
How to leverage legacy systems
at the speed of DevOps

www.openlegacy.com

White Paper

http://www.openlegacy.com

How to leverage legacy systems at the speed of DevOps2

01
Introduction

DevOps is spreading rapidly, but selectively

The promise of DevOps is real. Needed functionality
is coming online faster, teams are working together
better, and issues are being resolved closer to the
moment they are detected. But only where DevOps
has been applied systematically. New applications
and interfaces that rely upon legacy applications
can struggle as the velocity of delivery is slowed
by systems that were not designed for, and do not
easily support, agile and DevOps methodologies.
Organizations in every vertical need a way to access
legacy data and business logic without creating more
code and slowing down the DevOps process.

Current Environment–Backend

Large monolithic legacy systems tend to have many
interconnected pieces and to be ‘fragile’ in an overall
sense, with one application impacting several other
systems, and changes needing to be validated across
all of these impacted systems.

While the stability of legacy systems and data
is renowned, the hurdles to getting changes
implemented on those systems is equally infamous.
As custodians of key business data; legacy systems
developers, admins, and DBAs know well that they are
not responding at the rate the business would like.
The problem is that attempts to deliver changes more
quickly are thwarted by the very complexity that
makes these systems valuable. The architectures of
ten or twenty years ago are not suited to the type of
rapid response expected today.

Current Environment–Agile

Agile development and DevOps methodology both aim
to deliver software to the business at a faster pace,
one in tune with today’s constant changes in business
environment. By making shorter goals, agile allows
for developers to focus on one problem at a time, and
to see test results quickly after they check in their
code. By increasing cross-functional communication
and automating everything from build through
deployment, DevOps aims to accelerate the rate at
which those changes are presented to users.

In modern application development, agile development
teamed with DevOps streamlines the development and
delivery of applications. The communications changes
new development methodologies encourage keep
business owners aware of the current state and any
outstanding issues.

This all works well, if the application is completely
wrapped in agile and DevOps, with rapid iterations

47% lower cost
over 5 years

Amount organizations would save running
workloads on connected mainframe by moving

to a more distributed environment

IDC, “The Business Value of the Connected
Mainframe for Digital Transformation,” 2018

How to leverage legacy systems at the speed of DevOps3

While the stability of legacy systems and data
is renowned, the hurdles to getting changes

implemented on those systems is
equally infamous.

02
The problem

Why Backend Work is Generally Slower

A problem occurs when a given application has
dependencies on older architectures that are
designed and maintained with a more robust
approach. The systems that hold all of your customer
and billing data have been built and modified for
years with an eye to stability. And systems that have
been rock-solid for years should not suddenly start
having performance and quality issues.

offering many incremental changes to the
application over time. The mantra of Silicon Valley is
definitely an adjunct to agile and DevOps – “Fail fast”
means implement it, find the problems, and get to
resolving them.

But that is the opposite of the view that has guarded
legacy systems forever—controlled change coupled
with thorough test environments have kept legacy
systems stable and reliable.

OpenLegacy bridges the gap between DevOps and
legacy development practices. By offering a method
to generate Java based microservices with REST
accessible APIs, the system exposes legacy data to
DevOps teams. DevOps can continue to “fail fast”
and “fail small” since OpenLegacy’s microservices
architecture limits changes required on legacy
systems. In this environment, changes are made at
the microservice, or by combining microservices, just
like any other API can be enhanced or combined. No
changes need to occur on the legacy backend.

The complexity of systems that have grown over the
course of a decade or two can be stunning. They were
designed for one initial purpose and, as that purpose
has changed and grown, complexity has also grown.
While the data housed in these systems is critical,
and the business logic they exercise over that data
is unique to the application, this complexity can
make changes take much longer than a fresh new
agile project. Even simple changes to legacy systems
can require extensive testing as the impact of
those changes to other parts of the overall software
architecture are evaluated.

Organizations want new web and/or mobile interfaces
to legacy systems. Creating such an interface seems
relatively simple on the surface, but the relationship
of UI to backend systems is symbiotic. The creation of
a UI will require new functionality or changes to the
underlying data store. This is a natural process that
occurs as an understanding of how users interact
with the new UI becomes clear.

These scenarios end up with a rapidly iterating front
end that can turn out changes in days or weeks
backed by a system that is designed with the idea
that changes will take months. When user feedback
results in change requests for the backend, the entire
agile/DevOps process goes on hold.

What is needed is a platform that grants access to
the wealth of data stored in legacy systems without
requiring a massive amount of new development
on those systems—a framework to give DevOps
the business logic that applications need. The
framework must also be flexible enough to serve that
information where ever DevOps teams need it. For
example, OpenLegacy’s approach builds APIs on top
of microservices that are composed of standard Java
stacks. That means Java developers can get to the
data they need without having to wait for the legacy
team to develop more code.

How to leverage legacy systems at the speed of DevOps4

Why Agile Work is Necessary

While the legacy systems and their development
methodologies worked in an environment where
the rate of change for all organizations was slower,
and the demands of users were restricted to a
small subset of the target market, the growth of the
Internet and increasing competition make faster
development of new systems and interfaces a
business priority.

Agile and DevOps answer this need, allowing the
business to respond to new competitive threats or
to take advantage of a competitive opportunity in a
timeframe suited to today’s business environment.
The catch is that the speed of delivery must be
systemic. If a large portion of an organization’s
product portfolio is difficult to change and requires
weeks or even months of testing after changes, the
competitive business edge can be lost.

Utilizing agile development, DevOps methodologies,
and OpenLegacy to bring legacy data into the agile
and DevOps fold, an organization can start to deliver
new functionality that utilizes legacy data and
systems at the speed expected in a modern business
environment.

Past Solutions and Their Legacy

In the not-too-distant past, Service Oriented
Architectures (SOA) were used to address the slow
rate of change in legacy systems. The underlying
motivation for SOA was to provide access to data
in legacy systems while speeding development by
moving new development into the client/server tier.
The problem is that once the data was manipulated
in the client/server environment, that environment
became part of the overall legacy infrastructure.
Now some changes were being made in the legacy
environment, while other changes were being made
in the SOA environment, and those changes needed
to be available at the same level of reliability.

The result was a complex world where not only was
there a large super-integrated legacy application
sitting on the backend, the middle tier was now a
large super-integrated legacy application also. Both
became slow to change, and changes often had to
span both tiers, increasing the amount of work and
the number of teams involved.

Utilizing microservices and single data access APIs,
OpenLegacy sidesteps these issues by presenting a
given application with the data it needs, when it is

MANAGEMENT CONSOLE

PRIVATE CLOUD, PUBLIC CLOUD, OR ON-PREM SYSTEM

AUTOMATIC GENERATION OF MICROSERVICE BASED APIS

TEMPLATES

Communicate Fetch Parse Automation

EJB

IBM i

Databases

Mainframe

SOAP

API
Gateway

Mobile

Web

Cloud

REST API

JSON

Automatically and quickly create microservice APIs

How to leverage legacy systems at the speed of DevOps5

needed. Developers writing in the language of their
choice can say “I need the customer number so I can
find their last order,” and call the customer API to
grab data. There is no mainframe coding, no middle
layer of business logic that must be maintained and
inter-relationships to manage, just a call to get the
needed data, and move along.

OpenLegacy enables this ability to get the data and
move along with a system of connectors that allow
legacy data to be pulled into microservices easily.
While many backend connectors come preconfigured
(For example, CICS or DB2), others can be custom
designed if there is a need. This offers ease of use for
the common cases, and task-specific implementation
for custom cases.

No matter which type of connector is needed, in
the end, agile users are presented with an API
implemented in Java and residing on the edge
of a microservice. At that point, the code and
resulting API fits into the existing agile and DevOps
architecture.

Utilizing microservices and single data access APIs,
OpenLegacy sidesteps these issues by presenting

a given application with the data it needs,
when it is needed.

03
Making the two work together

Backend strengths

Legacy systems grew to be legacy because they
get the job done. The workhorse of most modern
enterprises, core systems hold the data that
represents customer base, sales, stock levels, and
more. These systems have reliably serviced the
organization for a long time because they’re good—or
at least good enough—at what they do.

DevOps strengths

Both the business and customers are demanding
a faster rate of change though. The whole goal of
digital transformation is to increase the rate of
change to meet the demands of today’s environment.
The ability to rapidly improve the user experience is
something that enterprises in nearly every vertical
are striving for. Agile plus DevOps are the tools most
organizations choose to approach that goal. By
offering quick iterations with a highly automated
build/test/deploy environment and repeatable/
reusable processes and artifacts, DevOps increases
the rate of change, and often increases stability by
removing room for human error.

The best of both worlds

Those monolithic legacy applications need to
continue operating as they have in the past, but agile
and DevOps teams need something that can move at
the pace of modern business.

Since replacement of backend systems is not only
expensive, but also prohibitively long, it makes the
most sense to actually delivery on the promises SOA
made. Enabling access to backend data, with small,
manageable pieces that can be re-assembled as
needed in a more agile environment is the key to
improving productivity and delivery timelines without
making things worse.

Giving DevOps access to the data they need. When they
need it. Where they need it.

Rapidly
iterating

agile/DevOps
teams

Legacy Systems:
A complex mesh

of inter-
connected

subsystems
with discrete

data/entry
points

Microservices:
Access to discrete
data/entry points

SOA Solutions:
Often a complex
mesh of inter-

connected
subsystems

How to leverage legacy systems at the speed of DevOps6

While the legacy systems continue to store and
protect mission-critical data, OpenLegacy extends
those core systems for access by agile teams. Using
a microservices architecture with APIs that are
both easily generated and customizable by Java
developers, monolithic legacy applications can serve
data where and when it is needed. OpenLegacy
uses connectors to tie backend systems into the
microservice, and API generation to generate the
frontend API, relieving the need to develop access
code in the most common access scenarios. Even
in a highly flexible environment requiring support
for platforms like cloud and mobile. OpenLegacy’s
integration with standard agile and DevOps tools such
as Jenkins means that it is truly part of the DevOps
solution architecture.

OpenLegacy helps teams adapt backend access with
microservices and DevOps outside the monolith.
Part of this solution is integration with modern
development and DevOps tools. Based in Java, with
Eclipse support, Jenkins integration, and targeting for
Docker, developers will find existing skill-sets extend
to legacy applications and data. This integration helps
DevOps teams gain the benefits of stable, secure
datasets and procedures while making application
delivery faster.

Make use of the most prevalent skills

Most new developers entering the workforce are
trained in modern languages like Java, Node.
js and Python. They are not equipped to handle
the environments in which legacy applications
were developed and are maintained. OpenLegacy
generates APIs that can be called from any language
that supports SOAP or REST API calls.

That means developers and teams can use the toolset
that best fits the goals of agile and DevOps, taking
advantage of the languages they are already familiar
with, but gaining access to legacy systems and data
that power the enterprise.

Importantly, development on the legacy systems is
not required. Since the pool of available developers
for many legacy platforms—most notably the
mainframe—is on a downward trend, not creating
new source to be maintained for integration is
important, as available legacy system staff will have
enough to do.

With OpenLegacy, agile developers can generate the
APIs, make changes required, and keep their project
moving forward. With the development shifted to

OpenLegacy reduces implementation steps to accelerate your time-to-market. OpenLegacy accelerates development utilizing
legacy systems by automating otherwise manual steps, and reducing the number of steps.

How to leverage legacy systems at the speed of DevOps7

By offering a method to generate Java based
microservices with REST accessible APIs, the
system exposes legacy data to DevOps teams.

agile teams and platforms integrated into the DevOps
lifecycle, the need for legacy changes is reduced
or eliminated. This allows projects to use the data
and subsystems that have worked for years, while
getting the benefits of agile and DevOps development
speeds.

04
Get more benefits than time to market

Security with DevOps

One of the issues with exposing the mainframe
more directly to corporate systems is implementing
sufficient data security. Most companies would be
hesitant to provide an API that can modify customer
data. A strong security model is needed that will allow
access while restricting it to those users and apps
that should be touching the data.

OpenLegacy meets these needs with OAuth2 support
and data masking to offer only data an application
needs, and not the entire table/file structure to be
picked through.

Since OpenLegacy is integrated with standard
DevOps toolsets, existing security infrastructure
applies to generated microservices. Policies and
standards that are enforced through the test
environment can be applied directly to generated
source, resolving the need for another set of security
tools to be deployed. What works for the legacy
system will still be there, and what works for agile
teams will work for the microservices.

Repeatability/portability for DevOps

DevOps requires the ability to repeat processes
easily with predictable and consistent results. This
is because automation depends upon the ability to
know the final state, and the speed of iteration does
not leave room for massive customization for each
individual release. Increasingly, portability of systems
is an imperative also. Choosing where to deploy

an application based upon today’s needs, with the
flexibility to move the application at a later date, is
becoming the standard.

However, this is not how IT has traditionally operated;
taking the same steps is not guaranteed to get
the same results. And moving an application has
been a choice of last resort. Traditional application
development targets an architecture, and releases
become customized to take into account an array
of variables (like installed packages) present on the
target platform.

With OpenLegacy’s approach, microservices address
these needs. The ability to create a brand new copy of
the microservice to replace the one being upgraded
makes deployments predictable and results readily
testable. The resulting microservices can be targeted
where they are needed. Today’s environment might
have them deployed to an internal server, while
tomorrow’s might need the microservices in a cloud-
hosted container. The ability to place microservices
where they are needed offers both deployment
flexibility and the largest pool of re-use options.

Performance

Traditional SOA based approaches suffered from
performance lag due to the layers of processing
occurring at different steps in a request. The legacy
system would perform all of its business processing,
return results, and the SOA would perform all of its
processing. Solutions that used queues such as MQ
would end up with additional lag as several legacy
systems were invoked and processed then more
processing was done on the “client” side (actually the
server in the client-server world).

How to leverage legacy systems at the speed of DevOps8

By making use of microservices and allowing fine-
grained access, OpenLegacy greatly reduces this
performance hit. Data and smaller subsystems on
the legacy system can be accessed directly, leaving
the bulk of the processing to the application being
developed. Think in the case of a database—ACID
processes would occur, but the business validations
required in most mainframe applications would only
be necessary on an Insert or Update statement.
For inserts and updates, validation is required that
might need those extensive backend subsystems. For
access of data, simple retrieval is normally sufficient.

These smaller, easier to utilize pieces of data are
similar to other data used in the client application,
making processing uniform and fast. Uniform
processing is useful in agile environments, and
fast application processing is desired in every
environment.

Conclusion

Take your DevOps to the next level

When implementing DevOps, whether across an
application portfolio or across the entire organization,
it’s not an option to leave legacy systems and data
behind. Likewise, putting legacy systems into
the process flow without improving traditional
development/deployment methods will slow agile and
DevOps. Since speed and adaptability are the primary
benefits of DevOps and agile, this slow process
reduces their effectiveness.

Different methods have been used in the past
to make legacy systems more accessible to new
applications, but all have suffered from weaknesses,
some even fit the age-old phrase “The cure is worse
than the disease”.

Using microservices to access legacy data from
modern development environments is an important
part of modernizing an application infrastructure.
Microservices make the applications more portable,
while modern environments bring applications into

When implementing DevOps, whether across
an application portfolio or across the entire

organization, it’s not an option to leave legacy
systems and data behind.

the agile and DevOps worlds. Incorporating modern
security mechanisms into the new environment
extends legacy data protection to this new platform.
The net result is new applications coming online that
do not require legacy development efforts. Legacy
systems become “just another data source”, just like
any other the agile system accesses.

The ability to generate APIs that reside in
microservices and serve up data from legacy systems
offers the best of both worlds. Agile development
with modern DevOps tools, and access to core
corporate data from legacy systems will bring

About OpenLegacy

OpenLegacy’s Digital-Driven Integration enables organizations with legacy systems to release new digital
services faster and more efficiently than ever before. It connects directly to even the most complex
legacy systems, bypassing the need for extra layers of technology. It then automatically generates APIs
in minutes, rapidly integrating those assets into exciting new innovations. Finally, it deploys them as
standard microservices or serverless functions, giving organizations speed and flexibility while drastically
cutting costs and resources. With OpenLegacy, industry-leading companies release new apps, features,
and updates in days instead of months, enabling them to truly become digital to the core.

www.openlegacy.com
sales@openlegacy.com

© OpenLegacy Inc. All Rights Reserved
WP_ Legacy_Speed_of_DevOps_3Jun2020

legacy systems into the rapid development fold.
Organizations like OpenLegacy have developed a
software solution to help you achieve agility in the
last bastion of long release cycles.

http://www.openlegacy.com
mailto:sales%40openlegacy.com?subject=

