

 Current market Trends
Currently the large enterprise integration market is dominated by SOA based ESBs. These technologies that has been around for over 15
years are still the most common way for large enterprises to approach
their integration needs and are a considerable pain point when trying to embark on a digital transformation, but while these technologies
are mostly recognized as outdated, still almost no major enterprise
with substantial IT needs, have moved beyond them. There are several reasons for that:

Cost of change - ESBs have grown to become huge and complex
platforms, not easily migrated Lack of legacy integration - While some newer vendors claim to
have legacy support, mostly it is very limited and depends on 3rd party connectors. For example JitterBit's and Mulesoft's offering for
Mainframes (still today running 96 of the world’s top 100 banks, 23
of the 25 top US retailers, and 9 out of 10 of the world’s largest insurance companies) is limited to an underwhelming DB2 JDBC
connector. Cloud - A lot of the newer vendors are 'Born on the cloud' type
companies. While this might be appealing in some cases, for larger
enterprises in heavily regulated industries this can actually be a
deterrent. These larger organizations would certainly like to have a path forward towards to cloud but they are not, by and large,
planning on moving any of their core applications to the cloud any
time soon. For these enterprises a hybrid & cloud agnostic approach is the most appealing one as it allows them to move at
their own pace. Nothing Changes - Last but not least, the drive to move from
ESBs to other solutions such as IPaaS isn't very strong because at
the end of the day most IPaaS solutions are just ESBs in the cloud.
They are still a message-driven, asynchronous, flow-based, services-heavy, integration-team-requiring middleware for
implementing SOA. If the only benefit you get from a migration is a
nicer user interface and 500 connectors to facebook, twitter etc. than you rather stay with what IBM, SoftwareAG or Tibco has to
offer and endure the costs,inflexibility and prolonged times to market.

In summary, currently the market is searching for solutions to address new needs and requirements while still integrating with existing
platforms and processes. Currently this leads to an explosion of
multiple integration platforms serving different segments of the organization and a reliance on services-heavy solutions. This is
considered a problem for large enterprises who wish to consolidate
and simplify their integration architecture (See key findings in https://www.gartner.com/doc/3174717/predicts--opportunities-
integration-digital).
 The OpenLegacy Advantage
OpenLegacy offers a completely new approach to enterprise
integration, one which addresses all the needs of the modern
enterprise trying to embark on a digital transformation. The

OpenLegacy approach is a departure from the old Service Oriented
Architecture (SOA) of the past, a fact which allows for implementations once considered impossible or impractical.

At a high level the OpenLegacy native APIs approach do away with the concept of a large anypoint to anypoint middleware such as
ESBs, it does not accept that the integration channel needs to be
agnostic of it's context and it certainly does not accept the need for flow process doing at runtime what could have been done at design
time.
A way to think of the OpenLegacy approach is that instead of having
a single integration middleware, OpenLegacy is a factory for multiple micro-integration-applications. each micro-application is a Java
compiled code, in charge of a single API (or an API group), and is
independently deployable and runnable.
Some differences between the traditional approach and OpenLegacy
approach are:

 Automatic API Generation - With OpenLegacy's approach the
APIs are created automatically by parsing backend assets. This is
a huge advantage as it shortens the time needed to create a
service dramatically. Message based vs Model based - OpenLegacy model-based
approach does not require schemas or mappings. Instead of trying
to map each message at run-time, a time-consuming and security-
exposed process, OpenLegacy creates a Java based model for each API at design time. This means that the format of the
message is integrated with the execution of the flow, providing for
maximum performance and security State - With OpenLegacy it is very easy and natural to keep state
vs the different backend systems, making a huge challenge in traditional integration projects simply disappear Flexibility - Dealing with core applications sometimes means
working in non-standard proprietary ways. While traditional
middlewares may have a wide range of customizations available, they are still limited by their design. OpenLegacy's approach allows
for complete flexibility, since each API is an independent
application which can be basically be treated as a Java application, while still being a first-class citizen on the platform. Channel Specific Logic - Another advantage of the OpenLegacy
approach is the ability to introduce channel specific logic right at
the API level without the need for additional application platforms. Performance - Since each API is a compiled java code
automatically generated with caching abilities, performance is unparalleled by other solutions. Deployment Agnostic - OpenLegacy's APIs can be deployed
anywhere with ease,. Be it a cloud, on-prem or any other future
technology - if it runs Java it will run the OpenLegacy APIs. You do not even have to use the OpenLegacy server to run them (although
it does give some additional management functionality).

Some examples of the things OpenLegacy is able to do which are not
possible on other solutions using the SOA approach:

Dealing with multiple/unpredictable messages - One of our major
customers (one of the largest banks globally) have an extremely proprietary system. The problem is not so much with the platform or
the technology but rather with the core-application itself. It was written
in a way which produces a very large variety of unpredictable messages. Vendors such as IBM, Tibco and Accenture have tried to
solve this problem with existing tools but this is an extremely difficult
problem in message based SOA products. With OpenLegacy it was a very easy problem to solve using concepts of dependencies and
casting on the Java model

Distributed Transactions - We are in an engagement with a popular
core banking application provider (>100 banks including Wells Fargo), they use us as an API integration platform but have a specific need to
provide transactions spanning multiple platforms so that changes
done on the mainframe will be rolled-back automatically the transaction fails to update a cloud based database for example. This
is extremely hard to do on a SOA based approach since each service
is indepent. New implementation of transactional web-services do exist but requires major changes to the backend applications. With
OpenLegacy's stateful mainframe adapter it was very easy to offer a
transactional solution spanning legacy and cloud.

Channel Logic - An insurance customer of ours, after creating a
mobile application based on OpenLegacy's APIs, wanted to add the ability to attach pictures to a claim, so that customers reporting an
accident, could just use the mobile device camera to take pictures of
the damage and upload it. Of course their backend application does not yet support this functionality and would they be using a different
integration platform they would have needed to implement it on their
backend or create a new platform just for that use-case. With OpenLegacy they implemented this channel specific logic right on the
platform using standard Java and deployed the solution in days.

 Future Market Opportunities
As the market moves more and more towards digital services and cloud solutions, we believe that the need for a new, consolidated
integration approach and architecture will grow. The problems
associated with SOA integration: long TTM, complex and service-intensive projects with high TCO and high risk of failure, will drive
customers to search for better solutions. We believe that native-API
solutions such as OpenLegacy will be the new standard architecture for enterprise integration for legacy and non-legacy customers alike.
As we expand our offering and product, we believe that we are very
well positioned in a nexus of convergence where data and application integration will meet API management and cloud transformation.
These shifts will create major opportunities and we plan on pursuing
them with vigor.

