiple
teams consuming portions of those underlying resources.

Additionally, containerized environments are much more dynamic than non-containerized ones, with the average
lifespan of a container being one day versus a typically much longer utilization time for a VM. Given the dynamic
nature of the Kubernetes scheduler, workloads can be rescheduled across instance type, zone, or even
region. This makes cost management even more complex, as you must keep up with the rapid pace of change.

Tracking shared cluster and off-cluster resource costs together

Shared
Kubernetes
Cluster

Off Cluster
Resources

App #1 App #3App #2

Big Query
Tag = #1

Big Query
Tag = #2

RDS
Tag = #1

RDS
Tag = #2

RDS
Tag = #2

ES
Tag = #3

SQL
Tag = #3

Waste

Container

Figure 3: Applications with Shared Infrastructure and

Services (Kubernetes)

Source: Casey Doran, “FinOps Summit: Cost Visibility and

Optimization in Kubernetes”

The reality is that both models – your container costs from your shared clusters and from your cluster
resources – need to be considered, tagged, and properly allocated. Teams using Kubernetes will also
have non-Kubernetes resources, and need a cost model that can take both into account. Aligning your Tag
strategy with your Kubernetes labeling strategy is critical for complete allocation.

So, how do we unravel this complexity and improve how we manage container costs? First, let’s quickly
review how our teams are billed for Kubernetes usage.

Cost allocation practices and policy examples to govern

container spending

With cloud financial management, predictability is king. Experienced FinOps practitioners will keep costs within
budget and minimize surprises. Teams that are used to data center costs know that they are fixed and recurring.
The transition to cloud services changes this expectation, and containerization further complicates things.

FinOps Foundation 6FinOps for Kubernetes: Unpacking container cost allocation and optimization

https://www.datadoghq.com/container-report/
https://www.datadoghq.com/container-report/

Container classes within Kubernetes

Cluster orchestration solutions like Kubernetes allow you to set different resource guarantees on the
scheduled containers called Quality of Service (QoS) classes.

Guaranteed resource allocation

For critical service containers, you might use guaranteed resource allocation to ensure that a set amount
of vCPU and memory is available to the pod at all times. You can think of guaranteed resource allocation as
reserved capacity. The size and shape of the container do not change.

Burstable resource allocation

Spikey workloads can benefit from having access to more resources only when required, letting the pod use
more resources than initially requested when the capacity is available on the underlying server instance.
Burstable resource allocation is more like the burstable server instances offered by some cloud service
providers (T-series from AWS and f1-series from GCP), which give you a base level of performance but allow the
pod to burst when needed.

Best effort resource allocation

Additionally, development/test containers can use best-effort resource allocation, which allows the pod to
run while there is excess capacity, but stops it when there isn’t. This class is similar to preemptible VMs in
GCP or spot instances in AWS.

When the container orchestrator allocates a mix of pods with different resource allocation guarantees onto
each server instance, you get higher server instance utilization. You can allocate a base amount of resources
to fixed resource pods, along with some burstable pods that may use up to the remainder of the server
resources, and some best effort pods to use up any spare capacity that becomes available.

Now that we’ve covered somebasics, the next part of this section will start to explore some tactics to begin
container cost allocation. We’ll cover:

•	 Creating better understanding between dev, ops, and finance to work toward a more predictable budget. Using
tools to automate away human error and use containerization services with more cloud financial accuracy.

•	 Using resource or application-defined aggregation: Stopping individual teams from creating many unique
projects and instead, using defined and dedicated clusters.

•	 Assigning teams to namespaces can help provide accurate means to charge back container costs to
respective projects and teams.

•	 Taking cloud service tagging to the next level with container cluster labels.

FinOps Foundation 7FinOps for Kubernetes: Unpacking container cost allocation and optimization

Customers want
costs in these
types of “cost
containers”

Org, Folder, Project To do:

Cores
RAM
GPU, TPU
Load Balancers
Persistent Disk
Custom Machines
Network Egress

i.e. (”default” and/or
“development’, etc.

Team/Dept (i.e. “DevOps”)
Cost Center (i.e. “Finance”)
Application Name (i.e. “KMS App”)
Environment (i.e. “Prod” or “Staging”)
Version # (i.e. “Version 1.0”)
Subcomponent (i.e. “Front End Controller”)
Customer (SaaS) (i.e. “AcmeBiz”)

Invoice Audits

Billing Hierarchy

Labels

Namespaces

Resources

Cost Allocation

Forecasts

Cost Control/Budgets

Cost Optimization

Scenario Modeling

Quota/Caps

Figure 4: A look at how complicated cost allocation for containers can be.

Source: Debo Aderibigbe, Billing Product Manager, Google Compute Cloud,

FinOps Summit: Cost Visibility and Optimization in Kubernetes, KubeCon, CloudNativeCon EU 2020.

In any FinOps or cloud financial management strategy, flexibly understanding costs can drive more
accountability. The goal: to help users see their container cost drivers by both services used and container
workload. Combining these two layers helps teams determine their Total Cost of Ownership.

Taking a deeper look at specific containerization costs

One method, recommended by Debo Aderibigbe, a Google Cloud Billing Product Manager, is to break down costs by:

•	 Billing Hierarchy: Organizations, folders, projects, normalizing them with cross-cloud concepts:
Linked Accounts, Tags, kSubscriptions, etc.

•	 Resources: Compute cores, RAM, GPU, TPU, Load Balancers, Persistent Disk, Custom Machines,
Network Egress

•	 Namespaces: labeling specific, isolated containers

•	 Labels: Teams, cost centers, app names, environment, and more

With a deep labeling and tagging of all of these cost drivers, users can improve the accuracy of how
they invoice teams, audit costs, allocate costs, optimize overrun costs, model budgeting scenarios, or fit
workload costs within quotas or under budget caps.

What are customers looking for more specifically?

FinOps Foundation 8FinOps for Kubernetes: Unpacking container cost allocation and optimization

FinOps Summit: Cost Visibility and Optimization in Kubernetes

Consistent labeling and namespace strategy to improve

allocation

Once you’ve implemented a consistent and robust labeling and namespace strategy, you can start to
consider how you will allocate cluster costs. Unless you’re using GKE, you can’t easily see which groups are
driving costs within a cluster.

A common methodology will be to look at the proportional resources consumed by each group (label,
namespace, etc) and use that to allocate the cluster costs to those groups. For example, if you have four
namespaces in a cluster that each consume 25% of the cluster resources, you could decide to allocate 25%
of the total cluster costs back to each of those namespaces.

In the real world, any environment will never be this simple or straightforward. One additional layer of
complexity is answering the question of how are you determining cluster resource utilization? Will you base
it off CPU, memory, or a combination of the two? Do you want to consider requests or actual consumption?

There are pros and cons to each of these approaches, as outlined in the table below.

Resource Requests Actual Usage​

Advantages •	 Allocate all costs​

•	 Incentivize teams to only provision
what they need​

•	 There are tools to help!​
(e.g. vertical pod autoscaler)

•	 Each team / app only pays for what
they use

Challenges •	 Some organizations are not using
resource request fields yet​

•	 May also incentivize under-specifying
requirements

•	 Who pays for the rest (idle time /
cycles)?​

•	 What do we do about
overprovisioning?​

•	 Can incentivize teams to provision
more just in case, and not pay for it​

•	 Can set unrealistic goal of 100%
utilization​

FinOps Foundation 9FinOps for Kubernetes: Unpacking container cost allocation and optimization

Going beyond the Core Cluster Costs

When allocating the costs out to the consumers of the cluster, it’s important to consider not only the cost of
the compute nodes the container operated upon, but also the satellite costs of operating the cluster.

Management / Cluster Operational costs

Costs charged by the cloud service provider for managing the cluster or costs incurred by running self
managed container orchestrator nodes should be considered. Edge services like WAF, Load Balancers, etc
also contribute to the overall cost of running a workload on a cluster.

Storage Costs

Containers consume storage even if this is treated as ephemeral by the services running inside the container.
Outside of the container however, consider the host OS on the nodes and any backup or data retrieval storage
that is used in operating a production cluster can be allocated back to the workloads running on the cluster.

Licensing

Licensing costs are always a fun topic, if you are running licensed operating systems for the host node.
License costs may be included in the charge by your cloud service provider. However, if you operate these
using bring your own license (BOYL), the license cost will need to be allocated from the external spend.
Alongside the host operating system, consider any software packages running on the host OS that incurs a
license fee. The workload itself running inside the container may also be using licensed software that may
need to be allocated.

Observability

Often, metrics and logs are sent from the cluster to a service which your teams are able to visualise, monitor,
and alert upon. This data is sent either to services operated by the cloud service provider or even 3rd party
SaaS solutions like (Splunk Cloud, Sumo Logic, Datadog, SignalFx, etc).

Security

The major cloud service providers now have very extensive security related services to assist in maintaining
a secure cloud environment. Enabling these security features however does not often come for free, and
these additional costs may need to be allocated to your teams.

Tempting as it may be to include every individual dollar from all of the above sources in your cost allocation
strategy, as with everything FinOps, we recommend you start simple and grow your practice over time
(Crawl, Walk, Run). It can become overwhelming to implement all of these cost allocation items at once,
and as you develop both a process to allocate costs and the understanding of the allocation around your
organization, the divide and conquer approach will be more likely to succeed.

FinOps Foundation 10FinOps for Kubernetes: Unpacking container cost allocation and optimization

Addressing static versus runtime container costs

Containerization costs are also broken up into two primary types: Static and Runtime costs.

Static costs

For static costs, you need to consider the creation of the solution within the container to ensure the quality
of the solution to the project but also how it affects the CPU, Network and Storage when deployed. Static
container costs can be further defined by stateless and stateful containers: Stateless examples of these include:

•	 Web servers with static resources: Apache, Nginx, IIS,

•	 application servers, stateless applications: Tomcat, nodeJS, JBoss, Symphony, .NET

•	 Microservices; Spring Boot, Play, Quarkus

•	 Tools: Maven, Gradle, scripts, tests

Application servers with stateful applications

There is often a need to store user sessions in an application. Two approaches to handling this case are to
use a load balancer with session affinity to ensure the user always goes to the same container instance or to
use an external session persistence mechanism which all container instances share.

There are also some components that provide native clustering such as portals or persistence layer caches.
It’s usually best to let the native software manage synchronization and states between instances. Having the
instances on the same overlay network allows them to communicate with each other in a fast, secure way.

Databases

Databases usually need to persist data on a filesystem. The best practice is to only containerize the
database engine while keeping its data on the container host itself. This can be done using a host volume,
for example: $ docker run -dit -v /var/myapp/data:/var/lib/postgresql/data postgres.

Kubernetes can also be used as an alternative to managed database services. For example, a cluster
dedicated to MongoDB or Elasticsearch can deliver something similar to a fully-managed service for a
fraction of the cost.

Applications with shared file systems

Content Management Systems (CMS) use filesystems to store documents such as PDFs, pictures, Word files,
etc. This can also be done using a host volume which is often mounted to a shared filesystem so several
instances of the CMS can access the files simultaneously.

FinOps Foundation 11FinOps for Kubernetes: Unpacking container cost allocation and optimization

Runtime costs

Runtime costs by most are assumed to be static for containers. How you run your containers will affect your
bottom line. Examples of these costs from cloud service providers include:

•	 Bandwidth is often overlooked or underappreciated in estimating cloud computing charges.

•	 Leaving a containerized application deployed that you forgot about is a surefire way to get a surprising bill.
Once you put applications or data into the cloud, they continue to cost you money, month after month, until
such time as you remove them. It’s very easy to put something in the cloud and forget about it

•	 Compute charges are not based on usage.

•	 Polling data in the cloud is a costly activity and incurs transaction fees. Very soon the costs could add up
based on the quantity of polling.

•	 Unintended traffic in the form of DOS attacks or spiders etc. could increase traffic in unexpected ways.
The best way to deal with such unintended charges is to audit the security of the application and provide
measures of controls such as CAPTCHAs.

•	 Management: Regularly monitor the health of your applications and its billing. Regularly review whether
what’s in the cloud still needs to be in the cloud. Regularly monitor the amount of load on your applications.
Adjust the size of your deployments to match load.

How LiveRamp addressed containerization costs on GKE

The LiveRamp team migrated on-prem services to Google Cloud Platform, scaling up container services (and
costs), which caught the eye of the Finance team. They completed a successful technical migration, but a
month later, budgets were overrun. They needed a way to explain what happened.

At that time, LiveRamp was missing the cultural shift to FinOps, and developers didn’t understand their new
responsibilities were to cloud finances. To increase this understanding, container-focused FinOps principles
helped rationalize cloud cost and operational decisions in different ways. They had to overcome challenges
that came up due to every team having their own accounts and setups.

After much FinOps-focused work, new policies were built in, such as enforced name-spacing for large clusters
and better tagging and labeling to improve accuracy of allocation, both key FinOps practices. It also helps
to find tooling that suits your teams needs in managing cloud financial management, e.g. Cloudability,
CloudHealth, native tools, etc.

-Sasha Kipervarg, (former) Head of Global Cloud Operations, LiveRamp

FinOps Foundation 12FinOps for Kubernetes: Unpacking container cost allocation and optimization

Considerations for container savings in production

Containerized deployments can realize up to 90% in discounts compared to on-demand prices for running
stateless and fault-tolerant applications. Containers that shall be ephemeral and stateless adhere to a
graceful startup and graceful shutdown.

With these qualities, serverless deployments become more attractive due to the fact that these deployments
are only charged when running. Another way to think about it is that you’re charged nothing while in a
dormant state. Just deploying the contents to a serverless API is not enough as you must obtain equal
functionality with performance. The cold start becomes your nemesis.

However, new boundaries are opening up that allow universal batch serverless loads to run on cloud
providers, such as Apache Beam. Once enabled, many new areas from IT will be able to participate in the
savings, following sophisticated data-parallel processing pipelines that enable execution across a diversity
of cloud provider engines, or runners.

FinOps Foundation 13FinOps for Kubernetes: Unpacking container cost allocation and optimization

Optimize: Build in cost efficiencies
for your Kubernetes environment

Like the inform phase, the optimize phase in the container world is a direct adaptation of your original FinOps
practices built for cloud platforms, but applied with the complexities of containers in mind.

One can argue that containerization solves the rightsizing problem. Having more workloads running on the
same server instance appears more cost-effective. But as you’ve seen so far, it’s a complex task to measure
which teams or projects generate these costs, or whether or not you’re getting savings from your clusters.

Let’s take a look at how your FinOps practices have to evolve in order to be successful.

Once you’ve successfully charged back your kubernetes costs, the next step is to look for ways to optimize
your kubernetes environments to reduce costs. There are several steps FinOps practitioners can partner with
DevOps teams on to ensure that kubernetes costs don’t accelerate out of control.

Pod / Container Rightsizing

Ensure that your containers are asking for an appropriate amount of resources. Since asking for too little
means your application is not able to perform, often there is some buffer between the requests or limits
configured for a container and what it really needs.

When this buffer is larger than necessary is when there is opportunity for cost savings. The Vertical Pod
Autoscaler (VPA) is an example of an open source project that will help you by automatically adjusting
the requests and limits configuration based on how much a container is seen to use, thereby saving you
resources and cost while reducing overhead.

The Horizontal Pod Autoscaler (HPA) is meant to scale out and in rather than up and down for the workloads.
Caution here is to make sure the VPA and HPA policies don’t interfere with each other.

Binning and packing density settings are important and should be reviewed when designing clusters for purpose
or business class tier of service where development or cost-focused clusters are meant to get as many containers
per host. Meanwhile costs where production or performance clusters settings would be scoped for different
needs and patterns. Having the ability to match the right quantity of pods and namespaces per instance family for
your app is a good way to build a reference model that ensures proper capacity, availability, overhead, and economics.

FinOps Foundation 14FinOps for Kubernetes: Unpacking container cost allocation and optimization

Another thing to look out for is making sure Ingress
controller settings for ensuring proper traffic shaping and
load mgmt to containers are being leveraged.

Node Rightsizing

Next is the choice of worker node type for the cluster. This
becomes a type of bin packing problem except with all the
complexities of the various platform choices.

Often simply making incremental improvements, for
example when you notice that your nodes always have
excess memory, it can make sense to switch to a node type
that is the same but offers slightly less memory. In practice
however this can be more complex. For example, if you have
workloads that often consume more than they requested
and distinguish the difference between those cases where
it was needed and where it was only consumed because it
was available but wasn’t critically needed.

Consider using instance weightings scores while you are
producing a whitelist of instance size/types that are a good
fit to run. The instance weighting will be useful when you are
relying on diversified allocation strategies in a spot market
where pricing may be the same but will help ensure the
right value for your code is going to be provisioned based
on weight values.

Autoscaling Adjustments

Something that makes Kubernetes especially powerful is the
wealth of autoscaling options and the ability to respond dyna
mically to different conditions, such as increased or decreased
demand. This can take some architecting and iterative adjust
ments to get right for your application, and there is room for
waste along the way. However, the more tightly your horizontal
pod autoscaling (when we need more / less pods) and cluster
autoscaling (when do we need more / less nodes) are configured,
the less waste and unnecessary cost to run your application.

Unraveling complexities
from large-scale, multi-
cloud enterprise container
utilization

Just when you think you have
containerization and cluster costs
somewhat under control, a merger
and/or acquisition comes along and
adds another cloud service provider
or two. This can complicate how the
company conducts complete
chargebacks and cost allocation.

Having a cloud cost management
platform, whether native tooling or a
dedicated application, can reduce the
complexity and friction of allocating
container costs. Cloud cost manage
ment platforms are most effective
when the fundamentals are covered:

•	 Observing utilization by Kubernetes
constructs and associating it with
cloud billing data

•	 Use Label Key/Value pairs in
Kubernetes to align with internal
cost centers

•	 Unifying Kubernetes label keys with
traditional key tags to deepen the
allocation model

With these fundamentals in place,
FinOps teams can account for
Kubernetes cost in a holistic way, no
matter how complex an enterprise’s
infrastructure might be. They can
analyze costs by cluster or namespace,
by cost center, and fully and accurately
allocate these costs correctly.

Casey Doran,

Director of Product,

Apptio Cloudability

FinOps Foundation 15FinOps for Kubernetes: Unpacking container cost allocation and optimization

Discount types

Most cloud environments offer discount options that can offer significant savings, so long as the terms work
for you and your application.

Spot / Low Priority / Preemptible worker nodes

These go by different names but typically provide a discount for workloads that may disappear on short
notice. This allows cloud providers a way to incentivize filling all capacity pockets while being able to adjust
for incoming workloads of priority that will pay on demand rates.

The declarative nature of Kubernetes makes it more conducive to taking advantage of spot discounts, as
interruptions in the worker node fleet will be noticed and replaced. Still, some applications may not be
tolerant of these interruptions. Applications that may fit this profile include data intensive workloads that
may run in batches or are not as time sensitive such as machine learning training.

Commitment discounts

These also go by several names and mechanisms such as Reserved Instances, Savings Plans, Committed
Use Discounts, Subscription Discounts, etc., but all typically offer a discount to users in exchange for a
long term commitment to spend with that cloud provider. These commonly cover compute resources, and
for users who expect to have consistent usage for a year or more on a given cloud (and in some cases for a
given workload type), this is an option to lower your cluster costs.

The ability to enable a purchase method mix and declare the split percentage of on demand, committed, and
spot variable pricing is a great way to automate that into a cost efficiency blueprint.

For example: 10% committed use for control plane, 90% spot for workers/replicas for non prod, 50/50 for prod etc.

Producing the pre-built helm charts or launch plans ahead of time and publishing for reusability, with all the
various optimizations included, ensures the wisdom can be put into practice with minimal experience and friction.

“Kubeless” or “Serverless Containers” are an emerging option where the cloud provider is providing a
higher order service that is consumed and may solve skills shortages by the customer in operating and
administering Kubernetes clusters. Others have looked to Kubeless solutions on FPGA type instances where
results are dramatically faster, much lower cost, and without the operating system (OS) and container drag
along of what is needed to log, patch, monitor, and maintain an OS and Kubernetes cluster.

FinOps Foundation 16FinOps for Kubernetes: Unpacking container cost allocation and optimization

https://medium.com/@inaccel/fpgas-goes-serverless-on-kubernetes-55c1d39c5e30

Operate: Build
policies and
practices to manage
Kubernetes costs

Now that Kubernetes costs can be accurately allocated, and
ways to optimize those costs are known, it’s time to build a
sustainable practice to enforce FinOps-focused policies and
exercises. For example, scheduling development containers
to be turned on and off around business hours, finding and
removing idle containers, and maintaining container labels/
tags by enforcement are just some of the practices to teach
and empower teams to utilize.

Tooling option to manage container

costs

Most companies on the path toward mastering FinOps for cloud
services, including container costs, often take one of three
paths. Whether it’s building in-house tooling to DIY their way
to success, using native tooling provided by a cloud service
provider, or using a cloud financial management platform,
every choice has its pros and cons.

DIY tracking of container costs

If your teams have the talent and resources to do so, creating
a DIY approach to tracking cloud financial data, including
container costs, can be a way to make sense of this spending.
Companies at massive scale are doing this today, including

Start your FinOps team with a
strong foundation

Before adding practices and policies
to better track containerization
costs, ensure that your teams have
strong cloud financial management
fundamentals. Work with your
finance team and overall center
of cloud cost of excellence to get
aligned and have strong answers to
the following questions:

•	 Do you have established reporting
capabilities and KPIs across the
infrastructure?

•	 Do your teams consistently run
checks to ensure cloud financial
governance and policies are
being followed (understanding
how to use namespaces, tagging
untagged resources, using
semantic tags to relate to
projects/teams, automating tag
correction to reduce errors)?

•	 How well do your teams provision
only what they need? Can they
explain what those costs are based
on and report on them
accurately?

•	 Who pays for shared, common
services?

•	 Do your teams actively and
frequently identify opportunities
to optimize cloud resource
utilization (and are they
empowered to do so?)?

FinOps Foundation 17FinOps for Kubernetes: Unpacking container cost allocation and optimization

Answering these questions not only
requires implementing key FinOps
best practices, so catch up on
those first. They might also cloud
cost management solutions to help
teams see the same utilization and
cost reporting and act together to
increase efficiency.

Questions courtesy of

Jonathan Morin,

Sr. Product Manager,

CloudHealth by VMware

“Piping in cost as a first-
class citizen alongside this
data is an advanced FinOps
move that lets
engineers easily measure the
impact of infrastructure and
application-level changes.”

Webb Brown

CEO, Kubecost

Spotify, who run their own set of cloud management tools
via backstage.io.

This also might make sense if your teams are in early
stages of cloud utilization and generate billing data that
can be managed this way.

Using native tooling to track costs

Using native tooling, often in conjunction with internal
tools, can be another path toward FinOps success. As long
as there’s a means to access and digest cloud cost data
to generate chargeback and reporting that makes sense
to your business, you will likely be in good shape.
Unfortunately, if your teams are running a multi-cloud
infrastructure, you’ll likely have to use each respective tool
provided by each platform.

You might also need another data visualization or analysis
tool to aggregate all of this cross-cloud financial data into
one view.

Using a cloud financial management platform

When you get to a certain scale, manual efforts can cause
more pain than good and it’s time to use native tooling or
a dedicated cloud financial management platform. This
takes away manual human error and leaves allocation work
(assuming everything is tagged and named accurately) to
the tooling.

This can improve visibility into shared Kubernetes clusters
and their costs. It can also improve how costs are allocated
by teams or projects. Cloud financial management
platforms often have features that support multi-cloud
billing data as well.

However, a large part of your FinOps practice will be locked
into the feature sets and pricing provided by the third-party
tool. You might also have to annually make business sense
of pricing, contracts, and negotiations to get a fair deal
that makes sense for the size of your cloud infrastructure.
A good starting place is to look at the FinOps Certified
Platforms at the FinOps Foundation.

FinOps Foundation 18FinOps for Kubernetes: Unpacking container cost allocation and optimization

https://backstage.io/
https://www.finops.org/finops-certified-platform/
https://www.finops.org/finops-certified-platform/

Empower and incentivize developers to track their

Kubernetes utilization

With a well tagged and labeled infrastructure, this should provide the foundation for Dev and FinOps
teammates to build their own custom reporting to track utilization data. Whether it’s assisted via API from
native tools or cloud financial management tools, empowering teams to create and manage their own
monitoring can help quite a bit.

Most likely, your developers are already tracking key infrastructure metrics that help people monitor service
uptime and performance in real-time. Augmenting these existing metrics with cost data can enable them to
incorporate this information in their decision making process without major workflow changes.

Beyond costs that track spending and utilization, empower developers to further make their Kubernetes
setups even more efficient by leveraging tools that are already part of their existing workflows. Oftentimes,
this means embracing container-focused open source tools. Application management tools like Helm,
monitoring solutions like Prometheus, container workflow engines like Argo, and service mesh solutions like
Linkerd can really help engineer teams get actionable visibility for their Kubernetes clusters in near real-time.

FinOps Foundation 19FinOps for Kubernetes: Unpacking container cost allocation and optimization

Overcome Kubernetes
cost management
challenges with FinOps
best practices

FinOps practitioners know that the cloud only gets more
complicated from here, and that having strong cloud financial
management practices eases how we report on and allocate costs.

This whitepaper outlined some strong foundational steps to start
increasing the accuracy of how your teams report on container
costs. Within this paper, we covered:

•	 Inform: How the public cloud providers charge for their Kubernetes
services. We reviewed why performing chargeback and cost
allocation in environments with Kubernetes is challenging.

•	 Optimize: How to continuously look for ways to optimize your
Kubernetes clusters and pods, and recommended a few tactics
to test.

•	 Operate: We outlined a few approaches to container cost allocation
and build policies to govern container spending, and how to
integrate tooling to help manage container costs alongside
traditional cloud spending. We also reviewed different types of
tooling that can help your teams build cloud finance policies,
tracking, and governance.

As more users adopt and put containers and Kubernetes to work,
new best practices form around tracking both utilization and finance
data. This means our Finops lens on containers is constantly
changing and evolving.

Join our community

Get a deeper dive into unwinding
container cost and utilization
data by joining the FinOps
Foundation community.
Members are constantly
discussing container and
Kubernetes best practices and
sharing new tips and tricks. The
#finops-on-kubernetes Slack
room is a great place to join the
conversation, you’ll get a link to
join once your membership is
approved.

Check back and contribute
your expertise

We invite any FinOps practitioner
to check back for updates and
contribute to the conversation by
either joining our Community or
checking out our various GitHub
repos to lend your expertise.

Take a look at other
Cloud Native Computing
Foundation content

FinOps covers more of the
operational and financial side
of the cloud. The CNCF has a
vast collection of resources to
track other cloud-native projects.
Check out their library of
resources as well.

FinOps Foundation 20FinOps for Kubernetes: Unpacking container cost allocation and optimization

Acknowledgements

The FinOps Foundation extends its thanks to its community members
and guest contributors for all their help with this project. The more our
community gets together to tackle cloud cost optimization, the more
we all collectively learn.

We’d like to highlight the following people for going above and beyond
on this whitepaper: Debo Aderibigbe of Google Cloud Platform, Casey
Doran of Apptio Cloudability, Jonathan Morin of Cloudhealth by VMWare,
Mike Giacommetti, and Rachel Dines of CloudHealth by VMware, Sasha
Kipervarg of Ternary, Webb Brown of KubeCost, J.R. Storment, Mike
Fuller, Peter Treese, and Matt Leonard of Google Cloud Platform And to
Chris Aniszczyk for suggesting the collaboration with CNCF!

FinOps Foundation 21FinOps for Kubernetes: Unpacking container cost allocation and optimization

www.finops.org

