
www.commercetools.com

Building commercetools
customizations using Subscriptions
and the Google Cloud Platform

Table of Contents

Introduction

What are Subscriptions?

Implementation Example
	
 Use Case	
	
 Problem

 Solution

 Implementation Steps

	 Step A: Set up a GCP Project.

		 Set up a Google Cloud Account	

		 Set up a Google Cloud Project

		 Install the Google Cloud SDK

		 Authenticate using Google Cloud SDK

	 Step B: Set up GCP Cloud Firestore.

	 Step C: Create a GCP Cloud Function.	

	 Step D: Configure and Deploy the Cloud Function.

	 Step E: Set up the GCP Pub/Sub Topic.

	 Step F: Create a commercetools project.

	 Step G: Load commercetools sample data.

	 Step H: Set up commercetools Subscription.

	 Step I: Test commercetools/GCP Integration.

	 Step J: Provide you with resources if you need help.

Additional Help

3

3

4

4

4

5

5

6

6

6

6

6

6

8

11

13

14

14

15

18

20

21

Introduction

commercetools is a dynamically extensible, cloud-native commerce solution.
It allows retailers to sculpt a solution that fits their unique needs today, and is
flexible to support their evolving business strategy tomorrow.

There are many powerful extensibility features built into commercetools that
handle a wide variety of use cases. For an overview of them, see Building
commercetools customizations - Overview.

In this whitepaper we will do a deep dive on one powerful technique for
customizing commercetools: Subscriptions.

“By using Event Messages you can easily decouple senders and receivers both
in terms of identity (you broadcast events without caring who responds to
them) and time (events can be queued and forwarded when the receiver is
ready to process them). Such architectures offer a great deal for scalability and
modifiability due to this loose coupling.”

– Focusing on Events, Martin Fowler

What are Subscriptions?

Subscriptions allow you to trigger custom asynchronous background processing
in response to an event on the commercetools platform.

Because Subscriptions execute asynchronously based on events emitted
from the platform, they allow your custom solutions to be loosely coupled
to commercetools. This greatly reduces the risk of your code impacting
commercetools API execution and performance.

commercetools differentiates between messages and changes. A single
subscription can listen to both depending on the resource. Changes are straight-
forward: events are fired whenever the subscribed resource type is created,
updated or deleted. Messages are more specific:

“Subscriptions allow you to be notified of new messages or changes via a
Message Queue of your choice.”

– Subscriptions, Platform Documentation, commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 3

https://f.hubspotusercontent30.net/hubfs/4784080/commercetools-customizations-extensions-overview.png
https://f.hubspotusercontent30.net/hubfs/4784080/commercetools-customizations-extensions-overview.png
https://martinfowler.com/eaaDev/EventNarrative.html
https://docs.commercetools.com/api/projects/subscriptions
https://docs.commercetools.com/api/projects/subscriptions#changesubscription
https://docs.commercetools.com/api/projects/subscriptions
http://fearlesstg.com

Our example implementation will focus on commercetools orders and will use
Google’s Pub/Sub, Cloud Function and Cloud Firestore services.

There are many use cases where the asynchronous processing of an event is
the right approach; for instance, sending order status emails in response to
order events. In this use case, commercetools will fire events you can listen
for as the orderState moves from Open to Confirmed and finally to either
Complete or Cancelled.

To take advantage of this technique, you must configure your subscription
via commercetools’ /{projectKey}/subscriptions endpoint. You specify the
destination for the subscription which, as of this writing, can be any of these
message queues: AWS SQS, AWS SNS, Azure Service Bus, Azure Event Grid or
Google Cloud Pub/Sub. You also define the array of messages and changes
you want to subscribe to.

Bottom line, Subscriptions provide a lot of power! If you’re in doubt whether
Subscriptions are the best approach for you, contact FTG and we can help you
find the best path.

Let’s drill down on a sample use case to see how to exploit Subscriptions.

Implementation Example

Use Case

Problem

A retailer wishes to archive all commercetools order updates on their own
Google Cloud Platform (GCP) instance so they can independently use, query
and analyze the data in their existing environment.

The retailer has not integrated their GCP instance with commercetools.

“A message represents a change or an action performed on a resource (like an
Order or a Product). Messages can be seen as a subset of the change history for
a resource inside a project. It is a subset because not all changes on resources
result in messages. Messages can be pulled via a REST API, or they can be pushed
into a Message Queue by defining a Subscription.”

– Message Types, Platform Documentation, commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 4

https://aws.amazon.com/sqs/
https://aws.amazon.com/sns/?whats-new-cards.sort-by=item.additionalFields.postDateTime&whats-new-cards.sort-order=desc
https://azure.microsoft.com/en-us/services/service-bus/
https://azure.microsoft.com/en-us/services/event-grid/
https://cloud.google.com/pubsub/
https://docs.commercetools.com/api/projects/orders#order
https://docs.commercetools.com/api/projects/products#product
https://docs.commercetools.com/api/projects/messages
https://docs.commercetools.com/api/projects/subscriptions
https://docs.commercetools.com/api/message-types
http://fearlesstg.com

Create a commercetools Subscription that will send Order updates to a GCP
Pub/Sub Topic where they will be saved to a Cloud Firestore collection by a
Cloud Function.

Our example implementation is thorough! We will show you how to:

A.	 Set up a GCP Project,
B.	 Set up GCP Cloud Firestore,
C.	 Create a GCP Cloud Function,
D.	 Configure and Deploy the Cloud Function,
E.	 Set up the GCP Pub/Sub Topic,
F.	 Create a commercetools project,
G.	 Load commercetools sample data,
H.	 Set up commercetools Subscription
I.	 Test commercetools/GCP Integration,
J.	 Provide you with resources if you need help.

Solution

Implementation Steps

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 5

http://fearlesstg.com

Step A: Set up a GCP Project.

If you choose to follow the steps in this example on your own, you will need a
GCP account, a GCP project and the Google Cloud SDK. If you’re missing any of
these things, no worries, you can start running all three for free.

Set up a Google Cloud Account

Go to https://cloud.google.com/free/ to check out the wide array of services
available to you on GCP. New customers get a large credit applied to their
account to allow for plenty of experimentation before needing to spend money.
Click on the “Get Started for Free” link to sign in and get your account up and
running.

Set up a Google Cloud Project

Once you have an account, you can set up a project for our example
implementation. If you just created a new GCP account, you likely have a default
project you can go ahead and use. If you’d like to create a new project, go to
https://console.cloud.google.com/projectcreate and set one up by entering a
Project name, Organization and Location. In either case, your project will have
a “Project ID” which we will use later on so note it for future reference. You can
also find your Project ID on your dashboard at https://console.cloud.google.
com/home/dashboard.

Install the Google Cloud SDK

The Cloud SDK gives you tools and libraries for interacting with Google Cloud
products and services. You can follow Google’s installation instructions for your
operating system by going to https://cloud.google.com/sdk/docs/install.

Authenticate using Google Cloud SDK

You need to authorize the gcloud command line interface and the SDK before
you can use them. If you’ve not already done so, you can run gcloud init to
authorize; see Authorizing Cloud SDK tools for details.

Step B: Set up GCP Cloud Firestore.

Now that we have a GCP project up and running, let’s set up a database where
we can persist our Subscription content. Google provides a wide number of
database options. We will use Cloud Firestore in this example.

“Firestore is a NoSQL document database built for automatic scaling, high
performance, and ease of application development. While the Firestore interface
has many of the same features as traditional databases, as a NoSQL database
it differs from them in the way it describes relationships between data objects.”

– Firestore documentation

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 6

https://cloud.google.com/free/
https://console.cloud.google.com/projectcreate
https://console.cloud.google.com/home/dashboard
https://console.cloud.google.com/home/dashboard
https://cloud.google.com/sdk
https://cloud.google.com/sdk/docs/install
https://cloud.google.com/sdk/docs/authorizing
https://cloud.google.com/products/databases
https://cloud.google.com/firestore/docs
http://fearlesstg.com

The Subscription messages we will consume from commercetools fit naturally
into a document database. This makes Cloud Firestore a good fit for us. Go
to https://console.cloud.google.com/firestore/ where you should see a “Get
started” screen:

We will select Native Mode but you can learn more about both options provided
here by visiting Choosing between Native mode and Datastore mode. The next
screen will prompt you for a location.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 7

https://console.cloud.google.com/firestore/?pli=1
https://cloud.google.com/firestore/docs/firestore-or-datastore
http://fearlesstg.com

This example uses “us-west3” but any location will work. If you plan to use this
instance heavily then you should spend time reviewing Google’s documentation
on Locations and Pricing by Location to be sure you pick the right location for
you.

After clicking Create Database you will get a message like, “Creating your
database! Initializing Cloud Firestore in Native mode services in us-west3 -
this usually takes a few minutes. You’ll be redirected to your database once
it’s ready.” Once initialization completes, the console provides an interface
where you can perform CRUD operations on Firestore collections. Feel free
to experiment here. We will programmatically create a collection and write
documents to it in upcoming steps.

Step C: Create a GCP Cloud Function.

Let’s look at some code. Open a command line (our examples use bash) and
issue these three commands to clone and initialize FTG’s commercetools-gcp-
subscribe repository:

This repo contains a cloud function that accepts a commercetools Message
and persists it to our Cloud Firestore database. The function is implemented in
index.js and has two dependencies, @google-cloud/firestore and joi:

$ git clone https://github.com/FearlessTechnologyGroup/commercetools-
gcp-subscribe
$ cd commercetools-gcp-subscribe/
$ npm install

“This location setting is your project’s default Google Cloud Platform (GCP)
resource location. Note that this location will be used for GCP services in your
project that require a location setting, specifically, your default Cloud Storage
bucket and your App Engine app (which is required if you use Cloud Scheduler).
Warning: After you set your project’s default GCP resource location, you
cannot change it.”
– Firestore Quickstart documentation

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 8

https://cloud.google.com/firestore/docs/locations
https://cloud.google.com/firestore/pricing#pricing_by_location
https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://fearlesstg.com/
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe
https://docs.commercetools.com/api/message-types#message
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/index.js
https://github.com/googleapis/nodejs-firestore
https://github.com/sideway/joi
https://cloud.google.com/firestore/docs/quickstart-servers
http://fearlesstg.com

We use two environment variables:

We describe commercetools Message schema using joi and define a helper
function - getValidationError - to look for errors in the messages we receive.
We only want to persist valid order messages and joi will perform data
validation for us. We are doing very simple validation here but joi is capable
of doing much more if you wish.

Finally, we have the exported cloud function itself, orderArchive. There
are two types of Google Cloud Functions: HTTP functions and background
functions. We will use a background function as they can be automatically
executed when a message is received on a Pub/Sub topic. A background
function takes three parameters:

// The Node.js Server SDK for Google Cloud Firestore:
const Firestore = require(‘@google-cloud/firestore’);

// Schema description language and data validator:
const Joi = require(‘joi’);

const PROJECTID = process.env.PROJECTID; // your GCP project name
const COLLECTION_NAME = process.env.COLLECTION_NAME; // persistence
location

const orderSchema = Joi.object({
 createdAt: Joi.string().required(),
 id: Joi.string().required(),
 lastModifiedAt: Joi.string().required(),
 order: Joi.object(),
 orderId: Joi.string(),
 resource: Joi.object().required(),
 resourceVersion: Joi.number().required(),
 sequenceNumber: Joi.number().required(),
 type: Joi.string().required(),
 version: Joi.number().required(),
})
 .or(‘order’, ‘orderId’) // order on create/delete; orderId on
update
 .unknown(); // allow top level unknown keys

const getValidationError = async (order) => {
 try {
 const value = await orderSchema.validateAsync(order);
 return value.error !== undefined;
 }
 catch (err) {
 return err.message;
 }
}

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 9

https://docs.commercetools.com/api/message-types#message
https://github.com/sideway/joi
https://cloud.google.com/functions/docs/writing#background_functions
https://cloud.google.com/functions/docs/writing#background_functions
http://fearlesstg.com

•	 message - an object containing the Cloud Pub/Sub message
•	 context - an object containing meta-data (e.g., eventId, eventType, etc)
•	 callback - a function signalling completion of the function’s execution

The function does three things. First, it extracts content from the message
parameter. Pub/Sub uses base64 to encode the data it publishes so we need
to decode it and convert it to a JavaScript object. Note that this might fail if we
have bad data so everything is wrapped in a try-catch block so we can log errors
if they occur.

Second, we perform data validation to ensure we received a commercetools
Message that includes order data. The call to getValidationError returns false
if we are safe to save the data; otherwise, it will return an error message that
we log.

Third, we use Firestore to save the order to our project in the collection specified
in our environment variables.

exports.orderArchive = async (message, context, callback) => {
 const { eventId } = context || {};
 try {
 // 1. extract the order from the pubsub message
 const { data } = message || {};
 const order = JSON.parse(Buffer.from(data, ‘base64’).toString());

 // 2. validate the order; noop if its invalid
 const validationError = await getValidationError(order);
 if (!validationError) {

 // 3. persist the order to firestore
 const firestore = new Firestore({ projectId: PROJECTID });
 const result = await firestore
 .collection(COLLECTION_NAME)
 .add(order);

 callback(null, ‘Success’);
 console.log({ message: ‘orderArchive success’, eventId });
 firestore.terminate();

 } else {
 // function successful but payload was bad
 callback(null, `Order Invalid: ${validationError}`);
 console.log({
 message: `orderArchive invalid: ${validationError}`,
 order: JSON.stringify(order),
 eventId,
 });
 }

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 10

http://fearlesstg.com

 } catch (error) {
 const { message = ‘Unknown error’, stack } = error;
 console.error({
 eventId,
 message: `orderArchive error: ${message}`,
 stack,
 });
 callback(error); // function unsuccessful
 }
};

Step D: Configure and Deploy the Cloud Function.

Before we deploy or run the function, we need to do some configuration. To run
locally, we need to set three environment variables: GOOGLE_APPLICATION_
CREDENTIALS, PROJECTID and COLLECTION_NAME.

To set up your credentials, follow the Creating a service account instructions
from Google. This will walk you through five steps to create a service account
and download the credentials to your local system.

We can then use a .env file to set the variables. If you don’t remember your
project ID, you can retrieve it at https://console.cloud.google.com/home/
dashboard. Feel free to change the collection name but we will use “ct-orders”.
Create a file named .env in the root of the repo using this as your guide for its
content:

When we deploy the function to GCP, we will need a way to set the PROJECTID
and COLLECTION_NAME there too. We can specify these in the deployment.
yaml file so go ahead and update that now too:

Note that we do not need to specify credentials in the deployment.yaml because
the cloud function will inherit the permissions it needs once deployed to GCP.

We can manually perform a basic integration test at this point. The repo makes
this fairly simple if you’re using VSCode, see the debug configuration for it in
launch.json.

GOOGLE_APPLICATION_CREDENTIALS=”/PATH/TO/YOUR/DOWNLOADED/
CREDENTIALS”
PROJECTID=”YOUR-PROJECT-ID”
COLLECTION_NAME=”ct-orders”

PROJECT_ID: YOUR-PROJECT-NAME
COLLECTION_NAME: ct-orders

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 11

https://cloud.google.com/docs/authentication/getting-started#creating_a_service_account
https://console.cloud.google.com/projectselector2/home/dashboard?supportedpurview=project
https://console.cloud.google.com/projectselector2/home/dashboard?supportedpurview=project
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/deployment.yaml
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/deployment.yaml
https://code.visualstudio.com/
https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/.vscode/launch.json
http://fearlesstg.com

{
 “data”: {
 “data”:
“ewogICJwcm9qZWN0S2V5IjogImZ0Zy1kZXZlbG9wbWVudCIsCiAgInR5c-
GUiOiAiT3JkZXJDcmVhdGVkIiwKICAibGFzdE1vZGlmaWVkQXQiOiAiMjAyMC0x-
MC0xMlQyMToxNDo0NC40ODNaIiwKICAib3JkZXIiOiB7CiAgICAidGVzdCI6IHRy-
dWUKICB9LAogICJub3RpZmljYXRpb25UeXBlIjogIk1lc3NhZ2UiLAogICJjcmVh-
dGVkQXQiOiAiMjAyMC0xMC0xMlQyMToxNDo0NC40ODNaIiwKICAic2VxdWVuY2VOd-
W1iZXIiOiAxLAogICJyZXNvdXJjZSI6IHsKICAgICJ0ZXN0IjogdHJ1ZQogIH0s-
CiAgInJlc291cmNlVXNlclByb3ZpZGVkSWRlbnRpZmllcnMiOiB7fSwKICAicmVz-
b3VyY2VWZXJzaW9uIjogMSwKICAidmVyc2lvbiI6IDEsCiAgImlkIjogInRlc3Qx-
Igp9”
 }
}

The function should return `{ message: ‘orderArchive success’, eventId:
undefined }` and you should see a new document saved in the Cloud Firebase
console if everything went according to plan.

Assuming your integration test was successful, we should deploy the function.
There are a few GCP prerequisites we need to fulfill; these only need to be done
once in your GCP project:

1. Make sure that billing is enabled for your Google Cloud project by following
the instructions at Confirm billing is enabled on a project.

2. Enable the Cloud Functions and Cloud Build APIs by following the Before you
begin instructions.

3. Make sure the APIs are enabled and the Cloud Functions Developer role is
enabled for your service account by following the Open the Cloud Build Settings
page link shown in the instructions. If there was an issue enabling the APIs, you
can follow the steps to enable that, and then return the Build Settings to enable
the role.

You can deploy locally using the gcloud CLI from the root of the repo; substitute
PROJECTID with the ID of your project and update the region if you made a
different location selection in Step B:

Open index.js, go to VSCode’s Run tab, select “debug:orderArchive” from the list
of configurations, and click the Start Debugging icon. If you’re not using VSCode,
you can still run the function by executing `npm start` from the command line
but you will need to edit the start script to pass in your environment variables;
I suggest using a tool like cross-env if you want to go that route.

Once the function is running locally, you can POST to it. If you want to create your
own sample, remember that data in a Pub/Sub message is base64 encoded;
here is a test body you can use:

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 12

https://console.cloud.google.com/firestore/data/ct-orders
https://console.cloud.google.com/firestore/data/ct-orders
https://cloud.google.com/billing/docs/how-to/modify-project#confirm_billing_is_enabled_on_a_project
https://cloud.google.com/cloud-build/docs/deploying-builds/deploy-functions#before_you_begin
https://console.cloud.google.com/cloud-build/settings/service-account
https://github.com/kentcdodds/cross-env
http://fearlesstg.com

 gcloud functions deploy orderArchive --project PROJECTID --region
us-west3 --env-vars-file ./deployment.yaml --runtime nodejs12
--trigger-topic Orders

The same command is available in the package.json deploy script. So, assuming
you update PROJECTID there, you can execute the same command by executing
npm run deploy from the command line.

Step E: Set up the GCP Pub/Sub Topic.

When we deployed our Cloud Function in the previous step, GCP automatically
set up the associated Orders Topic for us based on the --trigger-topic Orders
parameter we provided. You can confirm that by going to https://console.cloud.
google.com/cloudpubsub/topic/list. If a Topic called “Orders” is not there, we
can easily create one by clicking the “Create Topic” button you should see at
the top of the Topics page. Enter “Orders” as the Topic ID in the dialog box that
pops up. Leave the “Use a customer-managed encryption key” unchecked.

We need to grant commercetools permission to publish to our new topic. Click
on the “Orders” topic to see its details. Make sure the Info Panel is shown; click
the “SHOW INFO PANEL” button in the upper-right if the panel is hidden. In
the Info Panel’s Permissions tab, click the “ADD MEMBER” button. In the form
provided, add “subscriptions@commercetools-platform.iam.gserviceaccount.
com” as the New members and “Pub/Sub Publisher” as the Role as shown
below.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 13

https://github.com/FearlessTechnologyGroup/commercetools-gcp-subscribe/blob/master/package.json#L8
https://cloud.google.com/pubsub/docs/overview
https://console.cloud.google.com/projectselector2/cloudpubsub/topic/list?supportedpurview=project&project=&folder=&organizationId=
https://console.cloud.google.com/projectselector2/cloudpubsub/topic/list?supportedpurview=project&project=&folder=&organizationId=
https://docs.commercetools.com/api/projects/subscriptions#google-cloud-pubsub-destination
mailto:subscriptions%40commercetools-platform.iam.gserviceaccount.com?subject=
mailto:subscriptions%40commercetools-platform.iam.gserviceaccount.com?subject=
http://fearlesstg.com

Click Save and GCP is now ready to receive messages from a commercetools
Subscription.

You can check to ensure that our Cloud Function is associated with our Orders
topic by scrolling down to the Subscriptions at the bottom of the Order topic’s
detail page. You should see an entry for “gcf-orderArchive-us-west3-Orders”.
The region name may be different for you. If that entry is missing, you will need
to revisit the Cloud Function deploy in the previous step.

Let’s move to the commercetools side next.

Step F: Create a commercetools project.

If you already have a commercetools project you can skip this step. If not,
there is good news: you can easily sign up for a risk-free, fully-functional 60 day
commercetools trial. The trial period does introduce a few limits, like the total
number of products you can define, but the feature set is rich.

Go to https://commercetools.com/free-trial and fill out the form to get an email
with instructions for creating your trial organization and initial project. The
process is quite fast because commercetools automates all the work behind
the scenes to provision cloud resources for you. Note the key you used for your
project as it will be used in Step G. Once you have your first project in place,
proceed to the next step.

Step G: Load commercetools sample data.

To test our Subscription, we need to be able to create and modify Order
resources on the commercetools platform. If you already have data in your
commercetools project or are comfortable creating the resources we need
using tools like the Merchant Center, IMPEX or the HTTP API, then you can skip
this step.

Alternatively, commercetools provides an open source project to make loading
sample data easy. If you’re comfortable running open source tools, you can
follow the steps in the Sunrise Data README; if not, here is what you should do:

1. Open a command line (our examples use bash) and issue these three
commands to clone and initialize the commercetools-sunrise-data open source
repository:

$ git clone
https://github.com/commercetools/commercetools-sunrise-data.git
$ cd commercetools-sunrise-data/
$ npm install

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 14

https://ok.commercetools.com/free-trial
https://docs.commercetools.com/merchant-center/
https://docs.commercetools.com/tutorials/#impex
https://docs.commercetools.com/tutorials/api-tutorial
https://github.com/commercetools/commercetools-sunrise-data
https://en.wikipedia.org/wiki/Bash_(Unix_shell)
https://github.com/commercetools/commercetools-sunrise-data
https://github.com/commercetools/commercetools-sunrise-data
http://fearlesstg.com

2. The commercetools-sunrise-data application needs some configuration so
it knows what project to load the data into and has the credentials it needs to
perform its work. Here are the steps:

a.	 Login to the Merchant Center and then navigate to Settings -> Developer
Settings from the left navigation.

b.	 Click “Create new API Client”
c.	 For field Name, enter: admin-client
d.	 For field Scopes, select: Admin client
e.	 Click “Create API Client”
f.	 Note all the information provided by the Merchant Center as we will use
them in the next step.

Now that we have the configuration details we need, we can create a .env file
for the commercetools-sunrise-data application to leverage. Create a new file
called .env at the root of your commercetools-sunrise-data directory. It should
have the following entries; replace the generic values with information you
captured in the previous step. If you lost your configuration details, you can
perform the previous step again and create a new API Client without harm:

 CTP_PROJECT_KEY = <your project key>
 CTP_CLIENT_ID = <your client ID>
 CTP_CLIENT_SECRET = <your client secret>
 CTP_API_URL = <your apiUrl> (i.e., api.commercetools.com)
 CTP_AUTH_URL = <your authUrl> (i.e., auth.commercetools.com)

$ npm run start

You are now ready to load data. Assuming all the previous steps were successfully
followed, a single command will load data for you. Note that this command will
replace all data in the project! If you need to retain existing data, see further
instructions in the README.md.

Step H: Set up commercetools Subscription.

We can Create a Subscription in commercetools by sending a POST to
the /{projectKey}/subscriptions endpoint. The endpoint accepts a
SubscriptionDraft which allows you to specify the following:

•	 key - String - Optional - User-specific unique identifier for the subscription.
We will set this to “gcp-order-subscription”

•	 destination - Destination - The Message Queue into which the
notifications are to be sent.
A wide variety of message queues are supported; we will use GCP by
setting: { “type”: “GoogleCloudPubSub”, “projectId”:
“PROJECTID”, “topic”: “Orders” }

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 15

https://docs.commercetools.com/docs/login
https://github.com/commercetools/commercetools-sunrise-data/blob/master/README.md
https://docs.commercetools.com/api/projects/subscriptions#create-a-subscription
https://docs.commercetools.com/api/projects/subscriptions#subscriptiondraft
https://docs.commercetools.com/api/projects/subscriptions#destination
http://fearlesstg.com

•	 messages - Array of MessageSubscription - Optional - The messages to be
subscribed to.
We will subscribe to all messages for the Order resource by setting:
[{ “resourceTypeId”: “order” }]

•	 changes - Array of ChangeSubscription - Optional - The change
notifications to be subscribed to.
We will leave this undefined.

•	 format - Format - Optional - The format in which the payload is delivered.
We will use the default which is Platform Format.

Based on the above, here is what we want to POST:

We can use IMPEX to set this up. Go to the API Playground and login. In the
Endpoint field, select “Subscriptions”. In the Command field, select “Create”. In
the Payload field, paste the JSON from above. Make sure you change PROJECTID
to be the ID of your GCP project. Click the GO button and IMPEX should reply
with something similar to:

{
 “key”: “gcp-order-subscription”,
 “destination”: {
 “type”: “GoogleCloudPubSub”,
 “projectId”: “PROJECTID”,
 “topic”: “Orders”
 },
 “messages”: [
 {
 “resourceTypeId”: “order”
 }
]
}

{
 “id”: “3d678687-0519-4c1a-9120-4b518b7a92d4”,
 “version”: 1,
 “createdAt”: “2020-10-10T20:33:35.039Z”,
 “lastModifiedAt”: “2020-10-10T20:33:35.039Z”,
 “lastModifiedBy”: {
 “isPlatformClient”: true
 },
 “createdBy”: {
 “isPlatformClient”: true
 },
 “destination”: {
 “type”: “GoogleCloudPubSub”,
 “projectId”: “PROJECTID”,
 “topic”: “Orders”
 },

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 16

https://docs.commercetools.com/api/projects/subscriptions#messagesubscription
https://docs.commercetools.com/api/projects/subscriptions#changesubscription
https://docs.commercetools.com/api/projects/subscriptions#format
https://docs.commercetools.com/api/projects/subscriptions#platform-format
https://docs.commercetools.com/docs/login
http://fearlesstg.com

To alternatively use the HTTP API, we can take advantage of tools like Postman
or curl. If you are familiar with Postman, commercetools provides a repository
containing Postman collections for the platform. We will show examples using
curl. If you’re using Windows locally, this guide from Zendesk may be useful as
it documents modifications you may need to make.

We can use curl in two steps. First, we need an authorization token. Run the
following from the command line, substituting AUTH_HOST, CLIENT_ID, SECRET
and PROJECT_KEY with data we noted in Step G:

Second, we use the returned access_token to provide authorization when
performing the POST. Run the following from the command line, substituting
ACCESS_TOKEN with the access_token returned from the last curl request,
API_HOST and PROJECT_KEY with the commercetools project key we noted in
Step G, and PROJECTID with your GCP project ID:

Your response will be similar to the JSON response from IMPEX.

“changes”: [],
 “messages”: [
 {
 “resourceTypeId”: “order”
 }
],
 “format”: {
 “type”: “Platform”
 },
 “status”: “Healthy”,
 “key”: “gcp-order-subscription”
}

curl https://AUTH_HOST/oauth/token \
--basic --user “CLIENT_ID:SECRET” \
-X POST \
-d “grant_type=client_credentials&scope=manage_
project:PROJECT_KEY”

curl -sH “Authorization: Bearer ACCESS_TOKEN” \
-H ‘content-type: application/json’ \
-d ‘{“key”: “gcp-order-subscription”,”destination”:
{“type”:”GoogleCloudPubSub”, “projectId”: “PROJECTID”,
“topic”: “Orders”}, “messages”: [{“resourceTypeId”: “order”}]}’
\
https://API_HOST/PROJECT_KEY/subscriptions

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 17

https://www.postman.com/
https://curl.se/
https://github.com/commercetools/commercetools-postman-collection
https://github.com/commercetools/commercetools-postman-collection
https://github.com/commercetools/commercetools-postman-collection
https://develop.zendesk.com/hc/en-us/articles/360001068567-Installing-and-using-cURL#curl_win
https://curl.se/
http://fearlesstg.com

{
 “currency”: “USD”,
 “country”: “US”,
 “lineItems”: [{
 “sku”: “M0E20000000DZWJ”
 }],
 “shippingAddress”: {
 “country”: “US”
 }
}

{
 “id”: “ID-FROM-CART”,
 “version”: VERSION-FROM-CART
}

Step I: Test commercetools/GCP Integration.

We are now ready to test our integration. All create, update and delete operations
on orders should now cause commercetools to publish a message to our GCP
Pub/Sub Topic which will trigger our Cloud Function to execute which results in
a new document being added to our Firestore ct-orders collection.

Let’s test it out using IMPEX. Go to the API Playground and login. If you loaded
the sample data in Step G, we can create a cart using one of the SKUs we loaded.
Set the Endpoint field to “Carts”, the Command field to “Create”, the Payload
field to:

Hit GO and IMPEX will respond with a Cart object. Copy the id and version
fields from the response so we can use them to create an Order. We will Create
an Order from Cart in IMPEX by setting the Endpoint field to “Orders”, the
Command field to “Create”, and the Payload field to the two fields you copied:

Hit GO and IMPEX will respond with an Order object. Copy the id of the cart so
we can find it on GCP next.

Go to Firestore at https://console.cloud.google.com/firestore/data/ct-orders
and click on the filter icon next to the ct-orders column header. Set the Choose
a field to filter by field to “order.id”, set the Add a condition field to “(==)
equal to“ and set the String field to the id from the commercetools Order. Hit
the Apply button and you should see the order we created.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 18

https://docs.commercetools.com/docs/login
https://docs.commercetools.com/api/projects/carts
https://docs.commercetools.com/api/projects/orders
https://docs.commercetools.com/api/projects/orders#create-order-from-cart
https://docs.commercetools.com/api/projects/orders#create-order-from-cart
https://docs.commercetools.com/api/projects/orders
https://console.cloud.google.com/firestore/data/ct-orders
http://fearlesstg.com

{
 “version”: 1,
 “actions”: [{
 “action”: “changeOrderState”,
 “orderState”: “Confirmed”
 }]
}

If you don’t see the order, you can troubleshoot by reviewing the Cloud
Function logs. Go to https://console.cloud.google.com/functions/list and click
the orderArchive function to see its details. Click the Logs tab to see its output
sorted by date and time. If nothing is there, it likely means your Subscription
configuration is not working so review Step H. If the cloud function received a
message but errored, you will see the issue reported in the list. If everything
worked as expected, you will see a success message like, “{ message:
‘orderArchive success’, eventId: ‘1631128022312033’ }”.

If you had success with order creation, we can perform an example update
next. In IMPEX, we can Update the Order by ID using an UpdateAction of
Change OrderState. The payload we send changes the orderState field; use
the version from the Order we created above:

In IMPEX, set the Endpoint field to “Orders”, the Command field to “Update”, set
the Payload to the JSON above and the Resource ID to the id from the Order
we created above. Hit GO and IMPEX will respond with the updated order. You
should see two changes: the version will be incremented and the orderState
will be “Confirmed”.

Head over to your GCP console and check Firestore again. The subscription
message we get for an update is different from a create. A create message has
a type of “OrderCreated” and includes the complete order object in field order.
An update message has a type of “OrderStateChanged” and does not include
the entire order object. Instead, only the changed fields are communicated. In
our example, we get fields: orderId, orderState, and oldOrderState. So, we
can use orderId to find our update message. Hit the filter button and this time
set the Choose a field to filter by to “orderId” to see the update.

Finally, we can test a delete. In IMPEX, set the Endpoint field to “Orders”, the
Command field to “Delete”, the Resource ID to the id from the Order we created
above, and the Resource version to the version returned from the update
request. Hit GO and IMPEX will respond with the deleted order. In Firebase,
the document archived will have a type of “OrderDeleted’’ and will contain an
order field, like we saw when we initially created the order. So, a filter on order.
id should now show two records, one for the create and one for the delete.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 19

https://console.cloud.google.com/projectselector2/functions/list?supportedpurview=project&project=&folder=&organizationId=
https://docs.commercetools.com/api/projects/orders#update-order
https://docs.commercetools.com/api/projects/orders#update-actions
https://docs.commercetools.com/api/projects/orders#change-orderstate
http://fearlesstg.com

Note that all the IMPEX requests made above can alternatively be performed
using the commercetools HTTP API.

Feel free to experiment more. Both GCP and commercetools know how to au-
toscale so in a production environment, as orders come in, compute resourc-
es will be provisioned dynamically to handle the load and archive all order
updates as they are published.

We are done! In this example use case, we limited ourselves to archiving all or-
der messages. There are, of course, many other things you could do based on
your needs: send customers update emails in response to orderState chang-
es, feed orders into downstream business intelligence systems, generate
alerts based on updates using your business rules, etc. We hope this paper
gives you the baseline information you need to innovate using commercetools
and Subscriptions!

Step J: Provide you with resources if you need help.

We travelled quite a bit of ground covering Subscriptions and showing you the
power they provide. If you have q
Questions or need additional help, Fearless Technology Group (FTG) is avail-
able to assist you. Shoot us an email at contactus@fearlesstg.com so we can
lend a hand.

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 20

https://fearlesstg.com/
https://mail.google.com/mail/u/0/?view=cm&fs=1&tf=1&source=mailto&to=contactus@fearlesstg.com
http://fearlesstg.com

As you consider all your customization options, FTG and commercetools are
here to assist you.

commercetools is a next-generation software technology company that offers
a true cloud commerce platform, providing the building blocks for the new
digital commerce age. Our leading-edge API approach helps retailers create
brand value by empowering commerce teams to design unique and engaging
digital commerce experiences everywhere – today and in the future. Our agile,
componentized architecture improves profitability by significantly reducing
development time and resources required to migrate to modern commerce
technology and meet new customer demands. It is the perfect starting point for
customized microservices.

Fearless Technology Group (FTG) helps retailers modernize their technology
architecture, solve critical business problems, and capitalize on business
opportunities in an evolving landscape. FTG is both a commercetools and
Google Cloud Platform Partner. Contact us at contactus@fearlesstg.com
or 720-432-9068.

Europe - HQ
commercetools GmbH
Adams-Lehmann-Str. 44
80797 Munich, Germany
Tel. +49 (89) 99 82 996-0
info@commercetools.com

Americas
commercetools, Inc.
324 Blackwell, Suite 120
Durham, NC 27701
Tel. +1 212-220-3809
mail@commercetools.com

Munich - Berlin - Jena - Amsterdam - London - Durham NC - Singapore - Melbourne
www.commercetools.com

Additional Help

About Fearless Technology Group

About commercetools

Building commercetools customizations using Subscriptions and the Google Cloud Platform | Fearless Technology Group | https://fearlesstg.com/ 21

https://fearlesstg.com/
mailto:contactus@fearlesstg.com
http://fearlesstg.com

	Table Of Content
	What makes B2B special?
	B2B Customer Journey
	Introduction

