
Metrics Runbook
Software Develoment

Welcome, Dev Leader. This book has everything
you need to start and run your engineering
metrics program. Check it out and let us know if
you have any questions.

A personal note from Dan Lines, former VP of Engineering, Co-Founder and COO of LinearB

Thanks for coming! This site is full of ideas for what you can measure and how you can measure it. Before we
get into that, Let’s start with the “why”.

The first time I ever thought about using data to help run my team was in 2015. The start-up I worked for was
growing fast, and overnight (it felt like) I went from leading a single team of 6 devs to leading 5 teams with 50+
devs as VP of Engineering.

I had no experience dealing with an organization of that size. The processes that worked for us when we were
smaller weren’t scaling. I knew I needed to be doing more to help my team but I wasn’t sure what.

I dove head first into the problem by talking to every expert I could find. Other VPs of Engineering, agile
consultants, start-up investors – anyone who could offer a clue about what scaling successfully looked like.
They all said the same thing, you need data to lead a rapidly growing dev team.

So I reassigned one of our data engineers to do nothing other than compile internal data about how our team
worked. I learned a lot and made a ton of mistakes like focusing on individual performance metrics. Spoiler
alert: don’t do that! And eventually I came up with a runbook that we now use at LinearB to run a data-driven
development organization. Everything I learned and everything we use today is here in this web site. I hope it
helps.

Thanks for coming,

 a Metrics ProgramStarting

We Really Like3 Metrics

Cycle Time measures the
time from first commit to
production release. At LinearB
we call this our super metric
because not only does it
show team efficiency, it
exposes bottlenecks in the
development cycle.

Cycle Time

>>Explore more

Rework ratio measures the
percentage of your code that
is being rewritten within 21
days of being merged. It's a
predictor measurement of
downstream quality issues or
an indication that a
requirement was missed.

Rework Ratio

>>Explore more

Investment profile measures
how much time your team
spends on different types of
work. It helps you determine if
you are striking the right
balance between customer-
facing stories, non-functional
requirements, and bug-fixing.

Investment Profile

>>Explore more

Download PDF

for Engineering

Leaders

The LinearB

Metrics Scorecard

https://linearb.io/wp-content/uploads/2020/11/Metrics-Scorecard-Template.pptx

Breakdown
Scorecard

These are the LinearB engineering
department’s top line metrics. Each of
these metrics and the weekly trend below
them tell their own story. For example we
track Cycle Time constantly because it
indicates how well our development
process is optimized. Shorter Cycle Time
means faster time to market.

1

The LinearB Team Performance
dashboard displays 17 metrics, but not all
are relevant each week. We customize
this section every week based on where
major changes occurred, topics that need
discussion, or results from optimization
efforts. Between sections 1 and 3,
Engineering Leaders are able to give other
business leaders comprehensive updates
on engineering activity.

3

Time Investment is an analysis of the
project board story types that have been
completed each week. This is a concise
way to show business leaders where
engineering resources were spent, and
how much bugs or hot fixes cost the
company in effort.

2

The Major Efforts section acts as delivery
forecasting talking points for both
engineering and product. At LinearB we
include the project board stories that have
received the most amount of attention
during the week as well as any stories
with a high risk of delay. This is a great
section to help soothe the nerves of a
CEO or sales leader asking when a feature
is going to be ready.

4
The At Risk of Delay section gives you the
opportunity to add context to upcoming
features that will likely be delayed. You
can set the expectation before a delay
happens, explain the issues facing the
team, and how and when they will be
resolved.

5

5 Lessons Learned
Explaining Engineering to Execs

It's hard being the ranking dev leader. Your peers think of you as technical. Your
team thinks of you as a suit. You're trapped in between two worlds. And that's
our opportunity to provide value to our organization. I learned to embrace my
role as translator. My job was to bring business context to the dev team and
visibility to the exec team. Without empathy and understanding on both sides,
your company will never see the full value in your team and your people will
never reach their full potential.

1Think of yourself as a translator

1 2 3 4 5

5 Lessons Learned
Explaining Engineering to Execs

As a dev leader, the #1 question we get from non-technical execs is "when will
feature ABC be ready?" Of course delivering new value is our job. But allowing
all of the conversations to just be about outcomes is a dangerous precedent.
The more my CEOs understood how software is built and delivered, the less
likely they were to have unrealistic expectations and more the likely they were
to offer help (instead of criticism) when times got tough.

1Focus on process as well as outcomes

1 2 3 4 5

5 Lessons Learned
Explaining Engineering to Execs

Metrics are already the language of sales, marketing and finance departments.
ARR, LTV, MQL, CAC... Your business not only understands what these metrics
mean, they also understand how these terms fit in to the overall business
process. There's no reason they can't understand key engineering terms and
metrics too. I brought metrics to the CEO's staff meeting every single week so
to teach my peers about how we work and how to measure our successes and
failures.

1Educate your business with metrics

1 2 3 4 5

5 Lessons Learned
Explaining Engineering to Execs

Trust me. They can handle it. It's a big mistake to say "This stuff is too
technical. They won't get it." What's technical about Cycle Time? It's just a
process with phases that represents time and efficiency. Just like a Sales Cycle,
which they completely understand. I'm not say I showed code to our CEO. But I
did teach them how to talk to our developers about individual branches, PRs,
and the work that gets done in the weeds. Non-technical leaders will like the
additional sense of confidence it gives them.

1Bring your execs into the weeds

1 2 3 4 5

5 Lessons Learned
Explaining Engineering to Execs

There's nothing the exec team hates hearing more than "we just don't have
enough resources to do that right now." It leaves them with a powerless feeling.
Instead educate them on the dependencies for building the new feature they
want. I always like to start with "yes" and then go through a step by step
process to show the team what would need to be moved around to accomplish
the thing they want. I found that approach actually led to me getting approval
for more hires and more non-functional investment.

1

1 2 3 4 5

Explain the trade-offs

 for

Dev Team Success
17 Metrics

Measuring the right indicators will help you accelerate delivery,
maintain positive culture, and translate dev activity to business
value. So what should modern dev leaders measure?

Keep reading to discover 17 metrics that matter for dev leaders and
how to use them.

Delivery Quality

Team Health

Priority Focus

Delivery Efficiency

EfficiencyDelivery
Efficient delivery pipelines lead to predictable value delivery, happy developers, happy product owners, and
happy customers. Measuring the stages of your delivery pipeline allows for bottleneck detection. This provides
a high leverage point to increase your delivery performance because it impacts all teams and contributors

/ 31

Definition
The amount of time from work started until work finished

Why it matters

Cycle time is the #1 indicator of your speed to value and efficiency
ratio.

>> Learn more about Cycle Time

#1 Cycle Time
Definition

The amount of time from work (coding) began until PR is issued.

Why it matters

This is where the magic happens. Shorter code times indicate
appropriately sized chunks of deliverable work.

#2 Coding time

M E N

>> See your coding time in LinearB Free

https://linearb.io/cycle-time/
https://app.linearb.io/register

EfficiencyDelivery
Efficient delivery pipelines lead to predictable value delivery, happy developers, happy product owners, and
happy customers. Measuring the stages of your delivery pipeline allows for bottleneck detection. This provides
a high leverage point to increase your delivery performance because it impacts all teams and contributors

/ 32

Definition

The amount of time it takes from the pull request submitted until
review begins

Why it matters

Efficient teams have a low pickup time. The less time PRs spend
waiting for review, the faster they are released. This metric is
important for all dev teams, but is even more critical for remote
dev teams.

#3 PR Pick-up Time

>> Track your Pickup Time in LinearB Free

Definition

The amount of time from when the first PR comment is posted
until it is merged.

Why it matters

Long reviews delay delivery and pose quality risks.

#4 PR Review Time

M E N

>>Discover which PRs have long living reviews

https://app.linearb.io/register
https://app.linearb.io/register

EfficiencyDelivery
Efficient delivery pipelines lead to predictable value delivery, happy developers, happy product owners, and
happy customers. Measuring the stages of your delivery pipeline allows for bottleneck detection. This provides
a high leverage point to increase your delivery performance because it impacts all teams and contributors

/ 33

Definition

The amount of time from Pull Request Merged to Production
Release

Why it matters

If time to release is high, it could mean you need to invest more in
continuous deployment (CD) or that you have an opportunity to
move to a micro-service architecture.

#5 Deploy Time
Definition

The number of times your team deploys a release per day.

Why it matters

This is a strong indicator of how much value your team is capable
of getting into the hands of customers. Even if you have an
efficient pipeline, if your deployment frequency is low, you may not
be delivering enough value.

#6 Deployment Frequency

M E N

>>See your Deloy Time in LinearB Free >>Learn why deploy frequency is part of good retros

https://app.linearb.io/register
https://linearb.io/blog/using-linearb-in-your-retrospective/

QualityDelivery

Definition

Percentage of recently delivered code your team is already
rewriting.

Why it matters

A high rework percentage is a predictor of future quality issues. It
could also happen when a requirement was missed, indicated a
communication issue with product management or the customer.

#7 Rework Ratio
Definition

Percentage of previously delivered (>21 days) code your team is
rewriting.

Why it matters

The implication of a high refactor ratio is context dependent. You
could be fixing a section of code that has created bugs, or you
simply could be updating to accommodate a new feature.

#8 Refactor Ratio

/ 31

Most teams have experienced the situation where low quality leads to missed delivery dates, iteration
interruptions, long hours, unhappy customers, and a frustrated engineering organization. We have found that
there are a few metrics that really help to measure delivery predictability.

>>See your Rework in LinearB Free >>Refactor ratio is part of work breakdown in LinearB

https://app.linearb.io/register
https://app.linearb.io/register

QualityDelivery

Definition

Number of branches with large changes and high rework or
refactored work.

Why it matters

The general rule on most dev teams is that the larger the change,
the higher the risk (i.e. branches with 300 lines of code are riskier
than small branches). Branches with a high percentage of rework
and refactored work are also riskier. High risk work is a leading
indicator of quality.

#9 Risky Branches
Definition

The ratio of pull requests merged without review.

Why it matters

The general rule on most dev teams is that the larger the change,
the higher the risk (i.e. branches with 300 lines of code are riskier
than small branches). Branches with a high percentage of rework
and refactored work are also riskier. High risk work is a leading
indicator of quality.

#10 PRs Merged without review

/ 32

Most teams have experienced the situation where low quality leads to missed delivery dates, iteration
interruptions, long hours, unhappy customers, and a frustrated engineering organization. We have found that
there are a few metrics that really help to measure delivery predictability.

M E N

>>Get alerts on PRs merged w/o review in LinearB

https://app.linearb.io/register

QualityDelivery

Definition

The average number of comments per pull request review.

Why it matters

This metric is an indication regarding the quality of the review and
how thorough reviews are done. Reviews are an important factor
for improving code quality and finding quality issues in code
before it is merged and deployed.

#11 Review Depth

/ 33

Most teams have experienced the situation where low quality leads to missed delivery dates, iteration
interruptions, long hours, unhappy customers, and a frustrated engineering organization. We have found that
there are a few metrics that really help to measure delivery predictability.

M E N

>>Track Review Depth as part of your quality metrics

https://app.linearb.io/register

FocusPriority

Definition

Breakdown of how the dev team spends time across issue types
(bugs, stories, tasks)

Why it matters

The most valuable asset that your organization possesses is your
people’s time. Your investment profile is a data-driven
representation of the types of work in which your team is spending
effort.

#12 Investment profile
Definition

How often your team members switch from working on one issue
to another because of being blocked or managerial randomization.

Why it matters

Large amounts of context switching is indicative of an inefficient
team. As a manager, it shows you who on your team is blocked or
if you need to help the team focus.

#13 Context switching

/ 21

Dev team spend a significant amount of time planning their work. Epics, stories, and issues that need to be
completed by a certain time for the team to be successful. Priority focus metrics help the team ensure they are
on track to meet objectives.

M E N

>>Which teams are unfocused or blocked?

https://app.linearb.io/register

FocusPriority

Definition

Work spent on most important stories for the sprint.

Why it matters

Often called success criteria, in every sprint there are stories that
must ship on time for the team and business to be successful.

#13 Focus Work
Definition

Branches that do not align to a story. Often called “Shadow Work”

Why it matters

Shadow work can derailed the successful delivery of a sprint. It
can be an indication that the lead needs to better communicate
priorities or that a dev has been distracted by a request for an
“urgent” issue.

#14 Unmatched Branches

/ 22

Dev team spend a significant amount of time planning their work. Epics, stories, and issues that need to be
completed by a certain time for the team to be successful. Priority focus metrics help the team ensure they are
on track to meet objectives.

M E N

>>See which stories are being worked on >>Find your shadow work in LinearB Free

https://app.linearb.io/register
https://app.linearb.io/register

HealthTeam

Definition

Measure of the distribution of work across your teams and devs.

Why it matters

Make sure you don’t have one dev burning out and others that are
underloaded

#16 WIP Balance
Definition

How many days during the iteration is your team active

Why it matters

Make sure your team isn’t burning out

#17 Days Worked

Your team is crushing it. But how is the culture? While there’s no single objective measure to represent culture,
there are a few that shed light into how the team is working together and helping them avoid burnout.

M E N

>>Balance your WIP in LinearB Free >>Which team member is burned out?

https://app.linearb.io/register
https://app.linearb.io/register

Metric Potholes
Software Development

to Avoid

M E N

Using velocity as a performance
metric is dangerous.

Avoid agile velocity

>>Read the blog

It’s the quickest way to kill your
team culture.

Never stack rank devs

>>Read the blog

It’s the quickest way to kill your
team culture.

Never stack rank devs

>>Read the blog

Get buy-in from your team on the
metrics that matter.

Don’t forget your team

>>Read the blog

https://linearb.io/blog/why-agile-velocity-is-the-most-dangerous-metric-for-software-development-teams/
https://linearb.io/blog/data-driven-dev-team/
https://linearb.io/blog/how-to-introduce-data-driven-culture-to-your-dev-team/

M E N

Listen & Subscribe Connect with Dev Leaders Read & Learn
The Dev Interrupted podcast brings
dev leaders insights on the go. Host
Dan Lines talks team building,
culture, leadership, and dev life with
engineering and product leaders
from top start-ups and scale-ups.

Dev Interrupted is the largest
community for dev leaders on
Discord. Come together and discuss
scaling teams, building culture, using
metrics, and getting the most from
LinearB.

The Dev Interrupted Blog is written
by dev leaders, for dev leaders. How
to scale your team, which metrics to
use, how to grow your career… even
how to explain software
development to your CEO

Subscribe on SPotify Join us on Discord Read the Blog

Resources
Dev Leader

https://open.spotify.com/show/7icMkauSvLflWCpQrfafIv?si=Pgboh7gATUSo9OJfzylUrw
https://discord.gg/tpkmwM6c3g
https://linearb.io/blog/

StartedGet
See metrics that matter for
your dev team in LinearB.
Free for Dev Teams.

Click your Git provider to setup your free account

https://tinyurl.com/linearb-gh
https://tinyurl.com/linearb-gitlab
https://tinyurl.com/linearb-bb

	Software Development Metrics Runbook83.pdf
	Binder4.pdf
	2-Metrics
	Binder3.pdf
	1-Metrics.pdf
	3-Metrics
	4-Metrics-1
	4-Metrics
	5-Metrics
	6-Metrics-1
	6-Metrics-2
	6-Metrics-3
	6-Metrics-4
	7-Metrics-1
	7-Metrics
	8-Metrics
	17Metrics-Delivery Efficiency-1
	17Metrics-Delivery Efficiency-2
	17Metrics-Delivery Efficiency-3
	17Metrics-Delivery Quality-1
	17Metrics-Delivery Quality-2
	17Metrics-Delivery Quality-3
	17Metrics-Priority-1
	17Metrics-Priority-2
	17Metrics-Teamhealth

	6-Metrics

	3-Metrics (1)
	17Metrics-Delivery Quality-1 (1)

