
How to evaluate current
approaches to legacy integration
Integration and innovation at the core of modern digital platforms

Zeev Avidan
Chief Product Officer, OpenLegacy

www.openlegacy.com

White Paper

http://www.openlegacy.com

How to evaluate current approaches to legacy integration2

Introduction

Integration is the glue that makes computer applications work together to provide meaningful outcomes. While many of
the concepts and best-practices of integration have been around for decades, new ways of creating applications require
re-evaluating these integration patterns. For example, integrating several monolithic applications is a challenge, but the
rise of microservices and other distributed deployment patterns makes this challenge exponentially greater.

01
Technological landscape

When dealing with traditional ‘pure’ integration,
specifically concerning integrating monolithic legacy
applications, two approaches immediately surface
as most common: the real-time connector and the
asynchronous message-queue.

While both of these two approaches are still viable
concepts in modern architectures, they do require
careful considerations when implementing them in
the real world. These considerations include topics
such as:

• Resource and skill training

• Infrastructure complexity

• Time to market

• Development timelines

• Overall license and run-time costs

While many of the concepts and best-practices of
integration have been around for decades, new ways
of creating applications dictate a new look at these

integration patterns. Integration is at the core of
modern digital platforms and should keep in lockstep

with the innovation they bring.

02
Real-Time connectors

These types of connectors have been around since
the early days of enterprise integration. They began
as point-to-point connection protocols but later
evolved into the hub-and-spoke model of EAI and the
enterprise bus concept of ESBs. In these cases they

A recent Gartner prediction estimates that “Through
2020 integration will consume 60% of the time and
cost of building a digital platform.” This reflects the
fact that integration is at the core of modern digital

platforms and should keep in lockstep with the
innovation they bring.

Source: Gartner, Inc.

API Gateway

API Auth API Access CTL API MGMT

JSON Modelling JSON Validations

Orchestration Flows

Data Validation Data Mapping Error Handling

Brokering

Messaging

Connectors

Core Core Core

Brokering Ops

Homegrown or Middleware Solution

How to evaluate current approaches to legacy integration3

provide the last mile of connectivity to an application
and are specifically designed for a certain protocol or
language.

Due to their specificity, it became common for
vendors such as iWay Software to provide suites
of connectors which connect siloed applications
into the middleware. Each connector would require
its own setup and skills. This approach is still very
common today with products such as IBM’s z/OS
connect which exposes a mainframe COBOL-based
application in a JSON-REST protocol, to be consumed
by API middleware.

1. Complex set-up and maintenance

These connectors usually rely on the legacy system
to run and they require multiple other products and
current OS versions to be installed.

For example, IBM z/OS Connect requires not only a
very recent release of z/OS and CTS, but in some
cases also the installation of: IBM z/OS explorer,
WebSphere server, WOLA (WebSphere z/OS
Optimized Local Adapters), IBM’s API connect and Zos
Connect EE server.

z/OS Connect EE

Liberty Server

zosConnect feature

API
request

CICS

HTTP
port API

HTTP to JSON
mapping Service DataXform

WOLA
Service
Provider

WOLA

Angel Process

BBOC Control
Transaction

BBO#
Invocation Task

Transaction

WOLA BBO$ Link
Server Task

WOLA True

Catalog
Manager
Programs

DFHRPL
WOLA

Modules

2. Black-boxes

Since last-mile connectors are tightly coupled with
the legacy applications, they tend to be closed and
un-configurable. Changes and customizations must
be made in higher-level layers even at the expense
of performance or complexity. Dealing with dynamic
message formats, request context and stateful
invocations becomes a labor-intensive and time-
consuming effort.

3. Lifecycle automation

Another problem arising from the closed nature of
these connectors is their inability to support DevOps-
type automation. Testing, versioning and deployment
of the APIs produced by these connectors are all
proprietary and are hard-to-integrate with the
normal development lifecycle. This leads to prolonged
development times and longer release cycles which
impact velocity and agility.

How to evaluate current approaches to legacy integration4

4. Heavy infrastructure needed

When using connectors which are just the last mile
of the integration and require many other layers to
produce a solution, the architecture topology and
infrastructure needed will be heavy, multi-layered,
slow and complex.

These architectures stand in contrast with modern,
light and flat microservices architectures which
require almost no middleware and treat integration
as a feature rather than a hindrance. It is all too
common for organizations to deploy a modern state-
of-the-art microservices architecture on top of an
old-style ESB integration stack, preventing them from
enjoying the benefits of their effort.

03
Asynchronous message queues

Again, asynchronicity is not a new integration
concept. During the 1990s and 2000s it became a
standard for Service Oriented Architectures (SOA)
and was ubiquitous with products like IBM’s MQ.

While there might be many reasons to use the
asynchronous messaging model, there were two
factors that contributed to its past success:

• Asynchronous messaging correlated well with
SOA’s orchestration concepts such as pub-sub.

• Asynchronous messaging provided fault-tolerance
using guaranteed-delivery capabilities which
were required in regulated industries and played
an especially important role in a world where
hardware availability and scalability was limited
compared to today.

The price to pay for these asynchronous solutions
was mainly in complexity and performance (not
considering the actual price tag on middleware (e.g.

MQ) products which might be substantial). This
price seemed relatively small in a world driven by
limited, internal data-consumers, already complex
architectures and limited velocity needs.

Today’s requirements pose a difficult challenge to
these assumptions: fault-tolerance can be achieved
using new approaches, consumers of data are much
greater in numbers and variety, architectures are
reduced in complexity and the need for velocity in
deploying changes is greater than ever.

This, of course, does not mean that asynchronous
messaging is not relevant or should not be used
in modern architectures, but it does change the
calculations on where and when it should be deployed.
Simply put, message-queuing should not be the
default anymore, but instead a thoughtful decision.

The price to pay for these asynchronous solutions
was mainly in complexity and performance (not

considering the actual price tag on middleware (e.g.
MQ) products which might be substantial).

04
OpenLegacy’s solution

OpenLegacy provides a solution to many of these
issues and represents a new, modern and unique
approach to integration. By leveraging concepts like
code-gens, microservices and standard open-source
frameworks, OpenLegacy provides the next generation
of integration platforms.

Instead of black-box connectors hidden behind layer
after layer of integration, OpenLegacy automatically
generates a single deployable unit which is a
microservice ready-to-run. This microservice
consists of an API interface, a business logic payload
and a Java SDK which wraps a legacy functionality.

How to evaluate current approaches to legacy integration5

OpenLegacy automatically generates a single deployable
unit which is a microservice ready-to-run.

OpenLegacy provides a solution to many of
these issues and represent a new, modern and

unique approach to integration.
The entirety of this artifact is visible and changeable
with readable standard Java code using annotations.

With this approach, no set-up or additional
infrastructure is needed. The microservice is
deployable anywhere and communicates natively with
the legacy system. No third party products, additional
installations or legacy skills are needed.

Since the entire code-base is available and visible,
any change in business logic, integration logic,
channel logic or connector logic can be made
either directly to a specific microservice or, using a
template, to all generated microservices. This also
allows for a seamless integration with DevOps and
automation processes using standard tools such as
Git, Jenkins etc.

API Gateway

API Auth API MGMTOpenLegacy

Core Core Core

Analytics CI/CD

The nature of the solution allows for a flat integration
architecture by matching the application architecture
and essentially enabling integration without
middleware. Fault-tolerance is managed using
circuit-breakers and horizontal scalability, as well as
log-analysis for recoverability.

Summary

The increasing importance of integration and
changing needs requires new and modern
approaches. Traditional approaches such as real-
time connectors fall short because of their closed,
proprietary and limited nature. They require a large
complex middleware infrastructure to support
them. While still viable for certain cases, message-
queuing approaches should not be the default way
of integrating. OpenLegacy provides a solution which
solves the challenges of traditional integration while
providing a way to rapidly generate microservices
delivering core functionality.

www.openlegacy.com
sales@openlegacy.com

© OpenLegacy Inc. All Rights Reserved
WP_ApproachestoLegacyIntegration_9Apr2020

About OpenLegacy

OpenLegacy’s Digital-Driven Integration enables organizations with legacy systems to release new digital
services faster and more efficiently than ever before. It connects directly to even the most complex
legacy systems, bypassing the need for extra layers of technology. It then automatically generates APIs
in minutes, rapidly integrating those assets into exciting new innovations. Finally, it deploys them as
standard microservices or serverless functions, giving organizations speed and flexibility while drastically
cutting costs and resources. With OpenLegacy, industry-leading companies release new apps, features,
and updates in days instead of months, enabling them to truly become digital to the core.

http://www.openlegacy.com
mailto:sales%40openlegacy.com?subject=

