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Abstract: Background: Machine learning methods have been developed to predict the likelihood of a
given event or classify patients into two or more diagnostic categories. Digital twin models, which
forecast entire trajectories of patient health data, have potential applications in clinical trials and
patient management. Methods: In this study, we apply a digital twin model based on a variational
autoencoder to a population of patients who went on to experience an ischemic stroke. The digital
twin’s ability to model patient clinical features was assessed with regard to its ability to forecast
clinical measurement trajectories leading up to the onset of the acute medical event and beyond
using International Classification of Diseases (ICD) codes for ischemic stroke and lab values as
inputs. Results: The simulated patient trajectories were virtually indistinguishable from real patient
data, with similar feature means, standard deviations, inter-feature correlations, and covariance
structures on a withheld test set. A logistic regression adversary model was unable to distinguish
between the real and simulated data area under the receiver operating characteristic (ROC) curve
(AUCadversary = 0.51). Conclusion: Through accurate projection of patient trajectories, this model
may help inform clinical decision making or provide virtual control arms for efficient clinical trials.

Keywords: digital twins; variational autoencoder; machine learning; algorithm; stroke; disease
forecasting

1. Introduction

Data driven approaches to personalized medicine have the potential to improve
patient outcomes while minimizing costs and reducing levels of risk to the patient. Prob-
abilistic models, which aim to provide a best assessment of future events, are useful for
mapping the trajectory of a patient and for forecasting their likely course of disease [1]. A
large body of evidence suggests that interventions are more precise and effective when indi-
vidualized mathematical models are used to capture the status of a particular subject over
time [2–4]. These mathematical models can be used to forecast the progression of disease
and may improve the effectiveness of interventions when applied in real world practice.

A digital twin of a patient is a simulation of the patient’s trajectory that behaves
identically to the patient in terms of outcomes. These simulated trajectories can be used
to model what is likely to happen to a patient in the future, if no outside intervention
changes their clinical course. Digital twins have their roots in the domain of engineering
and have been applied by NASA in the development of aerospace vehicles [5] as well
as in biomanufacturing [4] and in civil engineering [6]. Although many applications
of digital twins can be found in the context of industry, health care represents a place
where digital twins can have a disruptive impact [7]. It is, for example, very difficult to
precisely anticipate the efficacy of a drug in an individual patient [2,8]. Therapies for the
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average patient may not be well adapted to the individual. Predictive models often cannot
confidently make individual-level forecasts due to the inherent heterogeneity that exists
across patients. Predictive modeling, therefore, benefits from approaches which allow for
accurate characterization and forecasting of disease progression at the individual level.

As the application of digital twins in healthcare is in its infancy compared to validated
predictive modeling tools, there is a need to examine the utility and accuracy from a cross-
disciplinary perspective. For example, the DigitTwin Consortium provides a platform
for researchers in academia, industry, and government agencies to explore the value of
digital twins technology across various sectors, promote such technology, determine best
practices for its use, and to advance the technology [9,10]. The area of digital twins has been
described as the marriage of three components-data science, software engineering, and
expert knowledge-which culminates in clinical decision support (CDS) tools that are based
upon a personalized medicine approach [11]. Unlike traditional engineering models, which
are reflective of generic instances, digital twins reflect the individual characteristics of the
subject [1]. In health care, the digital twin model provides the opportunity to see many
predicted disease trajectories for a patient which has the potential to inform the patient’s
current state using data derived from that individual to avoid providing a “black box”
prediction, in which an explanation for the trajectory is not readily apparent [11]. Digital
twins are statistically indistinguishable from actual subjects and allow for individual-level
statistical analyses of disease progression [1]. The primary advantages of the use of data
from digital twins, as opposed to data from actual patients, are that they present no risk
of exposing private health information and make it possible to quickly simulate patient
cohorts of any size and characteristics [1]. This is particularly useful for informing the
design of clinical trials, which are estimated to cost on average between $12–$33 million,
though many can far exceed those amounts [8]. Developing methods to simulate data may
yield solutions in medical research more efficiently and with less risk to patients. Data
simulation methods may also advance the capability of health technology to tailor and
thus improve patient outcomes.

Precision medicine approaches are particularly useful for the management of health
conditions that elicit complex patterns of disease progression and treatment response [12].
The research that we present applies a digital twins model to the task of forecasting the
trajectories of several clinical measurements in patients who will experience an ischemic
stroke, as ischemic stroke is the second most common cause of mortality globally and
constitutes a significant health burden [13]. Although risk stratification systems have
been used to identify patients who would benefit from early warning of ischemic stroke
onset, the accuracy of these systems is low and may be negatively impacted by the fact
that presentation of risk factors is not homogenous across patient populations [14]. Given
the heterogeneous nature of the condition and its multifactorial pattern of progression,
a population of future ischemic stroke patients provides an appropriate test case for
the development of a clinical measurement forecasting model. In contrast to previous
applications of digital twins, which largely model disease progression in patients with an
existing chronic condition, ischemic stroke provides an instance in which digital twins can
be used to project changes in a patient’s condition that precede onset of a serious, acute
event. In this study, we applied variational autoencoder machine learning (ML) methods
to the task of creating a digital twin to model the trajectories of multiple clinical measures
in patients who went on to experience an ischemic stroke.

2. Methods
Machine Learning Model

The primary aim of this research was to build a generative model for simulating the
clinical trajectories of patients who went on to experience an ischemic stroke. A model
is generative if new samples can be drawn from it; generative modeling for clinical data
involves randomly generating patient data with identical statistics as the real patient data,
in addition to simulating the evolution of these trajectories over time. Patient trajectories
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for a condition are inherently random due to unobservable factors, such as the patient’s
environment and history. As such, accurate forecasting of progression of clinical measures
should be able to account for this random nature.

To address this randomness, we utilized a variational autoencoder (VAE) architecture
for our disease progression model [15]. VAEs encode input data as a probability distribution
over a generative latent space, which is then used to regenerate the original data. By
sampling a latent vector from this distribution and decoding it, we created a random
reconstruction close to the original input data.

VAEs maximize a lower bound to the marginal log-likelihood of observing the input
data given the model parameters, called the evidence lower bound [16]. This allows for
tractable optimization of the model’s distribution without having to compute integrals
and/or costly normalization constants [16]. In this way VAEs are more efficient and flexible
than restricted Boltzmann machines (RBMs).

Our particular variation of the base VAE architecture was a β-VAE [16]. The β-VAE
was an extension of a VAE in which regularization of the conditional latent distribution
was controlled with a specified weight, β. Setting β = 1 yielded the original formulation of
the VAE, while larger values of β encouraged the generative latent variables to be more
independent of one another. This led to a more “disentangled” representation of the data
which better represented the influencing variables and enhanced the fidelity of modeling.

Additionally, in terms of the effectiveness of the data science methods, the novel use
of a variational autoencoder (as opposed to other generative models such as generative
adversarial networks (GANs or RBMs), allows for stable learning and efficient sampling
of digital twins from patient electronic health records (EHRs). In addition, the VAE’s
disentangled latent space could allow for development of more sophisticated models which
incorporate not only forecasting but prediction using the latent space’s distilled information
in further work. This is in contrast to GANs, which do not learn a posterior distribution
over a latent space and therefore cannot easily be incorporated directly into a predictive
pipeline. RBMs do have a latent space, however the inherent learning and sampling
mechanisms are costly, and the model architecture is inflexible as compared to VAEs.

3. Data Processing

Using our proposed framework, the β-VAE model was used to generate possible next
steps in a patient’s trajectory. Our model was trained on data extracted from the Medical
Information Mart for Intensive Care (MIMIC)-IV database [17]. The database contains 1216
patients with useable trajectories that experience ischemic stroke at some point in their
record, as identified by International Classification of Diseases, Ninth Revision (ICD-9) or
International Classification of Diseases, Tenth Revision (ICD-10) codes (Supplementary
Table S1). Based on current coding practices and prior ischemic stroke literature [18], these
patients were selected as our ischemic stroke population. The trajectories of these patients
were modeled using data leading up to and following the point at which they experienced
an ischemic stroke. Data were de-identified in compliance with the Health Insurance
Portability and Accountability Act (HIPAA) and were collected retrospectively and, as
such, Institutional Review Board (IRB) approval was not required per the Federal Health
and Human Services Common Federal Rule [19].

Covariates used to model patient trajectory included presence of ischemic stroke
within the simulation window. In addition to ischemic stroke, model inputs included
prothrombin time (PT), partial thromboplastin time (PTT), creatinine, glucose, red cell
distribution width (RDW), white blood cell count, hematocrit, platelet count, interna-
tional normalized ratio (INR) red blood cell count, potassium, sodium, phosphate, mean
corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV). Several labora-
tory measures, including PT and PTT, were chosen due to the importance in measuring
propensity for clotting, while other labs like sodium were chosen due to their frequency of
measurement and informativeness with respect to other aspects of patient health. Over 99%
of patients had all features present at some point in their trajectories. For lab measurements,
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result values were log-transformed to address the skewness of the distributions as well
as to help the model account for the non-negative nature of such values. All inputs were
standardized by mean and standard deviation to enhance the model’s learning process. All
values were reverted to their raw values, i.e., the standardization and log-transformation
were reversed, before analysis.

Patients trajectories were modeled using measurements of patients’ clinical features,
averaged over equally-sized bins that spanned the patients’ histories. These bins begin and
end at the earliest and latest measurement times in each patient’s history. We defined a
measurement vector xi(t) as the list of averages for the covariates measured in patient i
over the tth bin. Adjacent bins were grouped into threes to use as inputs into the model.
We refer to these inputs as “time window vectors”, denoted by

vi(t) = {xi(t), xi(t− 1), xi(t− 2)}. (1)

The time window vector represents a dynamic snapshot of the patient’s state at a
particular point along their trajectory. Ideally, we would like to model the patient’s history
with as much fine-grained detail as possible. However, due to limitations in the frequency
of patient visits, a bin size that is too small would result in many empty bins which would
not be usable by the model, hampering model learning. To balance this desire for detail
and utility, a bin size of 90 days was found to be most effective.

Patients were partitioned 90%:10% into training and testing groups, respectively, with
o1094 patients in the training set and 122 patients in the test set. These sets of patients were
then used to generate the time window vectors for use in the model. The vectors from the
training set were further split 8:1 into train and train validation sets, to be used for model
selection. Time window vectors with more than 25% of their measurements missing were
removed. Missing data was filled in either with last-observation-carried forward (when
possible) or imputation with the feature average. Model hyperparameters were tuned with
Bayesian hyperparameter optimization, by fitting candidate models on the training set and
evaluating the sum of mean squared error (MSE) and adversary average precision. The
best hyperparameter combination was then used to fit a new model on the entire train set,
with the test set then used for evaluating performance of the model on a novel population.

The VAE model was trained to recreate the real time window vector with a generated
time window vector as closely as possible by minimizing the mean squared error of the
recreated vectors, in addition to a regularization term. After training, the model was
used to sample the next observed measurement vector for the patient from the learned
probability distribution,

xi(t + 1) ∼ P(x | xi(t), xi(t− 1)) (2)

This was done by using two visit vectors, adjacent in time, concatenated with a copy
of the second vector. Regenerating this time window vector fills in the third visit vector,
creating a sample of the next time step. Sampling from this distribution repeatedly allowed
us to generate a synthetic trajectory that projected the patient’s future covariates. Multiple
trajectories were generated by this process, which allowed us to enumerate a variety of
possible outcomes from the same starting point. These trajectories were used to compute
statistics about the possible trajectories for the patient and allowed for modeling of the
evolution of the patient’s covariate measurements in time.

4. Statistical Analysis

Our statistical analysis included several methods of interrogating the simulated data
to identify potential discernible differences between the simulated and real data with
respect to distribution and correlations of all measured covariates (Table 1).
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Table 1. Covariate statistics.

Name Mean Standard
Deviation

25th
Percentile Median 75th

Percentile

PT 17.61 7.9 11.85 13.7 22.88
PTT 36.56 13.91 28 31.72 39.65

Creatinine 1.5 1.49 0.88 1.1 1.5
Glucose 144.37 93.51 97.33 114.67 155

RDW 14.84 1.95 13.53 14.4 15.64
White Blood Cells 7.93 5.39 5.7 7.3 9.21

Hematocrit 36.4 5.63 32.51 36.6 40.35
Platelet Count 238.18 92.3 180 226.76 284

INR(PT) 1.63 0.77 1.08 1.23 2.13
Red Blood Cells 4.03 0.68 3.57 4.05 4.5

Potassium 4.3 0.5 3.97 4.25 4.6
Sodium 139.25 3.27 137.47 139.67 141.37

Phosphate 3.58 0.84 3.07 3.48 3.9
MCH 29.73 2.85 28.2 29.93 31.4
MCV 90.96 7.46 86.93 91 95.01

We examined the distribution of individual covariates through a number of statistical
tests. First, two-sample t-tests were used to compare covariate distributions in the real and
simulated data. Second, a number of aspects of real and simulated patient data were plotted
against each other and slopes and correlation coefficients were assessed. Plotted aspects of
the data were log-transformed feature means, log-transformed feature standard deviations,
and feature correlations with 0, 90 and 180 day lags. For the feature mean plots, each
point on the plot corresponded to a single feature (e.g., MCV or PTT). The x-coordinate
for the plot corresponded to the feature’s mean in the real data, and the y-coordinate
corresponded to the feature’s mean in the simulated data. For a perfect model, all of these
points would fall along a line of slope one; i.e., the feature means in the real and synthetic
data would match exactly. For standard deviation plots, features were plotted identically
but for standard deviations of each feature rather than means. Feature correlations were
plotted as follows. Two different features were selected and their correlation computed
within each data type; i.e., the correlations were computed for the real data’s features alone
and the generated data’s features alone. Each correlation was plotted as a single point on
the graph, with the x-coordinate representing the correlation between the features in the
real data and the y-coordinate representing the correlation between the same features in
the generated data. The lag time reflected the difference between the time at which the two
features were measured, in months.

We additionally plotted the covariance of the real and simulated data to compare
covariance structures graphically. Finally, we plotted projected timelines for each measure.
To compute projected timelines, the last two measurement vectors in a time window vector
of real patient data were joined with a copy of the last measurement vector, i.e., using the
last observation carried forward. The VAE model was then used to fill in the imputed
values with a simulated version, creating a random sample of the next measurement
vector. This was iterated to create a trajectory of desired length, and the entire process was
repeated to create 25 generated trajectories for the patient. These simulated trajectories
were then compared to the distribution of real patient data observed at the same time
points in the data.

Additionally, we trained a logistic regression model as an adversary to classify streams
of patient data as either real or simulated. Unlike when such models are built for predicting
patient outcomes or disease status, where high area under the receiver operating charac-
teristic (AUROC) is the objective, the objective for the present study was to be unable to
train a model which distinguished between the two data sources. The logistic regression
model was trained using five-fold cross validation, where the data was partitioned into five
portions. The model was trained on four of the portions and tested on the fifth, with the
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process repeated so that every portion of data served as the testing set. AUROC is reported
as the mean (± standard deviation) of results on the five test sets.

5. Results

Projected trajectories were estimated for the test set of 122 patients (Figure 1). Baseline
demographics are displayed in (Table 2)

Table 2. Clinical and demographic characteristics of the study population.

Characteristic N %

Age 18–29 13 1.10%
30–44 56 4.60%
45–64 424 34.90%
65–79 455 37.40%
≥80 268 22.00%

Sex Female 617 50.70%
Male 599 49.30%

Race/Ethnicity White 763 62.70%
Black/African American 274 22.50%

Hispanic/Latino 76 6.20%
Unknown Race 57 4.70%

Asian 45 3.70%
American Indian/Alaska Native 1 0.10%

Medical History HIV and AIDS 137 11.30%
Hypertension 964 79.30%

Peripheral vascular disease 135 11.10%
Chronic Heart failure 334 27.50%

Prior TIA and ischemic stroke 333 27.40%
Tobacco use 493 40.50%

Dyslipidemia 730 60.00%
Chronic Kidney Disease 732 60.20%

Hepatic Cirrhosis 49 4.00%
Psychiatric disorder (other than

substance use disorder) 336 27.60%

Dementia 134 11.00%
Alcohol use disorder 62 5.10%

Other substance use disorders 229 18.80%
History of Organ Transplant 246 20.20%

Diabetes Mellitus 651 53.50%
Chronic Obstructive Pulmonary

Disease 213 17.50%

Pneumonia 124 10.20%
Cancer 430 35.40%

Abbreviations used: HIV: human immunodeficiency virus; AIDS: acquired immunodeficiency syndrome; TIA:
transient ischemic attack.

Several results support that the real and simulated data were essentially indistinguish-
able from each other. T-tests comparing a number of covariate distributions between the
real and simulated data found highly insignificant p-values (p > 0.5 for all), indicating that
the simulated and real data had indistinguishable covariate distributions (Figure 2). Fur-
ther, when trained to distinguish between the simulated and real patient data, the logistic
regression-based adversary model displayed near-random performance for discrimination
of real patient data. Across the five folds of data, the model demonstrated an average
AUCadversary of 0.50 ± 0.01 (Supplementary Figure S1).
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Figure 1. Patient inclusion diagram.

Figure 2. Time window vectors from the test set were fed into the model and compared with their
generated counterparts. The real and simulated data was then compared on each feature using a
t-test to gauge the closeness of the distributions; p-values for the test are reported in the figure.
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We also examined several correlations between aspects of the real and simulated data
to further assess how well the simulated data mimicked the genuine patient data (Figure 3).
When the log-transformed means of each feature were compared between the real and
simulated data, we observed a slope of 1.0 and a Pearson’s correlation coefficient of 1.0.
Log-transformed feature standard deviations were slightly less strongly correlated, with
a slope of 0.96 and a correlation coefficient of 0.99. When examining the correlations of
feature correlations across several lag times, we also found evidence of strong correlations
between the real and simulated data. At lags of 0, 90, and 180 days, we observed slopes
of 0.99 (R2 = 1.00), 0.97 (R2 = 0.99), and 0.96 (R2 = 0.99), respectively. In addition to strong
correlations, the slope of near 1.0 for all pairs of measures indicated that the magnitude of
values in the real and simulated data were nearly identical.

The real and simulated data also displayed nearly identical covariance structures, as
shown in Figure 4. Covariance structure similarity is important for ensuring that trends
of disease progression found in models generated with real data will result in the same
trends of disease progression as those found in models generated with simulated data.
To more directly assess the accuracy of modeling with the simulated data we examined
forecasted next measurements, where the last measure in a stream of real patient data was
erased and projected through data simulation (Figure 5). The simulated values fell within
the range of observed patient measurements at later timesteps, indicating that projected
values maintained many of the properties expected from longitudinal real-world data.

Figure 3. Feature mean correlation plots showing the fidelity of the synthetic data with actual data. Each point represents
the standardized features of each synthetic trajectory matched with the actual trajectory. (A) Logarithm of Feature Means;
(B) Logarithm of Feature Standard Deviations; (C) Feature Correlations, No Offset; (D) Feature Correlations, 90 Day Offset;
(E) Feature Correlations: 180 Day Offset.
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Figure 4. Covariance structure matrices for the two datasets to visualize the similarity between real and simulated
data, indicating accurate trajectory of simulated data when compared against real patient data. Abbreviations used: PT:
prothrombin time; PTT: partial thromboplastin time; RDW: red cell distribution width; INR: international normalized ratio;
MCV: mean corpuscular volume; MCH: mean corpuscular hemoglobin. (A) represents Real Patient Data while image (B)
represents Generated Data.

Figure 5. Time series plots for a test patient’s features, using 25 simulated patient trajectories generated from the first
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three time points, shown in blue. The actual patient trajectory is shown in black (dashed line indicating last-carry-forward
interpolation), and the average of the generated trajectories is shown in purple. Each of the 15 figures shown represents the
measurement values for the corresponding test. Abbreviations used PT: prothrombin time; PTT: partial thromboplastin
time; RDW: red cell distribution width; INR: international normalized ratio; MCV: mean corpuscular volume; MCH: mean
corpuscular hemoglobin. (A) Prothrobmin time projected and measured timelines, (B) partial thromboplastin time projected
and measured timelines, (C) creatinine projected and measured timelines, (D) glucose projected and measured timelines, (E)
red cell distribution width projected and measured timelines, (F) whie blood cell count projected and measured timelines,
(G) hematocrit projected and measured timelines, (H) platelet count projected and measured timelines, (I) international
normalized ratio projected and measured timelines, (J) red blood cell count projected and measured timelines, (K) potassium
projected and measured timelines, (L) sodium projected and measured timelines, (M) phosphate projected and measured
timelines, (N) mean corpuscular hemoglobin projected and measured timelines, (O) mean corpuscular volume projected
and measured timelines.

6. Discussion

In this paper, we present a variational autoencoder model to create a “digital twin” of
data for patients who experienced an ischemic stroke. This method is capable of accurately
capturing the cross-sectional and longitudinal properties of real patient data such that the
stream of simulated data is statistically indistinguishable from real patient data, as shown
by the results of the time-lagged correlation and projected next measure experiments. This
work builds upon past developing digital twin models for forecasting of Alzheimer’s
disease and multiple sclerosis progression [3,6].

In particular, our current work demonstrates that a digital twin model for forecasting
the progression of relevant clinical measurements in patients at risk of ischemic stroke was
virtually indistinguishable from real patient data under an adversarial ML discriminator.
To ensure that the model was accurately learning the unimodal properties of the clinical
features, t-tests comparing real vs. synthetic features were run (Figure 2). The resulting
p-values were larger than 0.6 for each feature, suggesting replication of these distributions.
Linear regression to the means and standard deviations of real vs. synthetic data yielded
strong fitting (Figure 3A,B), with slope nearly 1.0 (R2 ≥ 0.99); a model that perfectly
replicates the real data would have a slope of exactly 1. In addition, statistical dependence
between features in the generated data was measured using correlation between pairs
of features in the generated and real trajectories. Linear regression to the paired data
demonstrated strong fitting with a slope of 0.99 (R2 ≥ 0.99). (Figure 3C), indicating fidelity
between synthetic data and actual data. Plots of the covariance structures of the feature
values between real and synthetic data were virtually indistinguishable (Figure 4), which
also indicates accuracy in the trajectory of simulated data when compared against real
patient data. Regression to real vs. synthetic time-lagged correlation values of feature
pairs (Figure 3D,E) indicates that the model replicates the statistical dependencies in the
patients’ generated timelines as time progresses. To visualize the model’s effectiveness
when generating long-term forecasts, clinical feature projections over 10 years into the
future (using only the first 270 days of measurements) were plotted to further substantiate
this finding (Figure 5). This research fills a gap in knowledge regarding a tool that has the
potential to be transformative for personalized medicine and patient care in that is presents
a scalable solution that is operationally nimble and relies only upon readily available EHR
data to overcome constraints that other digital twins models have reported due to data
availability and practical operating requirements [20,21].

Digital twin models have marked value in the study of progressive neurological
conditions like Alzheimer’s disease and multiple sclerosis. Neurological disorders are
notoriously difficult to study due to the difficulty in determining onset time [22], slow and
unpredictable disease progression [23], and the long follow-up times necessary to ascertain
patient outcomes [24]. These factors necessitate large and expensive trials [24–26] and
clearly illuminate the value of digital twin models for facilitating more efficient study of
these diseases. Digital twin models also have applications for disease study beyond the
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setting of rare and slowly progressive conditions. Such models can be used to eliminate the
need for control arms in clinical trials, allowing a digital twin of each patient to serve as
their own control, thereby allowing a greater number of patients to benefit from treatment
and increasing study power. In the case of ischemic stroke, in particular, a digital twin
model could be used to assess a patient’s risk of incident or recurrent ischemic stroke with
and without the use of prophylactic anticoagulant therapy [27,28].

The present work demonstrates proof of concept that digital twin models may be
useful for forecasting relevant clinical trajectories for acute-onset conditions [29,30] and
simulating disease progression. Estimation of disease progression using ML to simulate
data has been examined in several research studies. Fisher et al. used an unsupervised
ML model to create data simulating the trajectory of Alzheimer’s disease in individual
patients [3]. This study compared real and generated patient data, including the ADAS-
Cog scale [31] and Mini Mental State Exam (MMSE) [32] scores. The authors found that
generated patient data was virtually indistinguishable from real patient data both for
composite disease severity scores and individual score components, thereby simulating
entire disease trajectories [3]. Another recent study by Walsh et al. examined the ability
of simulated patient data (i.e., the “digital subject”) to forecast the trajectory of Multiple
Sclerosis (MS), a disease similar to Alzheimer’s if only in its heterogenous and often
complicated nature [1]. Using clinical trial data from control subjects that are made available
by the Multiple Sclerosis Outcome Assessments Consortium, the researchers created 1000
digital subjects for each patient dataset included in the study. The results of the study
indicated that the actual patient data and simulated data could not be differentiated from
one another by a ML model. Importantly, digital twin type simulations have also been
used to simulate the immunogenic landscape of SARS-CoV-2 [33], which may encourage
the development of universal blueprints for COVID-19 vaccine designs.

Personalized medicine presents itself as a profound advancement of medical technol-
ogy and clinical decision support tools. Potential risks related to the use of digital twins
include those related to accuracy, data quality and usefulness [2,34–36], health equity [35],
the ability to incorporate these high-tech tools into existing infrastructure [34,36], and
privacy [2,35,36]. However, the potential value of this tool indicates a need for further
exploration to uncover ways to minimize these pitfalls. Using a generative adversarial net-
works (GAN) model, Choi et al. has offered one potential solution to this issue of privacy
by successfully using ML to develop synthetic patient data that mirrored the accuracy of
predictive models that used real patient data [37]. One concern may be that the training
data can be replicated using the trained model, allowing leakage of patient information.
VAEs sample from a distribution for each generated time example, and so have some but
no direct coupling between training examples and generated examples. Using a GAN,
as suggested in Choi et al., could further decouple the real patient information from the
end model due to the different sampling and training mechanisms, potentially leading to
greater privacy [37].

There are several limitations of this work. First, the model was trained and tested on
a small patient population. Only 244 unique patient encounters were used by the model
after data processing and filtering, which may have impacted model performance. In
future work it would be beneficial to validate model performance on larger data sets. It is
also possible that log-transforming the lab features, while an attempt to bring the feature
distributions closer to a normal distribution, may have inadvertently introduced skewness
to the data. Another drawback is inherent to the binning process: it may be desirable that
measurements occurring close to the boundaries of bins be accounted for by both in some
way, with a smoother boundary than the one presented in this work. Additionally, the
adversary model trained to distinguish between real and simulated data was developed
using logistic regression. While these results suggested that real and simulated data were
virtually indistinguishable, it is possible that an adversary model trained using more
sophisticated ML methods would be able to better discriminate between the two data types.
In addition, constraints of availability of relevant data limited our ability to choose model
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input features (e.g., no assessments of cognitive state were available in the data set, which
if available could have been used by the model to inform patient trajectory forecasting.)
Because this is a retrospective study, we also cannot determine the impact this model may
have on patient care and management in live settings.

7. Conclusions

Despite its limitations, the machine learning model developed in this study shows
promise as a necessary precision medicine approach to individualized forecasting of disease
progression. However, as this type of modeling is still early in development in terms of
its application in healthcare, it would benefit to validate its use in multiple settings with
varying data types to determine its accuracy and effectiveness as a clinical decision support
tool.

Generally, our work fills a knowledge gap in the area of digital twins, presenting
exploratory research that lays the foundation for future research. Specifically, we have
demonstrated that this software can be implemented with few infrastructure changes into
existing EHR databases and use only EHR data to generate patient trajectory simulations
with high accuracy. Our current work demonstrates that a digital twins model is able to
accurately forecast clinical measurement trajectory in patients who went on to experience an
ischemic stroke. Use of such a tool in live clinical settings may allow for tailored treatment
to improve patient outcomes, and provide a low-cost, efficient method of conducting
clinical trials.

Supplementary Materials: The following supplementary materials are available online at https:
//www.mdpi.com/article/10.3390/app11125576/s1: Figure S1. A logistic regression adversary was
trained on the test set to distinguish between real and simulated time window vectors. To do this, the
test set was split with five-fold cross-validation. The adversary was trained on four of the chunks and
tested on the last, and the ROC curve and AUROC score were recorded. The process was repeated
100 times for each of the five chunks used for testing. Table S1. International Classification of Diseases
(ICD) Ninth and Tenth Revision codes used to identify an ischemic stroke population.
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