Optimization of an ultrasensitive, quantitative immunoassay for detection of CD20 in Non-Hodgkin’s Lymphoma (NHL) FFPE samples

Apollina Goel1, Michael Ross2, Jeanette Rheinhardt3, Peter Duvall3, Michael Maker4, Hiroyuki Yokota5, Kenneth Bloom6, George Abe1, Ann Ranger7, Joseph Krueger4

1Invicro, A Konica Minolta Company, Boston, MA; 2Unum Therapeutics Inc., Cambridge, MA; 3Konica Minolta, Inc., Japan

Background

CD20 is a membrane B cell marker expressed from the pre-B cell stage until terminal differentiation to plasma cells. CD20 is found on the majority of mature B-cell neoplasms, including diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. Importantly, it is the target of the monoclonal antibody rituximab as well as autologous T cell and bispecifc, immune-directed antibody therapies (BITE) in clinical development. It has become increasingly appreciated that one mechanism of resistance to rituximab-containing therapies is downregulation of CD20 [1, 2]. Histologically, differences in CD20 density are difficult to determine by standard chromogenic IHC methods. Development of an assay that provides highly sensitive and accurate detection of CD20 levels in the tissue context may help to assess whether there is a minimum CD20 threshold associated with response to rituximab or other CD20-targeted therapies.

Objective(s)

- Develop and benchmark a novel Quanticell® assay for sensitive and quantitative detection of CD20 expression that outperforms DAB-based immunohistochemistry.
- Apply CD19 biomarker co-expression and a digital pathology-based approach for quantitative analysis of CD20 expression in FFPE biopsy samples from NHL patients.
- Assess CD20 Quanticell assay performance for detection sensitivity and accuracy relative to an established digital spatial profiling technology.

Quanticell Technology

Novel Nanoparticle-based Technology

Overview of Quanticell technology. (A) The standard antibody-based workflow relies on an indirect detection method, whereas a peroxidase antibody is added followed by a biotinylated secondary antibody to detect target antigens in tissue. The signal is detected using streptavidin-coated fluorescent PID nanoparticles. (B) PIDs are stable and highly fluorescent particles that have ~2,400 streptavidin molecules linked via biotinylated secondary antibody to detect target antigens in tissue. The signal is imaged using a dedicated image processing software. The expression levels of target proteins in tissues is reported as the average PID number/100 µm².

Image Analysis

- PID visualization and quantitation is done using a standard optical system and dedicated image processing software.
- The expression levels of target proteins in tissues is reported as the average PID number/100 µm².

Summary and Applications

The novel CD20 Quanticell immunohistochemistry-based assay provides significantly enhanced detection and quantification of CD20 in FFPE tissue samples. This technology may be useful to assess whether there are critical antigen denatures associated with response to CD20-targeting therapies.

- This study demonstrates that Quanticell assays are uniquely suited for identifying low expressing biomarkers and can be multiplexed to understand other useful readouts the immune contexture of the tumor microenvironment. Quanticell technology has immediate potential as a translational research tool, particularly in the development of cancer immunotherapies and antibody drug conjugates.

- The Quanticell technology can be deployed in a CAP/CLIA environment and support exploratory endpoint testing in clinical trials.

References


Disclosures

This study was funded by Invicro Therapeutics, Invicro and Invicro are commercial entities. The authors declare that they have no conflicts of interest.

CD20 Quanticell® Assay Development

Step 1: Developing a CD20 Quanticell Assay

- CD20 expressing cell lines were used to benchmark assay performance.
- CD20 PID + IHC and CD20 PID - IHC.

Step 2: Benchmarking the CD20 Quanticell Assay against Flow Cytometry

- CD20 assay performance on clinical tissue
- Nanowire Protein DSP for CD20.

Step 3: Assay Transfer on a FFPE B Cell Lymphoma Tumor Array

- A commercially available B lymphoma TMA (n=39 cores, LNBI/TMA-13102) was stained for CD20-IF-IHC and CD20-PID-IHC.
- Ten different NHL biopsies (10x10) were selected for CD20 assay by traditional semi-quantitative IHC, Quanticell assay, and Nanostring protein DSP.

Quantile Assay Performance on Clinical Tissue

- Human tonsil tissue was used to confirm CD20 assay performance as a Quanticell singleplex or duplexed with CD19 IF-IHC.
- To assess sensitivity of CD20 detection, a non-B cell core (CD20 and CD19 negative by IHC) was analyzed.

- NanoString Protein-Digital Spatial Profiling (DSP) enables quantitative evaluation of approximately 60 different protein targets within specific regions of interest on FFPE tissue sections, including evaluation of CD20 assays.
- Both the Quanticell-CD20 and NanoString Protein DSP detection for CD20 appropriately cluster similar cases together into CD20+ and CD20- categories.
- While NanoString DSP for CD20 displays enhanced sensitivity compared to IHC, Quanticell demonstrated the ability to measure CD20 expression more sensitively over a broader dynamic range when compared to the DSP method.

- NanoString values for CD20+ cores appear at or near the limit of detection, limiting resolution at the low end of CD20 expression.
- Core D7 is an outlier from the overall trend, but the exact cause remains unclear.