
www.commercetools.com

Building commercetools 
customizations using Subscriptions 
and the Google Cloud Platform



Table of Contents

Introduction

What are Subscriptions?

Implementation Example
 
       Use Case 
 
       Problem

       Solution

       Implementation Steps

 Step A: Set up a GCP Project.

  Set up a Google Cloud Account 

  Set up a Google Cloud Project

  Install the Google Cloud SDK

  Authenticate using Google Cloud SDK

 Step B: Set up GCP Cloud Firestore.

 Step C: Create a GCP Cloud Function. 

	 Step	D:	Configure	and	Deploy	the	Cloud	Function.

 Step E: Set up the GCP Pub/Sub Topic.

 Step F: Create a commercetools project.

 Step G: Load commercetools sample data.

 Step H: Set up commercetools Subscription.

 Step I: Test commercetools/GCP Integration.

	 Step	J:	Provide	you	with	resources	if	you	need	help.

Additional Help

3

3

4

4

4

5

5

6

6

6

6

6

6

8

11

13

14

14

15

18

20

21



Introduction

commercetools	 is	a	dynamically	extensible,	 cloud-native	 commerce	 solution.		
It	allows	retailers	to	sculpt	a	solution	that	fits	their	unique	needs	today,	and	is	
flexible	to	support	their	evolving	business	strategy	tomorrow.		

There	are	many	powerful	extensibility	features	built	into	commercetools	that	
handle	 a	 wide	 variety	 of	 use	 cases.	 For	 an	 overview	 of	 them,	 see	 Building 
commercetools	customizations	-	Overview.

In	 this	 whitepaper	 we	 will	 do	 a	 deep	 dive	 on	 one	 powerful	 technique	 for	
customizing commercetools: Subscriptions.

“By using Event Messages you can easily decouple senders and receivers both 
in terms of identity (you broadcast events without caring who responds to 
them) and time (events can be queued and forwarded when the receiver is 
ready to process them). Such architectures offer a great deal for scalability and 
modifiability due to this loose coupling.”

– Focusing on Events,	Martin	Fowler

What are Subscriptions?

Subscriptions	allow	you	to	trigger	custom	asynchronous	background	processing	
in	response	to	an	event	on	the	commercetools	platform.

Because	 Subscriptions	 execute	 asynchronously	 based	 on	 events	 emitted	
from	 the	 platform,	 they	 allow	 your	 custom	 solutions	 to	 be	 loosely	 coupled	
to	 commercetools.	 This	 greatly	 reduces	 the	 risk	 of	 your	 code	 impacting	
commercetools	API	execution	and	performance.

commercetools	 differentiates	 between	 messages and changes. A single 
subscription	can	listen	to	both	depending	on	the	resource.	Changes	are	straight-
forward:	events	are	fired	whenever	 the	subscribed	 resource	 type	 is	 created,	
updated	or	deleted.	Messages	are	more	specific:

“Subscriptions allow you to be notified of new messages or changes via a 
Message Queue of your choice.”

– Subscriptions,	Platform	Documentation,	commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       3

https://f.hubspotusercontent30.net/hubfs/4784080/commercetools-customizations-extensions-overview.png
https://f.hubspotusercontent30.net/hubfs/4784080/commercetools-customizations-extensions-overview.png
https://martinfowler.com/eaaDev/EventNarrative.html
https://docs.commercetools.com/api/projects/subscriptions
https://docs.commercetools.com/api/projects/subscriptions#changesubscription
https://docs.commercetools.com/api/projects/subscriptions
http://fearlesstg.com


Our	example	implementation	will	focus	on	commercetools	orders	and	will	use	
Google’s	Pub/Sub,	Cloud	Function	and	Cloud	Firestore	services.

There	are	many	use	cases	where	the	asynchronous	processing	of	an	event	is	
the	 right	approach;	 for	 instance,	 sending	order	 status	emails	 in	 response	 to	
order	events.	 In	 this	use	 case,	 commercetools	will	 fire	events	 you	 can	 listen	
for	 as	 the	orderState	moves	 from	Open	 to	 Confirmed	 and	 finally	 to	 either	
Complete or Cancelled.

To	 take	 advantage	 of	 this	 technique,	 you	must	 configure	 your	 subscription	
via commercetools’ /{projectKey}/subscriptions	endpoint.	You	specify	the	
destination	for	the	subscription	which,	as	of	this	writing,	can	be	any	of	these	
message	queues:	AWS SQS,	AWS SNS,	Azure Service Bus,	Azure Event Grid or 
Google Cloud Pub/Sub.	You	also	define	the	array	of	messages and changes 
you	want	to	subscribe	to.

Bottom	line,	Subscriptions	provide	a	 lot	of	power!	 If	you’re	 in	doubt	whether	
Subscriptions	are	the	best	approach	for	you,	contact	FTG	and	we	can	help	you	
find	the	best	path.

Let’s	drill	down	on	a	sample	use	case	to	see	how	to	exploit	Subscriptions.

Implementation Example

Use Case

Problem

A	 retailer	 wishes	 to	 archive	 all	 commercetools	 order	 updates	 on	 their	 own	
Google	Cloud	Platform	 (GCP)	 instance	so	 they	 can	 independently	use,	query	
and	analyze	the	data	in	their	existing	environment.

The	retailer	has	not	integrated	their	GCP	instance	with	commercetools.

“A message represents a change or an action performed on a resource (like an 
Order or a Product). Messages can be seen as a subset of the change history for 
a resource inside a project. It is a subset because not all changes on resources 
result in messages. Messages can be pulled via a REST API, or they can be pushed 
into a Message Queue by defining a Subscription.”

– Message	Types,	Platform	Documentation,	commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       4

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/event-grid/
https://cloud.google.com/pubsub/
https://docs.commercetools.com/api/projects/orders#order
https://docs.commercetools.com/api/projects/products#product
https://docs.commercetools.com/api/projects/messages
https://docs.commercetools.com/api/projects/subscriptions
https://docs.commercetools.com/api/message-types
http://fearlesstg.com


Create	a	commercetools	Subscription	that	will	 send	Order	updates	 to	a	GCP	
Pub/Sub	Topic	where	 they	will	 be	 saved	 to	a	Cloud	Firestore	 collection	by	a	
Cloud Function.

Our	example	implementation	is	thorough!	We	will	show	you	how	to:

A. 	Set	up	a	GCP	Project,
B. 	Set	up	GCP	Cloud	Firestore,	
C. 	Create	a	GCP	Cloud	Function,
D. 	Configure	and	Deploy	the	Cloud	Function,
E. 	Set	up	the	GCP	Pub/Sub	Topic,
F. 	Create	a	commercetools	project,
G. 	Load	commercetools	sample	data,
H.  Set up commercetools Subscription
I. 	Test	commercetools/GCP	Integration,
J. 	Provide	you	with	resources	if	you	need	help.

Solution

Implementation Steps

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       5

http://fearlesstg.com


Step A: Set up a GCP Project.

If	you	choose	to	follow	the	steps	in	this	example	on	your	own,	you	will	need	a	
GCP	account,	a	GCP	project	and	the	Google	Cloud	SDK.	If	you’re	missing	any	of	
these	things,	no	worries,	you	can	start	running	all	three	for	free.

Set up a Google Cloud Account

Go to https://cloud.google.com/free/	 to	 check	out	 the	wide	array	of	 services	
available	 to	 you	 on	 GCP.	 New	 customers	 get	 a	 large	 credit	 applied	 to	 their	
account	to	allow	for	plenty	of	experimentation	before	needing	to	spend	money.	
Click	on	the	“Get	Started	for	Free”	link	to	sign	in	and	get	your	account	up	and	
running.

Set up a Google Cloud Project

Once	 you	 have	 an	 account,	 you	 can	 set	 up	 a	 project	 for	 our	 example	
implementation.	If	you	just	created	a	new	GCP	account,	you	likely	have	a	default	
project	you	can	go	ahead	and	use.	If	you’d	like	to	create	a	new	project,	go	to	
https://console.cloud.google.com/projectcreate	 and	set	one	up	by	entering	a	
Project	name,	Organization	and	Location.	In	either	case,	your	project	will	have	
a	“Project	ID”	which	we	will	use	later	on	so	note	it	for	future	reference.	You	can	
also	find	 your	Project	 ID	on	 your	dashboard	at	https://console.cloud.google.
com/home/dashboard. 

Install the Google Cloud SDK 

The Cloud SDK	gives	you	tools	and	libraries	for	interacting	with	Google	Cloud	
products	and	services.		You	can	follow	Google’s	installation	instructions	for	your	
operating	system	by	going	to	https://cloud.google.com/sdk/docs/install. 

Authenticate using Google Cloud SDK

You	need	to	authorize	the	gcloud	command	line	interface	and	the	SDK	before	
you	can	use	them.	If	you’ve	not	already	done	so,	you	can	run	gcloud init to 
authorize; see Authorizing Cloud SDK tools	for	details.

Step B: Set up GCP Cloud Firestore.

Now	that	we	have	a	GCP	project	up	and	running,	let’s	set	up	a	database	where	
we	can	persist	our	Subscription	content.	Google	provides	a	wide	number	of	
database options.	We	will	use	Cloud	Firestore	in	this	example.

“Firestore is a NoSQL document database built for automatic scaling, high 
performance, and ease of application development. While the Firestore interface 
has many of the same features as traditional databases, as a NoSQL database 
it differs from them in the way it describes relationships between data objects.”

– Firestore documentation

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       6

https://cloud.google.com/free/
https://console.cloud.google.com/projectcreate
https://console.cloud.google.com/home/dashboard
https://console.cloud.google.com/home/dashboard
https://cloud.google.com/sdk
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/authorizing
https://cloud.google.com/products/databases
https://cloud.google.com/firestore/docs
http://fearlesstg.com


The	Subscription	messages	we	will	consume	from	commercetools	fit	naturally	
into	a	document	database.	This	makes	Cloud	Firestore	a	good	fit	 for	us.	Go	
to https://console.cloud.google.com/firestore/	 where	 you	 should	 see	 a	 “Get	
started”	screen:	

We	will	select	Native	Mode	but	you	can	learn	more	about	both	options	provided	
here	by	visiting	Choosing	between	Native	mode	and	Datastore	mode.	The	next	
screen	will	prompt	you	for	a	location.	

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       7

https://console.cloud.google.com/firestore/?pli=1
https://cloud.google.com/firestore/docs/firestore-or-datastore
http://fearlesstg.com


This	example	uses	“us-west3”	but	any	location	will	work.	If	you	plan	to	use	this	
instance	heavily	then	you	should	spend	time	reviewing	Google’s	documentation	
on Locations and Pricing	by	Location	to	be	sure	you	pick	the	right	location	for	
you.	

After	 clicking	 Create Database	 you	 will	 get	 a	 message	 like,	 “Creating	 your	
database!	 Initializing	 Cloud	 Firestore	 in	 Native	 mode	 services	 in	 us-west3	 -	
this	usually	 takes	a	 few	minutes.	You’ll	be	 redirected	 to	 your	database	once	
it’s	 ready.”	 Once	 initialization	 completes,	 the	 console	 provides	 an	 interface	
where	 you	 can	 perform	CRUD	 operations	 on	 Firestore	 collections.	 Feel	 free	
to	 experiment	 here.	 We	 will	 programmatically	 create	 a	 collection	 and	 write	
documents to it in upcoming steps.

Step C: Create a GCP Cloud Function.

Let’s	 look	at	some	code.	Open	a	command	line	(our	examples	use	bash)	and	
issue these three commands to clone and initialize FTG’s commercetools-gcp-
subscribe	repository:

This	 repo	 contains	 a	 cloud	 function	 that	 accepts	 a	 commercetools	Message 
and	persists	it	to	our	Cloud	Firestore	database.	The	function	is	implemented	in	
index.js	and	has	two	dependencies,	@google-cloud/firestore and joi:

$ git clone https://github.com/FearlessTechnologyGroup/commercetools-
gcp-subscribe 
$ cd commercetools-gcp-subscribe/
$ npm install

“This location setting is your project’s default Google Cloud Platform (GCP) 
resource location. Note that this location will be used for GCP services in your 
project that require a location setting, specifically, your default Cloud Storage 
bucket and your App Engine app (which is required if you use Cloud Scheduler). 
Warning: After you set your project’s default GCP resource location, you 
cannot change it.”
– Firestore	Quickstart	documentation

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       8

https://cloud.google.com/firestore/docs/locations
https://cloud.google.com/firestore/pricing#pricing_by_location
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://fearlesstg.com/
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe
https://docs.commercetools.com/api/message-types#message
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/index.js
https://github.com/googleapis/nodejs-firestore
https://github.com/sideway/joi
https://cloud.google.com/firestore/docs/quickstart-servers
http://fearlesstg.com


We	use	two	environment	variables:

We describe commercetools Message schema using joi	and	define	a	helper	
function	-	getValidationError	-	to	look	for	errors	in	the	messages	we	receive.	
We	 only	 want	 to	 persist	 valid	 order	 messages	 and	 joi	 will	 perform	 data	
validation	for	us.	We	are	doing	very	simple	validation	here	but	joi	is	capable	
of	doing	much	more	if	you	wish.

Finally,	 we	 have	 the	 exported	 cloud	 function	 itself,	 orderArchive. There 
are	 two	types	of	Google	Cloud	Functions:	HTTP	 functions	and	background	
functions.	We	will	use	a	background	function	as	they	can	be	automatically	
executed	when	 a	message	 is	 received	 on	 a	 Pub/Sub	 topic.	 A	 background	
function	takes	three	parameters:	

// The Node.js Server SDK for Google Cloud Firestore:
const Firestore = require(‘@google-cloud/firestore’);
 
// Schema description language and data validator:
const Joi = require(‘joi’);

const PROJECTID = process.env.PROJECTID; // your GCP project name
const COLLECTION_NAME = process.env.COLLECTION_NAME; // persistence 
location

const orderSchema = Joi.object({
  createdAt: Joi.string().required(),
  id: Joi.string().required(),
  lastModifiedAt: Joi.string().required(),
  order: Joi.object(),
  orderId: Joi.string(),
  resource: Joi.object().required(),
  resourceVersion: Joi.number().required(),
  sequenceNumber: Joi.number().required(),
  type: Joi.string().required(),
  version: Joi.number().required(),
})
  .or(‘order’, ‘orderId’) // order on create/delete; orderId on 
update
  .unknown(); // allow top level unknown keys
 
const getValidationError = async (order) => {
  try {
    const value = await orderSchema.validateAsync(order);
    return value.error !== undefined;
  }
  catch (err) {
    return err.message;
  }
}

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       9

https://docs.commercetools.com/api/message-types#message
https://github.com/sideway/joi
https://cloud.google.com/functions/docs/writing#background_functions
https://cloud.google.com/functions/docs/writing#background_functions
http://fearlesstg.com


• message	-	an	object	containing	the	Cloud	Pub/Sub	message
• context	-	an	object	containing	meta-data		(e.g.,	eventId,	eventType,	etc)
• callback	-	a	function	signalling	completion	of	the	function’s	execution

The	 function	 does	 three	 things.	 First,	 it	 extracts	 content	 from	 the	message	
parameter.	Pub/Sub	uses	base64	to	encode	the	data	it	publishes	so	we	need	
to	decode	it	and	convert	it	to	a	JavaScript	object.	Note	that	this	might	fail	if	we	
have	bad	data	so	everything	is	wrapped	in	a	try-catch	block	so	we	can	log	errors	
if	they	occur.

Second,	we	perform	data	validation	to	ensure	we	received	a	commercetools	
Message	that	includes	order	data.		The	call	to	getValidationError	returns	false	
if	we	are	safe	to	save	the	data;	otherwise,	it	will	return	an	error	message	that	
we	log.

Third,	we	use	Firestore	to	save	the	order	to	our	project	in	the	collection	specified	
in our environment variables.

exports.orderArchive = async (message, context, callback) => {
  const { eventId } = context || {};
  try {
    // 1. extract the order from the pubsub message
    const { data } = message || {};
    const order = JSON.parse(Buffer.from(data, ‘base64’).toString());
 
    // 2. validate the order; noop if its invalid
    const validationError = await getValidationError(order);
    if (!validationError) {
 
      // 3. persist the order to firestore
      const firestore = new Firestore({ projectId: PROJECTID });
      const result = await firestore
        .collection(COLLECTION_NAME)
        .add(order);
 
      callback(null, ‘Success’);
      console.log({ message: ‘orderArchive success’, eventId });
      firestore.terminate();
 
    } else {
      // function successful but payload was bad
      callback(null, `Order Invalid: ${validationError}`);
      console.log({
        message: `orderArchive invalid: ${validationError}`,
        order: JSON.stringify(order),
        eventId,
      });
    }

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       10

http://fearlesstg.com


  } catch (error) {
    const { message = ‘Unknown error’, stack } = error;
    console.error({
      eventId,
      message: `orderArchive error: ${message}`,
      stack,
    });
    callback(error); // function unsuccessful
  }
};

Step D: Configure and Deploy the Cloud Function.

Before	we	deploy	or	run	the	function,	we	need	to	do	some	configuration.	To	run	
locally,	we	need	 to	 set	 three	environment	variables:	GOOGLE_APPLICATION_
CREDENTIALS,	PROJECTID	and	COLLECTION_NAME.

To	set	up	your	credentials,	 follow	the	Creating a service account instructions 
from	Google.	This	will	walk	you	through	five	steps	to	create	a	service	account	
and	download	the	credentials	to	your	local	system.	

We	can	then	use	a	 .env	file	 to	set	 the	variables.	 If	you	don’t	 remember	your	
project	 ID,	 you	 can	 retrieve	 it	 at	 https://console.cloud.google.com/home/
dashboard.	Feel	free	to	change	the	collection	name	but	we	will	use	“ct-orders”.	
Create	a	file	named	.env	in	the	root	of	the	repo	using	this	as	your	guide	for	its	
content:

When	we	deploy	the	function	to	GCP,	we	will	need	a	way	to	set	the	PROJECTID	
and	COLLECTION_NAME	 there	 too.	We	can	specify	 these	 in	 the	deployment.
yaml	file	so	go	ahead	and	update	that	now	too:

Note	that	we	do	not	need	to	specify	credentials	in	the	deployment.yaml	because	
the	cloud	function	will	inherit	the	permissions	it	needs	once	deployed	to	GCP.

We	can	manually	perform	a	basic	integration	test	at	this	point.	The	repo	makes	
this	fairly	simple	if	you’re	using	VSCode,	see	the	debug	configuration	for	it	 in	
launch.json. 

GOOGLE_APPLICATION_CREDENTIALS=”/PATH/TO/YOUR/DOWNLOADED/
CREDENTIALS”
PROJECTID=”YOUR-PROJECT-ID”
COLLECTION_NAME=”ct-orders”

PROJECT_ID: YOUR-PROJECT-NAME
COLLECTION_NAME: ct-orders

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       11

https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account
https://console.cloud.google.com/projectselector2/home/dashboard?supportedpurview=project
https://console.cloud.google.com/projectselector2/home/dashboard?supportedpurview=project
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/deployment.yaml
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/deployment.yaml
https://code.visualstudio.com/
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/.vscode/launch.json
http://fearlesstg.com


{
  “data”: {
    “data”: 
“ewogICJwcm9qZWN0S2V5IjogImZ0Zy1kZXZlbG9wbWVudCIsCiAgInR5c-
GUiOiAiT3JkZXJDcmVhdGVkIiwKICAibGFzdE1vZGlmaWVkQXQiOiAiMjAyMC0x-
MC0xMlQyMToxNDo0NC40ODNaIiwKICAib3JkZXIiOiB7CiAgICAidGVzdCI6IHRy-
dWUKICB9LAogICJub3RpZmljYXRpb25UeXBlIjogIk1lc3NhZ2UiLAogICJjcmVh-
dGVkQXQiOiAiMjAyMC0xMC0xMlQyMToxNDo0NC40ODNaIiwKICAic2VxdWVuY2VOd-
W1iZXIiOiAxLAogICJyZXNvdXJjZSI6IHsKICAgICJ0ZXN0IjogdHJ1ZQogIH0s-
CiAgInJlc291cmNlVXNlclByb3ZpZGVkSWRlbnRpZmllcnMiOiB7fSwKICAicmVz-
b3VyY2VWZXJzaW9uIjogMSwKICAidmVyc2lvbiI6IDEsCiAgImlkIjogInRlc3Qx-
Igp9”
  }
}

The	 function	 should	 return	 `{	 message:	 ‘orderArchive	 success’,	 eventId:	
undefined	}`	and	you	should	see	a	new	document	saved	in	the	Cloud Firebase 
console	if	everything	went	according	to	plan.

Assuming	your	integration	test	was	successful,	we	should	deploy	the	function.	
There	are	a	few	GCP	prerequisites	we	need	to	fulfill;	these	only	need	to	be	done	
once	in	your	GCP	project:

1.	Make	sure	that	billing	is	enabled	for	your	Google	Cloud	project	by	following	
the instructions at Confirm	billing	is	enabled	on	a	project.  

2.	Enable	the	Cloud	Functions	and	Cloud	Build	APIs	by	following	the	Before	you	
begin instructions.

3.	Make	sure	the	APIs	are	enabled	and	the	Cloud	Functions	Developer	role	is	
enabled	for	your	service	account	by	following	the	Open	the	Cloud	Build	Settings 
page	link	shown	in	the	instructions.	If	there	was	an	issue	enabling	the	APIs,	you	
can	follow	the	steps	to	enable	that,	and	then	return	the	Build	Settings	to	enable	
the role.

You	can	deploy	locally	using	the	gcloud	CLI	from	the	root	of	the	repo;	substitute	
PROJECTID	with	 the	 ID	of	 your	project	and	update	 the	 region	 if	 you	made	a	
different	location	selection	in	Step	B:

Open	index.js,	go	to	VSCode’s	Run	tab,	select	“debug:orderArchive”	from	the	list	
of	configurations,	and	click	the	Start	Debugging	icon.	If	you’re	not	using	VSCode,	
you	can	still	run	the	function	by	executing	`npm	start`	from	the	command	line	
but	you	will	need	to	edit	the	start	script	to	pass	in	your	environment	variables;	
I	suggest	using	a	tool	like	cross-env if	you	want	to	go	that	route.

Once	the	function	is	running	locally,	you	can	POST	to	it.	If	you	want	to	create	your	
own	sample,	remember	that	data	 in	a	Pub/Sub	message	 is	base64	encoded;	
here	is	a	test	body	you	can	use:

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       12

https://console.cloud.google.com/firestore/data/ct-orders
https://console.cloud.google.com/firestore/data/ct-orders
https://cloud.google.com/billing/docs/how-to/modify-project#confirm_billing_is_enabled_on_a_project
https://cloud.google.com/cloud-build/docs/deploying-builds/deploy-functions#before_you_begin
https://console.cloud.google.com/cloud-build/settings/service-account
https://github.com/kentcdodds/cross-env
http://fearlesstg.com


 gcloud functions deploy orderArchive --project PROJECTID --region 
us-west3 --env-vars-file ./deployment.yaml --runtime nodejs12 
--trigger-topic Orders

The same command is available in the package.json	deploy	script.	So,	assuming	
you	update	PROJECTID	there,	you	can	execute	the	same	command	by	executing	
npm run deploy	from	the	command	line.

Step E: Set up the GCP Pub/Sub Topic.

When	we	deployed	our	Cloud	Function	in	the	previous	step,	GCP	automatically	
set	up	the	associated	Orders	Topic	for	us	based	on	the	--trigger-topic	Orders	
parameter	we	provided.	You	can	confirm	that	by	going	to	https://console.cloud.
google.com/cloudpubsub/topic/list.	 If	a	Topic	called	“Orders”	 is	not	there,	we	
can	easily	create	one	by	clicking	the	“Create	Topic”	button	you	should	see	at	
the	top	of	the	Topics	page.	Enter	“Orders”	as	the	Topic	ID	in	the	dialog	box	that	
pops	up.	Leave	the	“Use	a	customer-managed	encryption	key”	unchecked.

We need to grant commercetools permission to publish	to	our	new	topic.	Click	
on	the	“Orders”	topic	to	see	its	details.	Make	sure	the	Info	Panel	is	shown;	click	
the	 “SHOW	 INFO	PANEL”	button	 in	 the	upper-right	 if	 the	panel	 is	hidden.	 In	
the	Info	Panel’s	Permissions	tab,	click	the	“ADD	MEMBER”	button.	In	the	form	
provided,	 add	 “subscriptions@commercetools-platform.iam.gserviceaccount.
com”	 as	 the	New members	 and	 “Pub/Sub	Publisher”	 as	 the	Role	 as	 shown	
below.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       13

https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/package.json#L8
https://cloud.google.com/pubsub/docs/overview
https://console.cloud.google.com/projectselector2/cloudpubsub/topic/list?supportedpurview=project&project=&folder=&organizationId=
https://console.cloud.google.com/projectselector2/cloudpubsub/topic/list?supportedpurview=project&project=&folder=&organizationId=
https://docs.commercetools.com/api/projects/subscriptions#google-cloud-pubsub-destination
mailto:subscriptions%40commercetools-platform.iam.gserviceaccount.com?subject=
mailto:subscriptions%40commercetools-platform.iam.gserviceaccount.com?subject=
http://fearlesstg.com


Click	Save	and	GCP	is	now	ready	to	receive	messages	from	a	commercetools	
Subscription.
 
You	can	check	to	ensure	that	our	Cloud	Function	is	associated	with	our	Orders	
topic	by	scrolling	down	to	the	Subscriptions	at	the	bottom	of	the	Order	topic’s	
detail	page.	You	should	see	an	entry	 for	 “gcf-orderArchive-us-west3-Orders”.	
The	region	name	may	be	different	for	you.	If	that	entry	is	missing,	you	will	need	
to	revisit	the	Cloud	Function	deploy	in	the	previous	step.

Let’s	move	to	the	commercetools	side	next.

Step F: Create a commercetools project.

If	 you	 already	 have	 a	 commercetools	 project	 you	 can	 skip	 this	 step.	 If	 not,	
there	is	good	news:	you	can	easily	sign	up	for	a	risk-free,	fully-functional	60	day	
commercetools	trial.	The	trial	period	does	introduce	a	few	limits,	like	the	total	
number	of	products	you	can	define,	but	the	feature	set	is	rich.

Go to https://commercetools.com/free-trial	and	fill	out	the	form	to	get	an	email	
with	 instructions	 for	 creating	 your	 trial	 organization	 and	 initial	 project.	 The	
process	 is	quite	 fast	because	commercetools	automates	all	 the	work	behind	
the	scenes	to	provision	cloud	resources	for	you.	Note	the	key	you	used	for	your	
project	as	it	will	be	used	in	Step	G.	Once	you	have	your	first	project	in	place,	
proceed	to	the	next	step.

Step G: Load commercetools sample data.

To	 test	 our	 Subscription,	 we	 need	 to	 be	 able	 to	 create	 and	 modify	 Order	
resources	 on	 the	 commercetools	 platform.	 If	 you	 already	have	data	 in	 your	
commercetools	 project	 or	 are	 comfortable	 creating	 the	 resources	 we	 need	
using	tools	like	the	Merchant	Center,	IMPEX or the HTTP API,	then	you	can	skip	
this step. 

Alternatively,	commercetools	provides	an	open	source	project	to	make	loading	
sample	data	easy.	 If	 you’re	 comfortable	 running	open	 source	 tools,	 you	 can	
follow	the	steps	in	the	Sunrise	Data	README;	if	not,	here	is	what	you	should	do:

1.	 Open	 a	 command	 line	 (our	 examples	 use	 bash)	 and	 issue	 these	 three	
commands to clone and initialize the commercetools-sunrise-data open source 
repository:

$ git clone 
https://github.com/commercetools/commercetools-sunrise-data.git
$ cd commercetools-sunrise-data/
$ npm install

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       14

https://ok.commercetools.com/free-trial
https://docs.commercetools.com/merchant-center/
https://docs.commercetools.com/tutorials/#impex
https://docs.commercetools.com/tutorials/api-tutorial
https://github.com/commercetools/commercetools-sunrise-data
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://github.com/commercetools/commercetools-sunrise-data
https://github.com/commercetools/commercetools-sunrise-data
http://fearlesstg.com


2.	 The	commercetools-sunrise-data	application	needs	some	configuration	so	
it	knows	what	project	to	load	the	data	into	and	has	the	credentials	it	needs	to	
perform	its	work.	Here	are	the	steps:

a.  Login	to	the	Merchant	Center	and	then	navigate	to	Settings	->	Developer	
Settings	from	the	left	navigation.		

b. 	Click	“Create	new	API	Client”
c. 	For	field	Name,	enter:	admin-client
d. 	For	field	Scopes,	select:	Admin	client
e. 	Click	“Create	API	Client”
f.		Note	all	the	information	provided	by	the	Merchant	Center	as	we	will	use	
them	in	the	next	step.

Now	that	we	have	the	configuration	details	we	need,	we	can	create	a	.env	file	
for	the	commercetools-sunrise-data	application	to	leverage.	Create	a	new	file	
called	.env	at	the	root	of	your	commercetools-sunrise-data	directory.	It	should	
have	 the	 following	 entries;	 replace	 the	 generic	 values	 with	 information	 you	
captured	 in	 the	previous	step.	 If	you	 lost	your	configuration	details,	you	can	
perform	the	previous	step	again	and	create	a	new	API	Client	without	harm:

  CTP_PROJECT_KEY = <your project key>
  CTP_CLIENT_ID = <your client ID>
  CTP_CLIENT_SECRET = <your client secret>
  CTP_API_URL = <your apiUrl> (i.e., api.commercetools.com)
  CTP_AUTH_URL = <your authUrl> (i.e., auth.commercetools.com)

$ npm run start

You	are	now	ready	to	load	data.	Assuming	all	the	previous	steps	were	successfully	
followed,	a	single	command	will	load	data	for	you.	Note	that	this	command	will	
replace all data in the project!	If	you	need	to	retain	existing	data,	see	further	
instructions in the README.md.

Step H: Set up commercetools Subscription.

We can Create a Subscription	 in	 commercetools	 by	 sending	 a	 POST	 to	
the /{projectKey}/subscriptions endpoint. The endpoint accepts a 
SubscriptionDraft	which	allows	you	to	specify	the	following:

• key	-	String	-	Optional	-	User-specific	unique	identifier	for	the	subscription.
We	will	set	this	to	“gcp-order-subscription”

• destination	-	Destination	-	The	Message	Queue	into	which	the	
notifications	are	to	be	sent.	 
A	wide	variety	of	message	queues	are	supported;	we	will	use	GCP	by	
setting: {  “type”: “GoogleCloudPubSub”,  “projectId”: 
“PROJECTID”,  “topic”: “Orders” }

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       15

https://docs.commercetools.com/docs/login
https://github.com/commercetools/commercetools-sunrise-data/blob/master/README.md
https://docs.commercetools.com/api/projects/subscriptions#create-a-subscription
https://docs.commercetools.com/api/projects/subscriptions#subscriptiondraft
https://docs.commercetools.com/api/projects/subscriptions#destination
http://fearlesstg.com


• messages	-	Array	of	MessageSubscription	-	Optional	-	The	messages	to	be	
subscribed to. 
We	will	subscribe	to	all	messages	for	the	Order	resource	by	setting:	 
[{ “resourceTypeId”: “order” }]

• changes	-	Array	of	ChangeSubscription	-	Optional	-	The	change	
notifications	to	be	subscribed	to. 
We	will	leave	this	undefined.

• format	-	Format	-	Optional	-	The	format	in	which	the	payload	is	delivered. 
We	will	use	the	default	which	is	Platform	Format.

Based	on	the	above,	here	is	what	we	want	to	POST:

We	can	use	 IMPEX	to	set	 this	up.	Go	to	the	API	Playground and login. In the 
Endpoint	field,	select	“Subscriptions”.	In	the	Command	field,	select	“Create”.	In	
the Payload	field,	paste	the	JSON	from	above.	Make	sure	you	change	PROJECTID	
to	be	the	ID	of	your	GCP	project.	Click	the	GO	button	and	IMPEX	should	reply	
with	something	similar	to:

{
  “key”: “gcp-order-subscription”,
  “destination”: {
    “type”: “GoogleCloudPubSub”,
    “projectId”: “PROJECTID”,
    “topic”: “Orders”
  },
  “messages”: [
    {
      “resourceTypeId”: “order”
    }
  ]
}

{
  “id”: “3d678687-0519-4c1a-9120-4b518b7a92d4”,
  “version”: 1,
  “createdAt”: “2020-10-10T20:33:35.039Z”,
  “lastModifiedAt”: “2020-10-10T20:33:35.039Z”,
  “lastModifiedBy”: {
    “isPlatformClient”: true
  },
  “createdBy”: {
    “isPlatformClient”: true
  },
  “destination”: {
    “type”: “GoogleCloudPubSub”,
    “projectId”: “PROJECTID”,
    “topic”: “Orders”
  },

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       16

https://docs.commercetools.com/api/projects/subscriptions#messagesubscription
https://docs.commercetools.com/api/projects/subscriptions#changesubscription
https://docs.commercetools.com/api/projects/subscriptions#format
https://docs.commercetools.com/api/projects/subscriptions#platform-format
https://docs.commercetools.com/docs/login
http://fearlesstg.com


To	alternatively	use	the	HTTP	API,	we	can	take	advantage	of	tools	like	Postman 
or curl.	If	you	are	familiar	with	Postman,	commercetools	provides	a	repository	
containing Postman	collections	for	the	platform.	We	will	show	examples	using	
curl.	If	you’re	using	Windows	locally,	this	guide	from	Zendesk	may	be	useful	as	
it	documents	modifications	you	may	need	to	make.

We can use curl	 in	two	steps.	First,	we	need	an	authorization	token.	Run	the	
following	from	the	command	line,	substituting	AUTH_HOST,	CLIENT_ID,	SECRET	
and	PROJECT_KEY	with	data	we	noted	in	Step	G:

Second,	 we	 use	 the	 returned	 access_token	 to	 provide	 authorization	 when	
performing	the	POST.	Run	the	following	from	the	command	line,	substituting	
ACCESS_TOKEN	with	 the	 access_token	 returned	 from	 the	 last	 curl	 request,	
API_HOST	and	PROJECT_KEY	with	the	commercetools	project	key	we	noted	in	
Step	G,	and	PROJECTID	with	your	GCP	project	ID:

Your	response	will	be	similar	to	the	JSON	response	from	IMPEX.	

“changes”: [],
  “messages”: [
    {
      “resourceTypeId”: “order”
    }
  ],
  “format”: {
    “type”: “Platform”
  },
  “status”: “Healthy”,
  “key”: “gcp-order-subscription”
}

curl https://AUTH_HOST/oauth/token \
--basic --user “CLIENT_ID:SECRET” \
-X POST \
-d “grant_type=client_credentials&scope=manage_
project:PROJECT_KEY”

curl -sH “Authorization: Bearer ACCESS_TOKEN” \
-H ‘content-type: application/json’ \
-d ‘{“key”: “gcp-order-subscription”,”destination”: 
{“type”:”GoogleCloudPubSub”, “projectId”: “PROJECTID”, 
“topic”: “Orders”}, “messages”: [{“resourceTypeId”: “order”}]}’ 
\
https://API_HOST/PROJECT_KEY/subscriptions

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       17

https://www.postman.com/
https://curl.se/
https://github.com/commercetools/commercetools-postman-collection
https://github.com/commercetools/commercetools-postman-collection
https://github.com/commercetools/commercetools-postman-collection
https://develop.zendesk.com/hc/en-us/articles/360001068567-Installing-and-using-cURL#curl_win
https://curl.se/
http://fearlesstg.com


{
  “currency”: “USD”,
  “country”: “US”,
  “lineItems”: [{
    “sku”: “M0E20000000DZWJ”
  }],
  “shippingAddress”: {
    “country”: “US”
  }
}

{
  “id”: “ID-FROM-CART”,
  “version”: VERSION-FROM-CART
}

Step I: Test commercetools/GCP Integration.

We	are	now	ready	to	test	our	integration.	All	create,	update	and	delete	operations	
on	orders	should	now	cause	commercetools	to	publish	a	message	to	our	GCP	
Pub/Sub	Topic	which	will	trigger	our	Cloud	Function	to	execute	which	results	in	
a	new	document	being	added	to	our	Firestore	ct-orders	collection.

Let’s	test	it	out	using	IMPEX.	Go	to	the	API	Playground	and	login.	If	you	loaded	
the	sample	data	in	Step	G,	we	can	create	a	cart	using	one	of	the	SKUs	we	loaded.	
Set the Endpoint	field	to	“Carts”,	the	Command	field	to	“Create”,	the	Payload 
field	to:

Hit	GO	and	IMPEX	will	respond	with	a	Cart	object.	Copy	the	id  and version 
fields	from	the	response	so	we	can	use	them	to	create	an	Order.	We	will	Create 
an	Order	 from	Cart	 in	 IMPEX	 by	 setting	 the Endpoint	 field	 to	 “Orders”,	 the	
Command	field	to	“Create”,	and	the	Payload	field	to	the	two	fields	you	copied:

Hit	GO	and	IMPEX	will	respond	with	an	Order	object.	Copy	the	id	of	the	cart	so	
we	can	find	it	on	GCP	next.	

Go to Firestore at https://console.cloud.google.com/firestore/data/ct-orders 
and	click	on	the	filter	icon	next	to	the	ct-orders	column	header.	Set	the	Choose 
a field to filter	 by	field	 to	 “order.id”,	 set	 the	Add a condition field	 to	 “(==)	
equal	to“	and	set	the	String	field	to	the	id	from	the	commercetools	Order.	Hit	
the	Apply	button	and	you	should	see	the	order	we	created.	

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       18

https://docs.commercetools.com/docs/login
https://docs.commercetools.com/api/projects/carts
https://docs.commercetools.com/api/projects/orders
https://docs.commercetools.com/api/projects/orders#create-order-from-cart
https://docs.commercetools.com/api/projects/orders#create-order-from-cart
https://docs.commercetools.com/api/projects/orders
https://console.cloud.google.com/firestore/data/ct-orders
http://fearlesstg.com


{
  “version”: 1,
  “actions”: [{
    “action”: “changeOrderState”,
    “orderState”: “Confirmed”
  }]
}

If	 you	 don’t	 see	 the	 order,	 you	 can	 troubleshoot	 by	 reviewing	 the	 Cloud	
Function logs. Go to https://console.cloud.google.com/functions/list	 and	click	
the	orderArchive	function	to	see	its	details.	Click	the	Logs tab to see its output 
sorted	by	date	and	time.	If	nothing	is	there,	it	likely	means	your	Subscription	
configuration	is	not	working	so	review	Step	H.	If	the	cloud	function	received	a	
message	but	errored,	you	will	see	the	issue	reported	in	the	list.	 If	everything	
worked	 as	 expected,	 you	 will	 see	 a	 success	 message	 like,	 “{ message: 
‘orderArchive success’, eventId: ‘1631128022312033’ }”.

If	 you	had	 success	with	order	 creation,	we	 can	perform	an	example	update	
next.	 In	 IMPEX,	 we	 can	 Update	 the	 Order	 by	 ID using an UpdateAction	 of	
Change	OrderState.	The	payload	we	send	changes	 the	orderState	field;	use	
the version	from	the	Order	we	created	above:

In	IMPEX,	set	the	Endpoint	field	to	“Orders”,	the	Command	field	to	“Update”,	set	
the Payload	to	the	JSON	above	and	the	Resource ID to the id	from	the	Order	
we	created	above.	Hit	GO	and	IMPEX	will	respond	with	the	updated	order.	You	
should	see	two	changes:	the	version	will	be	incremented	and	the	orderState 
will	be	“Confirmed”.

Head	over	 to	 your	GCP	 console	 and	 check	 Firestore	 again.	 The	 subscription	
message	we	get	for	an	update	is	different	from	a	create.	A	create	message	has	
a type	of	“OrderCreated”	and	includes	the	complete	order	object	in	field	order. 
An	update	message	has	a	type	of	“OrderStateChanged”	and	does	not	include	
the	entire	order	object.	Instead,	only	the	changed	fields	are	communicated.	In	
our	example,	we	get	fields:	orderId,	orderState, and oldOrderState.	So,	we	
can	use	orderId	to	find	our	update	message.	Hit	the	filter	button	and	this	time	
set the Choose a field to filter	by	to	“orderId”	to	see	the	update.

Finally,	we	can	test	a	delete.	In	IMPEX,	set	the	Endpoint	field	to	“Orders”,	the	
Command	field	to	“Delete”,	the	Resource ID to the id	from	the	Order	we	created	
above,	and	 the	Resource version to the version	 returned	 from	 the	update	
request.	Hit	GO	and	 IMPEX	will	 respond	with	 the	deleted	order.	 In	Firebase,	
the	document	archived	will	have	a	type	of	“OrderDeleted’’	and	will	contain	an	
order	field,	like	we	saw	when	we	initially	created	the	order.	So,	a	filter	on	order.
id	should	now	show	two	records,	one	for	the	create	and	one	for	the	delete.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       19

https://console.cloud.google.com/projectselector2/functions/list?supportedpurview=project&project=&folder=&organizationId=
https://docs.commercetools.com/api/projects/orders#update-order
https://docs.commercetools.com/api/projects/orders#update-actions
https://docs.commercetools.com/api/projects/orders#change-orderstate
http://fearlesstg.com


Note	that	all	the	IMPEX	requests	made	above	can	alternatively	be	performed	
using the commercetools HTTP API.

Feel	free	to	experiment	more.	Both	GCP	and	commercetools	know	how	to	au-
toscale	so	in	a	production	environment,	as	orders	come	in,	compute	resourc-
es	will	be	provisioned	dynamically	to	handle	the	load	and	archive	all	order	
updates	as	they	are	published.	

We	are	done!	In	this	example	use	case,	we	limited	ourselves	to	archiving	all	or-
der	messages.	There	are,	of	course,	many	other	things	you	could	do	based	on	
your	needs:	send	customers	update	emails	in	response	to	orderState chang-
es,	feed	orders	into	downstream	business	intelligence	systems,	generate	
alerts	based	on	updates	using	your	business	rules,	etc.	We	hope	this	paper	
gives	you	the	baseline	information	you	need	to	innovate	using	commercetools	
and	Subscriptions!

Step J: Provide you with resources if you need help.

We	travelled	quite	a	bit	of	ground	covering	Subscriptions	and	showing	you	the	
power	they	provide.	If	you	have	q
Questions	or	need	additional	help,	Fearless	Technology	Group	(FTG)	is	avail-
able	to	assist	you.	Shoot	us	an	email	at	contactus@fearlesstg.com	so	we	can	
lend a hand.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       20

https://fearlesstg.com/
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&to=contactus@fearlesstg.com
http://fearlesstg.com


As	you	consider	all	 your	customization	options,	FTG	and	commercetools	are	
here	to	assist	you.

commercetools	is	a	next-generation	software	technology	company	that	offers	
a	 true	 cloud	 commerce	 platform,	 providing	 the	 building	 blocks	 for	 the	 new	
digital	 commerce	 age.	Our	 leading-edge	API	 approach	 helps	 retailers	 create	
brand	value	by	empowering	commerce	teams	to	design	unique	and	engaging	
digital	commerce	experiences	everywhere	–	today	and	in	the	future.	Our	agile,	
componentized	 architecture	 improves	 profitability	 by	 significantly	 reducing	
development	 time	and	 resources	 required	 to	migrate	 to	modern	 commerce	
technology	and	meet	new	customer	demands.	It	is	the	perfect	starting	point	for	
customized microservices.

Fearless	 Technology	Group	 (FTG)	 helps	 retailers	modernize	 their	 technology	
architecture,	 solve	 critical	 business	 problems,	 and	 capitalize	 on	 business	
opportunities in an evolving landscape. FTG is both a commercetools and 
Google	Cloud	Platform	Partner.	Contact	us	at	contactus@fearlesstg.com 
or	720-432-9068.

Europe - HQ 
commercetools GmbH
Adams-Lehmann-Str.	44
80797	Munich,	Germany
Tel.	+49	(89)	99	82	996-0
info@commercetools.com

Americas 
commercetools,	Inc.
324	Blackwell,	Suite	120
Durham,	NC	27701
Tel.	+1	212-220-3809
mail@commercetools.com

Munich	-	Berlin	-	Jena	-	Amsterdam	-	London	-	Durham	NC	-	Singapore	-	Melbourne
www.commercetools.com

Additional Help

About Fearless Technology Group

About commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/       21

https://fearlesstg.com/
mailto:contactus@fearlesstg.com
http://fearlesstg.com

	Table Of Content 
	What makes B2B special?
	B2B Customer Journey
	Introduction

