honeycomb.io

Do You Remember, the
Twenty Fires of September

Over September and early October, Honeycomb declared five distinct public incidents, for
various reasons and of various severities. As far as we are concerned, the whole month was
part of a broader operational burden, where over 20 different issues came up to interrupt normal
work. A fraction of them bubbled up to having a public impact that was noticeable and declared,
but most of the significant work would have been invisible. A retrospective would be incomplete
if we considered the incidents as distinct entities rather than part of a longer connected
sequence.

This series of incidents occurred in a context of continuous change. From August to September:

e The amount of data ingested by Honeycomb grew by roughly 40% (due to both individual
customer growth and overall customer count),

e The platform team was working on a migration of our infrastructure from Chef-managed
instances to containerized deployments

e The development of new features and integrations kept at a steady pace.

Most of the challenges described here come from a pattern of accelerated growth and scale,
highlighting performance degradation and brittleness in our stack in non-obvious
ways—particularly when multiple components are hitting inflection points at the same time on
multiple dimensions, and there's no clear way to single out any particular slow part. We'll
describe the various events that composed into that work—and omit some less relevant ones
for brevity even though they were part of a challenging workload—before doing a review of the
lessons that can be learned from our experience.

One additional thing to keep in mind as you read these is how many of these individual incidents
or near-misses feed into each other to progressively paint a more complete picture, where we
finally have enough data to explain everything that happened.

Incidents and nedar misses

Kafka Rebalancer wedges

Every Tuesday, an automated task we have shuts down one of our Kafka brokers in each
environment. This has become standard practice with multiple services that have a fixed cluster
size to ensure we are able to replace them. On August 31, the Kafka auto-balancer, which takes
care of moving partitions to keep load even, got stuck. A replacement broker came up, but no
partitions were assigned to it.

We got a non-paging alert from a trigger telling us that some partitions were under-replicated.
That tends to happen right after scheduled replacements, and along with other operations going
on, we believed it to be normal. It was only later, on September 1, that we noticed the Kafka
replication trigger was stuck in alerting mode.

We finally detected the replacement broker receiving no traffic. Thinking there was something
wrong with it, and knowing it had held little data and was leading no partition, we took it out.
Then the replacement’s replacement got stuck as well, and we knew something was odd.
Fortunately, none of this affected any customer since all our Kafka partitions are replicated on 3
brokers in different availability zones and could still tolerate more failures. After help from
Confluent’s support, on September 3, we found a procedure that unwedged everything.

A bad SSD blamed on a big customer

On Saturday, September 11, a single node of our distributed columnar data storage engine,
retriever, started seeing an elevated rate of file system errors that suggested a failure of its
solid-state drive. Retriever nodes operate in redundant pairs, so data storage was not impacted
by this failure. Both nodes in a retriever pair, however, participate in answering queries for a
particular subset of events. During this degradation, the disk errors caused queries handled by
this retriever node to incur a performance penalty of a couple seconds. The issue was noticed
on Monday morning, and after investigation, the offending node was replaced, restoring service
to normal.

The investigation was made more complex by recent discussions where we had wanted to try
going to bigger instances, which anchored responders into thinking this could be a capacity
issue. Since a large customer was the most impacted, we assumed they were to blame for the
overload.

honeycomb.io

https://status.honeycomb.io/incidents/c0d45m8zmvwr
https://status.honeycomb.io/incidents/c0d45m8zmvwr

Eventually, we would find that this fault was part of a broader series of failures that were noisy
throughout the month and related to a kernel bug around file systems. We have, however,
needed to go through many of these failures to see a pattern emerge and to investigate.

Some lessons from this investigations that may be of general interest:

1. Large customers can be red herrings. The incident happened early on the East Coast,
where a specific customer starts business and ramps up quickly. They were hit hardest,
to the point where it looked like they were causing the damage. The correlation was
thought to be causation when it was not. “Normal” has different meanings at different
times.

2. Hardware problems can be hard to detect with the way we instrumented our systems
because we seek problems in the data we have first. Things hidden in dmesg are
surfaced only after we exhaust more accessible tools.

3. While we thought only a major customer was impacted, all communications surrounding
the incident were kept internal, with remediation focused on managing their load. Once
the incident was re-framed as a general disk fault, we shared it publicly and reoriented
our response.

Overloading our dogfood environment

Through the summer and until mid-August, various optimizations were added and limits raised
in our stack, which drastically increased our burst capacity for read queries.

Since then, we had seen a few alerts where multiple components would alert across
environments, but without a clear ability to explain why that was.

On September 16, it happened far more violently than we had experienced before. We later
found out it was caused by another large customer issuing multiple costly queries, which

honeycomb.io

collectively read about 3.3 billion column files (1.55 petabytes) in a short time, over S3. Each of
these accesses to S3 in turn generate access logs.

What happened then is our dogfood ingestion pipeline, generally seeing far less traffic, was
under-provisioned for this spike. This is effectively equivalent to a Denial of Service (DoS)
attack. When this happens, other clients trying to write to the dogfood API endpoint (all
production components) get delays and possibly errors until auto-scaling catches up.

Amid the confusion, the volume and back-pressure caused ingestion delays and even crashed
production Kafka reporters to Honeycomb, and reports going to third-party tools were brought
down with them, making it look like full production outage to our redundant alerting systems.

Beagle processing delays

Beagle analyzes input streams for service level objectives (SLOs) data. Its auto-scaling works by
being CPU bound. Partition imbalance, SLO definition imbalance, and network throughput are all
different things that can contribute to CPU being a poor proxy metric for its load. We knew
about this, but felt it wasn't worth the cost of implementing a custom CloudWatch metric source
when CPU worked tolerably, only to get rid of it with our container migration that would soon use
a new scheduler.

Previously when beagle would warn of being behind on one or two Kafka partitions, we'd
manually scale up its auto-scaling group, which fixed the problem with minimal effort. On
September 21, the problem looked very different:

AVG(delay.duration_sec)
650
600
550
500
450
400
350
300
250
200
150
100

50

s — T T T T
1215 12:30 12:45 13:00 13:15 13:30 13:45 14:00

The big bump at 13:50 matches an increase in capacity where some partitions got better, but
some still got worse. This is a sign to us that this isn't related to the scale of the consumers.

honeycomb.io

https://www.honeycomb.io/blog/tale-of-beagle-yes-it-will-scale

All of a sudden, a lot of unrelated partitions were lagging behind and struggling, and scaling up
gave no immediate results. Scaling yet again seemed to improve things a bit, but the catch-up
rate was below our expectations. Eventually, the cluster caught up and stabilized again, without
any specific intervention. It did, however, divide our attention.

Migrating dogfood retrievers

On September 21, after a few weeks of running retrievers in hybrid mode between EC2 and EKS
in our dogfood environment, we completed the rollout of EKS retrievers. EC2 retrievers were
scaled down. Everything seemed fine—until the next day, when we woke up to alerts stating that
records, segment data, and columns couldn’t be written to disk.

This meant that the entirety of dogfood retrievers was out of disk space and couldn’t even write
down metadata, and cascaded into other alerts throughout the platform.

What happened (but we didn’t know at the time) was that in containerizing retrievers, we
accidentally omitted to transfer cronjobs that ran only on EC2 retrievers. One of these is a task
that orchestrates our data'’s life cycle. In a nutshell, all data on retrievers goes through a sort of
long-lasting garbage collection for database files that range from their creation, to S3 upload, to
deletion through aging out. By not having it running, retriever instances kept accumulating data
until they were entirely out of room.

We usually get warnings about disks filling, but got none in this case because we believe
retrievers on EKS (which use hostPath mounted volumes from the parent host to store their
data) don't see that disk usage reported in Kubernetes metrics. So any early warning that could
have let us know things were getting dire was not there.

We guessed that something might have gone wrong due to the retriever migration. Not knowing
what it was, we decided to boot EC2 instances again to run whatever was missing. We
eventually spotted the cronjob issue and started manually clearing disk space to salvage
instances. This failed because as soon as we'd free space, most Retrievers would write back to
it before we could clear enough to let the garbage collection run.

This, in turn, generated a lot of noise on kibble, our environment that monitors dogfood (which
monitors production), which also ran out of disk space. Unlike dogfood, it was due to generating
so much traffic in a short time for its tiny cluster size that it ran out of space before we could
even run a GC lifecycle on it.

After failing to free up space, we saw that our new EC2 instances were healthy and had run their
own life cycle tasks to completion. This meant that we could now swap the dogfood EKS
instances to let new ones take over by fetching correct state (written by EC2 instances) off of
S3.

honeycomb.io

https://kubernetes.io/docs/concepts/storage/volumes/#hostpath
https://github.com/honeycombio/honeycomb-kubernetes-agent

Kibble was salvaged by manually deleting the data from the dataset that was spammed by logs.
We had no better solution, and we knew that for the last hours, all the logs were garbage, so we
took the loss.

While this was going on, a production host ran out of disk space as well, but it was due to a bad
disk (again!) and was easy to fix. Still, for a brief period of time, all three environments (prod,
dogfood, kibble) were reporting retrievers with filled disks at the same time, for different
reasons. No customer data or performance was impacted at any point, but this was still an
all-hands-on-deck situation.

We scheduled an incident review because a lot of interesting stuff happened there despite
having no production impact. Unfortunately, we did not even have time to finish the incident
review before we got interrupted by yet another incident.

Further beagle processing delays

On September 23, beagle alarms tripped once more. We initially blamed high CPU variance, but
after looking further into Kafka, found out that the rebalancer got wedged once again:

broker: 1262 leading: 7 non-leading: 12 total: 19
broker: 1263 leading: 7 non-leading: 14 total: 21
broker: 1264 leading: 7 non-leading: 13 total: 20
broker: 1266 leading: 6 non-leading: 15 total: 21
broker: 1267 leading: 6 non-leading: 16 total: 22
broker: 1268 leading: 8 non-leading: 11 total: 19
broker: 1269 leading: O non-leading: 1 total: 1

This had caused things to go out of balance and thought this could have overloaded some
leaders. We reused the procedure we had developed earlier that month to fix it. The rebalancing
nearly caused some Kafka partitions to run out of disk space, so we dropped our non-tiered
retention from 3 hours to 2 hours.

Without us knowing about it, the previous day’s dogfood migration issues repeated the DoS
incident effect that shut down Kafka's production metrics pipeline, which silenced all the data
that would usually warn us of under-replicated partitions. The radio silence meant we only found
out through indirect signals related to performance.

The dropped retention brought enough room to rebalance the cluster and eventually fixed
beagle’s lag. We decided to add alerting and make a complete runbook to detect and manage
future rebalancer wedges. This alarm has proven useful a few times already.

honeycomb.io

Lambda deleted by Terraform

On September 23 while running the Dogfood Disk Exhaustion retrospective, we got interrupted
by another odd issue, where_a seemingly routine Terraform cloud deployment deleted the
reference to our production lambda worker for all retriever reads.

module.lambda.aws_lambda_function.retriever-segment-processor must be
/+ resource "aws_lambda_function" "retriever—segment-processor" {
~ arn
~ id
~ invoke_arn
~ last_modified
package_type
~ qualified_arn

"retriever-segment-processor-production"” -> (known after app

"2021-09-23T18:51:06.000+0000" -> (known after apply)
wZigh

signing_job_arn
signing_profile_version_arn
~ source_code_hash
~ source_code_size
tags

(known after apply)

(known after apply)

"BX3B80rNu@hXKvaDHiBICNiSwG37AIIinZpLctyAH4M=" -> (known after apply)
8312466 —> (known after apply)

{

"Environment" = “production”
}

~ version = "2661" -> (known after apply)

We still don’t know why the package type changed and why that forced a replacement (which
puts in a placeholder). The actual lambda is written by our regular deploy mechanism, which
was re-run manually to force a resource to be put in place.

It took a short while for the system to stabilize again, and we added a protection in the terraform
file to prevent it from accidentally being deleted again. This is an interesting event because it
interrupted corrective work for other issues, and is part of a pattern of ongoing pressures that
made it difficult to keep up with and improve our overload situation.

Kafka scale-up

On September 24, the beagle processing delays kept happening, but this time we knew the
Kafka cluster to be balanced. However, we detected that some Kafka partitions seemed to be
lagging behind others.

After plenty of debugging in a Zoom call (we were getting fed up with these issues), we
discovered that our Kafka cluster’s brokers were silently being throttled over network
allowances by AWS:

Every 2.0s: dsh -c -M -g kafka-production 'sudo ethtool -S ensb | grep bw_out_allowance_exceeded' | sort
kafka-0008cBbce67996f8b: bw_out_allowance_exceeded: 8641416

kafka-0188e44ffbécaald76: bw_out_allowance_exceeded: 3580811

kafka-020367088f8744F45: bw_out_allowance_exceeded: 10825493

kafka-04647a50e73e41b90: bw_out_allowance_exceeded: 4762976

kafka-0b9125f3el4bcab60: bw_out_allowance_exceeded: 4373466

kafka-0c5d3ff84c29bd6a9: bw_out_allowance_exceeded: 1820860

honeycomb.io

https://status.honeycomb.io/incidents/wr4zfc4m4xjx
https://status.honeycomb.io/incidents/wr4zfc4m4xjx
https://status.honeycomb.io/incidents/wr4zfc4m4xjx

We made an agent to extract the values and to start accumulating data, and comparing it to
other services showed that the Kafka instances were being impacted at a far higher rate than
others.

We manually checked other network values and decided that our Kafka cluster needed to be
scaled up vertically to get onto instances with more network capacity.

As we were planning to grow the cluster, beagle started lagging again and had a hard time
recovering, so we decided to fast-track the migration of the most impacted partitions by shifting
them from an older smaller instance to one of the new ones.

We then decided we'd transfer data slowly over days with rebalancing off since we wanted to
leave old instances nearly empty and the new ones full.

AVG(delay.duration_sec)

[T~—

1.4k - T~ ———— e
- -
\ /\/\H —_
— = —

1.2k —|—---_____ - P —

| —— /_/ -
1.0k —|| o
0.8k
0.6k 1
0.4k

‘___.'—'-__'__‘_"‘—_.___‘-L
0.2k — T
T—
- T —
cL —
T 1 1 1 1 T T 1 T T
16:20 16:25 16:30 16:35 16:40 1645 1650 16:55 17:00 17:08 17:10 17:15

We left things stable on Friday, and completed the migration on Monday and Tuesday
(September 27-28). At some point on the 28th, beagle kept being delayed some more, and our
end-to-end tests started firing one again.

We found out that the latter was caused by many retriever partitions “double-consuming,” which
means that both retrievers in each pair for a partition is multiple seconds behind in reading from
Kafka. This is tolerated by readers, but it means the data Honeycomb users see is either
temporarily incomplete (because their data may be on partitions at different levels of progress)
or missing (because it’s late on all partitions). We posted a public status for this since it was
customer-impacting.

We quickly found out that the issue was partially caused by having turned on the autobalancer
back on for the Kafka migration (so it would move partitions from a removed older instance
onto newer ones), and having it move partitions back onto the smaller instances we were still

honeycomb.io

https://status.honeycomb.io/incidents/bwzgsvzjfw3h
https://status.honeycomb.io/incidents/bwzgsvzjfw3h

planning to cordon off. We canceled the migrations and turned the balancer back off except for
instance replacement. This let all consumers catch back up.

Understanding beagle processing delays

We hoped that completing our Kafka AVG(delay.duration_sec)
migration would solve the beagle ﬂ I
processing delays once for all, but on [
Wednesday (September 29), they happened [
once again. It now became clear that this /
issue shouldn’t be caused only by Kafka

being overloaded since we had added over I A
50% extra capacity.

A ARALAS A\ o AL
12:00 12:15 1230 12:45 13:00 13:15 13:30

We once again found out that leaders were left unbalanced:

broker: 1271 leading: 8 non-leading: 13 total: 21
broker: 1272 leading: 7 non-leading: 14 total: 21
broker: 1273 leading: 6 non-leading: 14 total: 20
broker: 1274 leading: 7 non-leading: 13 total: 20
broker: 1275 leading: 8 non-leading: 23 total: 31
broker: 1276 leading: 5 non-leading: 5 total: 10

The rebalancer had died once again, and we had no metrics to fuel early alerting because again,
the reporters from Kafka had died as well. We kicked them back up, planned an upgrade that
would solve the crash issues, and quickly juggled leadership on partitions and migrated some to
once again get things in balance.

Everything was catching up as we came closer and closer to being fully balanced, but once the
rebalancing was complete, beagle latency worsened again. Therefore, the balance alone
couldn’t explain the performance issue.

honeycomb.io

AVG(delay.duration_sec)

900
BOD
700 -
600
500
400 4
300
200

100 -

Dz T — T
15015 15:30 15:45 16:00 1615 16:30 16:45 17.00

At one point, we got an alternative version of the graph where instead of grouping by partition,
we grouped both by partition and by beagle consumer. And now things looked fun:

AVG(delay.duration_sec)

900
BOD
700
600 r
500
400
300
200

100+

o |
10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

The choice of partitions that beagle would consume from could cause problems. We started
having a bit of a divide on the team, debating whether the problem was beagle or Kafka itself.
Both looked like they under-utilized their resources and both could go faster, but they just would
not.

A few experiments over the day confirmed that the issue seemed to be around pairs of leaders.
The Kafka cluster has a mostly random-looking leader assignment. Beagles’ consumer group

honeycomb.io

would however assign them sequentially. Whenever the same leading broker got some of its
partitions assigned to a single beagle 2 or 3 times, its consuming performance got worse.

This was hard to detect (because the data for both lives in different systems) but easy to test
(just shuffle leaders). It explained why scaling up would often fix the problems, but also why
sometimes scaling up or shuffling leaders made things worse even if balance was expected to
be much better that way.

0| 1271

1 1273

2 | 1276 Beagle-1
Beagle-1

3 | 1276 Beagle-2
Beagle-2

4 | 1274 Beagle-3

5 | 1272

This, we found out over the course of days, is because Kafka consumer groups always open
only a single connection to any leader, regardless of how many partitions are going to be fed
from it. In turn, this creates a point of contention where the connection buffers of the Sarama
library themselves (and the speed at which we consume them) bottleneck all traffic. This
explains the behavior we saw of both sides of the equation sitting idle while there was more
work to do. Many assignment strategies exist: range (the one we used), sticky, and round-robin.

Rather than shifting the strategy, we tried various settings to increase buffers and throughput

over a few days, which at this point seemed to hold up. We also had a back-up solution of using
smaller Beagle instances and using them in a fixed pool of one per partition; we did not need to
use it, but it was planned to buy us some peace after a rough operational month if we needed it.

Scaling up retrievers

What became apparent once we understood the beagle issues is that retrievers themselves
were also having scaling problems, since both Kafka and beagle were individually explained. We
planned a scale-up, adding roughly a quarter extra capacity by scaling horizontally on
September 30.

®_. honeycomb.io

10

https://github.com/Shopify/sarama
https://github.com/Shopify/sarama

Before then, we wanted to double-check whether scaling vertically would also make sense.
Retriever had been way over-provisioned for over a year, and we had only scaled it up marginally
earlier in 2021 to make sure we still knew how. So we weren't quite sure where the limits were in
the system, and it seemed we were hitting bad inflection points.

We booted a single larger instance (mégd.2xlarge = mégd.4xlarge) and let it steep overnight to
see if things would be better with it, but it proved inconclusive. While rolling out the instance, we
also noticed something we named “blinking,” where retrievers would fall in and out of their
partition assignment for a few seconds at a time, something that should never happen.

We started following the steps to scaling out retriever that we had put in a runbook. One
significant gotcha about this runbook was that at the time it was written, beagle did not yet
exist. The scale-up steps were added after the fact, but never tried under production workloads
with empty partitions, so we knew there could be a risk around it.

Even before we got to the beagle steps that involve inserting a configuration for the missing
partitions, we started seeing crashes and delays. We guessed that the most likely reason was
that there was no data in beagle, and decided to complete the scale-out ASAP.

In the hurry, we made many small mistakes. We were supposed to go to 56 partitions (0..55),
but ended up setting only 53 of them up at first. This required a back and forth in scaling and
record injection. Another one was that the runbook told to introduce records in the beagle SLO
database:

("beagle", "honeycomb-prod.retriever mutation", <N>, 0, "manual")

Unfortunately, the proper topic is "honeycomb-prod.retriever-mutation” with a -, not a _. We did
not notice this when writing the runbook, when crafting the queries, when reviewing them before
applying them, when applying them, and even when doing the first one or two audits of the table
after things were going bad.

The overall end result was that beagle struggled and crashed in a loop until we managed to
stand up the whole pipeline end-to-end and data started flowing in, which caused an SLO
processing delay outage. At some point, we corrected all the little oddities and traffic started
flowing through.

Once we caught up, we backfilled the SLO data and all customers’ service was reestablished
properly.

honeycomb.io

11

https://status.honeycomb.io/incidents/0c147m1dm2rc
https://status.honeycomb.io/incidents/0c147m1dm2rc

MAX(delay.duration_sec)
4.5k

4.0k H

w1\
T

3.5k (A
3.0k 4
2.5k -

2.0k 4

T

1.5k 4

1.0k

0.5k

0 —

I 1 1 T
2015 20:30 20:45 21:00

All the new partitions, which had no enterprise customer that would use SLOs on them yet (the
final rebalancing is still manual) showed over 4 hours worth of delay and were not recuperating.
What we found out was that this was related to a lot of small issues we wouldn’t have
encountered in other circumstances:

e Partitions with no SLOs would not correctly mark their progress when consuming data
e Some customers were doing heavy load testing, where they created hundreds of
datasets, sent a high volume of messages, and then deleted them

The latter in particular was problematic because we do look up datasets in a database, and then
cache the results. But when a dataset is missing, we cache nothing. This is generally not a
problem when the consumers are up to date because you don't get messages for a very long
time after their dataset is deleted. However, in this case we got backlogged by several hours on
some partitions and this drastically slowed down the ability to consume anything at all. The bad
behavior was invisible until other things were also going bad, and it made them worse.

Pending patches, we created fake datasets in the database (attributed to our internal teams) to
let beagle catch up by filling its cache, then deleted them again. We also created fake SLOs on
all of our internal end-to-end datasets that are pinned to specific partitions.

During the next hours, the patches to properly cope with each issues have made it to production
and we got stable again. We also took the opportunity to migrate heavy partitions away from
overloaded existing ones onto new ones. We would then do a trickle of smaller retriever
rebalances over the next few days, and benefit from the improved capacity.

honeycomb.io

12

Final beagle instability

Scaling up partitions meant that the new ones, all assigned in a series, were far less loaded than
the older ones. This caused a severe imbalance where the last of the beagles would have no
work to do, and drag down the average CPU consumption for the cluster, causing more
autoscaling woes (on first the image below)

We ended up fixing it by changing the allocation strategy to be round-robin, which at least would
spread the load more equally across all Beagles, and things got back to being acceptable.

0| 1271 0| 1271

1| 1273 1| 1273

2 | 1276 Beagle-1 2 | 1276 Beagle-1

3 | 1276 Beagle-2 3 | 1276 Beagle-2
N-1| 1274 Beagle-N N-1| 1274 Beagle-N

N 1272 N 1272

We also scaled up the beagle cluster size to a fixed, larger size, which had proven stable
regardless of the day of the week or time of the day. We have, however, found out that as we add
instances to the cluster, rolling restarts cause larger disruptions to the consumer group that
tries to shift load around, and are running experiments with a Sticky strategy to reduce
interference. Finally, and more recently, we changed our deploy strategy to completely ignore
rolling restarts. See this Twitter thread by one of our engineering managers about it.

September stretches into October

Things didn’t quite end there. After analyzing the gain on scaling, we saw that we mostly only
gained one month of growth room, maybe less, depending on how fast our customers grow.

We ended up having to cover a few extra issues in October already, all in its first week:

Horizontally scaling retrievers again to buy room rather than just be okay
Discussions around what the scaling strategy should be for datasets and bits of
continuous expansions

e Atroublesome database migration that flushed indexes aggressively and caused blips

honeycomb.io

13

https://twitter.com/maplebed/status/1456290465225986053

e More frequent request interruptions during retriever failures causing potential query
problems for customers

e Triggers reaching a point where they sometimes and inconsistently require a long time
to work, which required further investigation and highlighted stuck SQL queries that
we're currently trying to pin down

e Keeping on cycling retriever instances to avoid file system corruption issues, which was
finished in the later weeks of October

e More stress tests by some customers, causing surprises. Dataset deletion and
re-creation could reset some limits and scale markers that could lead to overload:

o One interesting case happened while cycling retrievers: One would not
successfully bootstrap because files were seen as missing when a partition had
been manually deleted until its peer ran its backup task and cleaned up segments
expectations

o Discovering limitations around the throttling and rate-limiting mechanisms
applied to teams and/or datasets

e Requiring emergency surgery on init files in production because an experiment to try and
drain retriever connections more effectively on deploys went awry, and a regular deploy
could have crashed the whole cluster

e RDS CPU alerts firing and hinting at another vertical scale-up required there, which we
ended up doing. Specifically, we ended up improving our ingest performance seemingly
by a lot by scaling up, which indicated that we were starting to see it act as a chokepoint
that could slow down some queries

We're now looking more stable than during late September, but it's obvious we have more
lessons to learn and more limits about our system to discover. For example, growing our
container fleet has highlighted more stress in our usage of AWS’ SSM, with limits needing to be
raised.

Lessons learned and things
to keep in mind

Scaling of individual components

We've had something close to 40% growth in ingest traffic between late August and the end of
September. In hindsight, It looks like we haven't been proactive enough, but my understanding of
it is really that while some of us had ideas about what some of our scaling limits were, nobody
had a clear, well-defined understanding of it, and of all the dimensions.

honeycomb.io 14

During the month, we ran into scale issues around:

e Networking and throttling of data packets that were previously unknown and invisible
tous
Limitations in the abilities and stability of the Kafka rebalancer
Surprising abilities of our production cluster to overload our dogfood cluster in ways that
left longer-lasting impacts to production instrumentation (Kafka monitoring)

e Bottlenecks and points of contention around consumer groups in our Kafka client
libraries
Sequential bottleneck in retriever consumption
Memory and CPU limits around retriever’s ability to serve some particularly large queries

e Manual rebalancing of partitions and tool-assisted rebalancing were nearing their toil
acceptability levels

e The frequency of deploys was increasing and their effect was inflated and, therefore,
more visible in our SLOs

If we're lucky, we would hit these one at a time, but we unfortunately got in a situation where
various types of pressures (likely a related to having to scale many different types of customers
all at once) just showed up at once, and disguised themselves as each other.

All of it came from rapid customer growth in a short time span.

INGEST TRAFFIL GROWTH AED 2ol

NMN\AJM\M

DA

Overall traffic does not scale uniformly across customers, whose datasets aren’t uniformly
distributed either and may have implications around other services. Beagle consumes all
messages of all datasets, but the count and costs of SLO means the scaling shape is distinct
than what retriever needs. Interactive queries hit lambdas often and can bottleneck there,
whereas triggers are nearly fully on the hot sets and entirely within retrievers.

honeycomb.io

15

As we add features, a growth in customer ingest and querying patterns lead to distinct scaling
patterns for various components. To add to the challenge, it's sometimes unclear if the
limitations highlighted in scaling are due to a bottleneck that would be solved more effectively
by scaling vertically or horizontally (or based on some other dimension). This gives us a sort of
scaling profile as follows over the last few months:

RETREVER CLUSTER SVZE (HoRIZONTAL)
(vErRTICAL)

__—————’—-—"—_—'_—_‘J———_r—'

e :

BVEAGLE <crusTeR Stz€ (HORIONTAL)
(VERTICAL)

LAMRDA cAPCYTN GRONTH
SCALNG SPEED RATE

KAFKA CUSTER SIZE (HORIZONTAL)
(W\z’\'lc.;\,_)

\ PN

—
AN

For each component impacted, its own growth and ability to scale either vertically or
horizontally is a function of both costs, awareness of bottlenecks, expected growth models, and
so on. Lambda grew capacity in a very stepwise manner that changed volume downstream of it,
even in different environments. Retriever’s throughput boundaries were mostly unknown, and we
needed to experiment to see what would be most effective. Kafka is expected to be fixed in
number since the Spring 2021 migration due to licensing structures, except when scaling up
vertically, where, for safety, we boot a peer group of larger instances and migrate traffic off.
Beagle stayed mostly stable and is now fixed in size because that seems reasonable, but could
have gone smaller vertically to grow wider horizontally.

Combinatorial scaling

The real upcoming challenge we're facing, aside from just scaling things in foreseeable
directions (more customers mean more partitions) is having to consider when we're going to
have our future scaling plans run into each other and cancel each other:

e Scaling retrievers horizontally on writes may make reads more costly or likely to hit high
99th percentile values, which in turn means some larger customers’ datasets may need
vertical scale

honeycomb.io

16

e Vertically scaling retrievers does not necessarily address load issue that beagle could
one day see, and scaling horizontally does dilute its autoscaling metrics and require
fancier approaches

e Increasing scaling ability in one environment can cause ripple effects in other ones that
are loosely coupled to them due to second-order effects, on entirely different dimensions
with distinct failure modes

e Extraindexing or internal logical partitioning of datasets would improve the ability to
handle triggers and queries, but could cause more load on RDS instances that handle
columns and make rate-limiting fuzzier

e More large customers mean more edge cases exercised more frequently and more of
these weird interplays clashing in the future

e Deploying more often makes each deploy safer, but as deploys to retrievers cause minor
interruptions, these accumulate to having a visible effect on our reliability as well

e Our own observability tooling is running into new hurdles as GROUP BY limits in
Honeycomb queries mean we can't see the work of all our partitions or all hosts at once,
and its accuracy will only shrink over time.

These last few weeks are probably the clearest signal we have yet of where a lot of our limits lie
and where we need to start planning growth adaptation in a composable approach, rather than a
more local, per-service vision.

Experience and tempo

It has been surprising how often one of the new incidents highlighted something we did not
understand in a previous one or that a previous incident held the keys to solving one of the new
ones. This can sometimes feel like the story about the old Chinese farmer, but really should
reinforce the idea that all incidents are learning opportunities.

We believe maintaining the ability to adapt to production challenges comes from having a
sustainable pace. Not too active, not too sparse, a bit like exercising to stay healthy. It is
possible that a knee-jerk reaction where we over-scale the system to ensure we never have
issues in the foreseeable future only gives us more time to forget about some operational
issues, and makes it easier to turn a healthy amount of it into a dormant long memory.

To put the analogy another way, seeing a piece of wood bend can be a good signal that it's
nearing its limits. As load increases, it's useful to keep ourselves familiar with the signals and
ways various loads bend the system.

One of the things that was called out in the Platform Team weekly meeting was that we were
running at a rather unsustainable pace during most of the month. Lots of work was dropped
and, as the incidents recurred, they got longer and more frequent, and the amount of context

honeycomb.io

17

http://tao-how.blogspot.com/2011/02/well-see.html

available and required to handle them increased dramatically. This in turn meant the people
handling many of the incidents felt better equipped to handle the other ones that kept
happening. We were entering a self-reinforcing loop in the worst way possible.

We learned that the ability to have downtime and hand-offs that transfer that context from
coworker to coworker does become necessary to keep operational burdens sustainable, and
calling out such situations to force a shakeup can be effective.

It's worth pointing out that we do believe there is plenty of optimization potential in most of our
code bases, which would let us do more with the same cluster and instance sizes. These
optimizations generally take longer to put in place than scaling up does, so being caughtin a
situation where multiple components approach the edge of their performance envelope at once
means we can be forced to scale to buy time to optimize properly at a later point, but only if
pressure lets up.

If we operate too far from the edge, we lose sight of it, stop knowing where it is, and can't
anticipate when corrective work should be emphasized. But if we operate too close to it, then
we are constantly stuck in high-stake risky situations and firefighting. This gets exhausting and
we lose the capacity, both in terms of time and cognitive space, to be able study, tweak, and
adjust behavior of the system. This points towards a dynamic, tricky balance to strike between
being too close to the boundary and too far from it, seeking some sort of Goldilocks operational
zone.

While we don't have a perfect recipe for this balancing act, we do believe that a focus on
learning from all production woes plays an integral role in keeping that balance and maintaining
long-term system (and our team’s mental) health.

honeycomb.io

18

https://www.honeycomb.io/blog/kafka-migration-lessons-learned/

