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ABSTRACT 

Introduction: Acute kidney injury (AKI) is common among hospitalized patients and has a significant impact 

on morbidity and mortality. While early prediction of AKI has the potential to reduce adverse patient outcomes, 

it remains a difficult condition to predict and diagnose. The purpose of this study was to evaluate the ability of a 

machine learning algorithm to predict for AKI KDIGO Stage 2 or 3 up to 48 hours in advance of onset using 

convolutional neural networks (CNN) and patient Electronic Health Record (EHR) data.  

Methods: A CNN prediction system was developed to use EHR data gathered during patients’ stays to predict 

AKI up to 48 hours prior to onset. 12,347 patient encounters were retrospectively analyzed from the Medical 

Information Mart for Intensive Care III (MIMIC-III) database. Comparators: XGBoost AKI prediction model 

and the Sequential Organ Failure Assessment (SOFA) scoring system. Outcomes: AKI onset. Analytical 

Approach: The model was trained on routinely-collected patient EHR data. Measurements included Area 

Under the Receiver Operating Characteristic (AUROC) curve, positive predictive value (PPV), and a battery of 

additional performance metrics for advance prediction of AKI onset. 

Results: On a hold-out test set, the algorithm attained an AUROC of 0.86 and PPV of 0.24, relative to a cohort 

AKI prevalence of 7.62%, for long-horizon AKI prediction at a 48-hour window prior to onset.  

Conclusions: A CNN machine learning-based AKI prediction model outperforms XGBoost and the SOFA 

scoring system, demonstrating superior performance in predicting AKI 48 hours prior to onset, without reliance 

on serum creatinine measurements.  
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INTRODUCTION  

Acute kidney injury (AKI) is a complex syndrome associated with large clinical and financial burdens. 1-12 

Despite its prevalence in hospitalized patients2,13 and reported incidence as high as 70% in the critically ill,13,14 

no treatment has been developed to effectively reverse injury to the kidney and restore kidney function.1 The 

reasons for this failure have been attributed to delays in diagnosis and intervention,2, 15-23 the complex nature of 

the AKI syndrome and the staging of its severity,3, 21 and its multiple etiologies.15,16  

 

Until recently, studies of incidence and outcomes of AKI have produced inconsistent results due to varying 

definitions of AKI.24-26 The Risk, Injury, Failure, Loss, End-stage kidney disease (RIFLE) criteria,27 followed 

by the Acute Kidney Injury Network (AKIN)28 and most recently the Kidney Disease: Improving Global 

Outcomes (KDIGO) criteria29, 30 have provided consensus on an AKI definition. KDIGO guidelines define acute 

kidney injury as an absolute increase of serum creatinine (SCr) of >0.3 mg/dL within 48 hours or a relative 

increase of >50% over no more than 7 days.21, 29 Doubling of SCr at steady state reflects an approximate 50% 

decrease in kidney function as assessed by glomerular filtration rate (GFR).31 Some studies have suggested that 

changes in SCr even smaller than 0.3 mg/dL within 48 hours are associated with significant increases in the risk 

of death, dialysis, and other morbidities,6, 21, 32-38 and other studies are consistent with worsening outcomes with 

increasing AKI stage.5, 24, 39-43  However, increases of serum creatinine are known to lag kidney injury by hours 

to days after the initial kidney insult, and therefore recognition of AKI is delayed by reliance on SCr 

measurements.44,45 

 

Early AKI detection is critical to improving patient outcomes.46-49 Given that the components necessary for 

defining and staging AKI are routinely available in the electronic health record (EHR),3 a number of automated 

alerts have been developed to predict AKI events prior to onset. However, these alerts are generally triggered by 

detecting changes in SCr and/or urine output.17 Because a range of kidney injury can exist before the loss of 
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kidney function can be estimated with these standard laboratory tests,45,50 there is great interest in developing 

methods that could be used to detect AKI in patients at an earlier stage.51-57 In this paper, we describe our 

methodology for the development of a convolutional neural network (CNN) prediction system that  predicts 

AKI up to 48 hours prior to onset, using patient data extracted from the EHR. The CNN model does not require 

serum creatinine or urine output values. 

 

METHODS 

Description of data. This study uses data from the Multiparameter Intelligent Monitoring in Intensive Care 

(MIMIC)-III version 1.3 dataset,58 collected at Beth Israel Deaconess Medical Center in Boston, MA from 2001 

to 2012. The MIMIC dataset offers a variety of encounter information from more than 40,000 unique patients 

and includes both structured (e.g. lab results) and unstructured (e.g. clinician notes) data. Due to differences in 

the storage of patient procedures information, we restrict our study to data collected from 2008 to 2012 using 

the MetaVision (iMDSoft) EHR system, and do not include data collected from 2001 to 2008 using the 

CareVue (Philips) system.59 Because the collection of the MIMIC data did not affect patient safety and because 

all data were anonymized in accordance with the Health Insurance Portability and Accountability Act (HIPAA) 

Privacy Rule, the Institutional Review Boards of Beth Israel Deaconess Medical Center and the Massachusetts 

Institute of Technology have waived the requirement for patient consent. 

 

From the MetaVision EHR MIMIC encounters, we selected for inclusion those stays involving adult patients 

(i.e. age 18 years or older) with at least one measurement of diastolic blood pressure, systolic blood pressure, 

temperature, respiratory rate, heart rate, SpO2, and Glasgow Coma Scale. These measurements were selected 

because they are frequently available and easily collected at the patient bedside, even before clinical suspicion 

of AKI is present. These were the only direct variables used during training and testing of the algorithm; clinical 

notes vectorized with the Doc2Vec algorithm were also used as inputs to the CNN model. Serum creatinine was 

used as part of the KDIGO criteria, which served as the  gold standard of AKI true positive patients, but was not 
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used as an input in testing. To facilitate the analysis of 48-hour advance prediction of AKI onset with a five-

hour window of measurements upon which to base such a prediction, we required patient stay duration to be at 

least 53 hours in length. For convenience and with minimal restriction, we required that patient encounters 

lasted no more than 1000 hours. To train and test the algorithm on the broadest possible patient sample, no 

further inclusion or exclusion criteria were applied. Patients with prevalent AKI, with chronic kidney disease, or 

who receive dialysis were therefore included. Inclusion criteria are listed in Figure 1 for 24 and 48 hour 

prediction windows, and the demographic characteristics of encounters meeting the inclusion criteria are 

reported in Table 1.

 

Overview of preprocessing, training, and testing. MIMIC-III ICU encounter data was gathered in the 

following way: encounters from the Metavision database in MIMIC-III were required to be at least 18 years of 

age, and had to include at least one measurement for at least one of the required input features. For each 

prediction offset T, the encounters were filtered such that each encounter was between 5+T hours and 1000 

hours. 5+T hours was required to account for the offset, and to give the model the required 5 hours of 

measurements used for prediction. For each prediction offset T, positive examples’ measurements were taken 

from between 5+T and T hours before onset to use for prediction, while negative examples’ measurements were 

taken from random 5-hour windows in the patients’ stays. Onset was defined as the first time that the relevant 

KDIGO criteria were met during the patient stay. Patient encounters satisfying the inclusion criteria were 

immediately allocated to training and testing sets. Roughly 90% and 10% of all encounters were randomly 

allocated to the training and testing sets, respectively, stratifying by positive and negative class to ensure equal 

representation of classes in both sets. We binned the data by the hour, imputed missing measurements, and 

standardized measurements on a variable-by-variable basis. AKI was defined according to KDIGO Stage 2 or 

KDIGO Stage 3 criteria and positive cases were identified as those patients reaching KDIGO Stage 2 or Stage 3 

during the encounter. KDIGO Stage 2 or Stage 3 classifications were determined for each encounter, along with 

the corresponding times of KDIGO “onset” where appropriate. Stage 2 AKI is defined in the KDIGO staging 

system as an increase in SCr to more than 200% to 300% (>2- to 3-fold) from baseline or urine output <0.5 
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ml/kg per hour for more than 12 hours.29 Stage 3 AKI is defined as an increase in SCr to more than 300% (>3-

fold) from baseline, or ≥ 4.0 mg/dl (≥ 354 mmol/l), or kidney replacement therapy (KRT), or a decrease in 

estimated glomerular filtration rate (eGFR) to < 35 ml/min per 1.73m2 (if <18 years of age), or urine output < 

0.5 mL/kg/hr for ≥ 24 hours or anuria for ≥ 12 hours.29 In both cases, the smaller of either the Modification of 

Diet in Renal Disease (MDRD)27  serum creatinine estimate based on KDIGO 2012 guidelines or the 20th 

percentile of observed creatinine measurements was used for the baseline creatinine measurement in each 

patient encounter. Any missing features required for measurement, including missing urine or serum creatinine 

measures, made a contribution of 0 to the total KDIGO score. 

 

A Doc2Vec embedding network was created to vectorize clinical text data. The Doc2Vec algorithm works by 

creating vectors for the most common words in all the documents, as well as separate vectors for each 

document. These vectors are trained by selecting a window of words in each document; the corresponding 

vectors for these words, in addition to the vector for the document that the text came from, to predict the next 

word in the sequence. The resulting document vectors are used as inputs, while the word vectors are discarded. 

The embedding network was prepared on a large collection of mid-stay clinical notes, ranging from primary 

complaint to radiology notes, including everything up to, but not including, the discharge summary, from 

encounters allocated to the training set. The network embedded texts into 250-dimensional numeric vectors, 

which served as inputs to the classifiers, alongside the structured data associated with the stays. Any notes dated 

after the onset of AKI were not used as inputs for the model to ensure the model is using only data found at or 

before prediction time.  

 

Training data were passed to a convolutional neural network (CNN) structure, with hyperparameters optimized 

on the training set using the Python-based optimization package Talos. Tuned hyperparameters include learning 

rate, batch size, optimization loss, L1 and L2 regularization coefficients, and size of dense layers in the model.  

A CNN was chosen instead of a recurrent neural network (RNN) as they are faster to train and have fewer 

parameters.60 In addition, the window of time from which the structured data was gathered for prediction was 
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relatively short (5 hours). CNN modeling techniques have been shown to outperform RNN modeling techniques 

with improved generalizability when applied to speech recognition tasks.61 After the end of training on each 

fold, network performance was evaluated using the hold-out test set. Results were reported as the average test 

set performance across cross-validation folds. 

 

Structured data preprocessing. Structured data were binned by the hour, with multiple intra-hour 

measurements of the same variable replaced by their average. Missing measurements were handled separately 

for training and testing sets using last observation carried forward imputation. Any remaining missing values 

were filled in using the measurement median over the training data. Quantitative data and document vectors 

were then standardized using the training data such that each feature has mean zero and variance one.  

 

Document vector encoding network and unstructured data preprocessing. To facilitate the use of 

unstructured text data alongside the structured inputs, we trained a Doc2Vec62 embedding network with 250 

nodes, trained on 238,468 mid-stay clinical notes. Document vectors were produced for the text data available 

from each encounter, using 125 epochs of the Doc2Vec algorithm -- to better ensure the stability of inferred 

document vectors -- and an initial learning rate of 0.01. The choice of number of epochs and learning rate was 

found through experimentation. Clinical notes dated after AKI onset were excluded from inputs when training 

and testing the CNN.  

 

Training of neural network classifier. We constructed a classifier to predict the probability of the presence of 

AKI at a given offset time from prediction using the Python deep learning library, Keras, that uses variants of 

multi-channel, multi-headed attention together with convolutions to extract information from the quantitative 

time series data. A separate network for handling the document vector produced by the Doc2Vec network was 

combined downstream through concatenation in a fully-connected output layer. This allows the model to 

incorporate information from both the time series data in the electronic health records, as well as the qualitative 

information found in the clinical notes. Model parameters were optimized using the Nadam optimizer63 as 
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implemented in the Keras library with learning rate of 0.0009 and binary cross-entropy loss. A diagram of this 

neural network architecture is available as Supplementary Figure S1. Due to the low prevalence of AKI in the 

data, random oversampling was performed to artificially inflate the positive population. This was done by 

picking examples from the positive class at random with replacement until the number of positive examples 

matched the number of negative examples.   

 

To fit the weights of the network with 10-fold cross-validation, we split the training data into 10 subsets of 

roughly equal size, and iteratively used 9 subsets for intra-fold training and the final subset for intra-fold testing. 

Model parameters were fit over the course of 50 epochs on the 9 intra-fold training subsets, with evaluation on 

the final subset. For each iterate, we obtained a receiver operating characteristic (ROC) curve, as well as a 

battery of performance metrics. We then randomly reset the model parameters before performing another 

iterate. From cross-validation, we obtained an average ROC curve and average performance metrics, along with 

standard deviation for the performance metrics. These results are presented in comparison with an XGBoost64 

classifier and the Sequential Organ Failure Assessment (SOFA) score,65 which has been shown to 

independently predict AKI outcomes.66-68 and therefore serves as a validated comparison measure for AKI 

prediction. SOFA was computed using all organ systems; any missing inputs required for computation 

contributed zero points to the total SOFA score. The XGBoost classifier was trained on the same processed 

training sets -- 5-hour windows of quantitative, clinical EHR data -- and evaluated on the same testing set. The 

time series data was turned into a list of the binned measurements at the different hours and given to XGBoost 

as input, requiring no additional feature engineering. Document vectors were not given as input for XGBoost.  

XGBoost hyperparameters were tuned using a cross-validated grid search on the training data. Hyperparameters 

were optimized using grid-search over the hyperparameters “gamma”, which controls how often the trees are 

split, and “colsample_bytree”, which controls the number of features randomly selected for inputs when 

constructing each tree.  
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RESULTS 

The demographic characteristics associated with MIMIC III ICU encounters meeting the inclusion criteria of 

Figure 1 are provided in Table 1. The study population was 53.29% male, with few (4.65%) patients younger 

than 30 years of age and a substantial percentage of patients aged 70 years or more (39.39%). More than half 

(62.78%) of patients had stays lasting between 3 and 5 days, with a substantial percentage of patients 

experiencing stays of 12 days or longer (11.26%). The overall mortality rate was 39.39%, with 7.62% of 

encounters meeting the criteria for KDIGO Stage 2 or Stage 3 at some point in the stay, and 20.6% of stays 

meeting some stage of the KDIGO criteria at any point during the stay. 

 

Performance is evaluated by predicting once in each encounter using 5 hours of data. This data is taken either 

from a random portion of the stay, for negative examples, or from the specified model’s offset for positive 

examples. The results from 10-fold cross-validation on the 90% training set are reported in Tables 2 and 3, for 

48 and 24 hr predictions, respectively. Test performance is reported for the best-performing model, selected 

by cross-validation of the train data. The CNN model with the use of the Doc2Vec embeddings of encounter 

text data outperformed the XGBoost comparator model and the SOFA score for advance prediction of KDIGO 

Stage 2 or Stage 3 onset. We note that, in order to provide non-summative performance metrics (i.e., the metrics 

other than area under the receiver operating characteristic (AUROC) curve), we selected an operating point for 

each model or score which provided a sensitivity nearest 0.80. The CNN model performed better (AUROC of 

0.86 for 24 and 48 hr predictions) when text data were made available through Doc2Vec than when these data 

were unavailable (AUROC of 0.77 and 0.76 for 24 and 48 hr predictions, respectively). In addition, the quality 

of prediction was higher for KDIGO Stage 2 or Stage 3 onset, as compared with the prediction of onset for any 

of KDIGO Stages 1-3. For corresponding CNN and XGBoost results without oversampling of the minority 

class, see Supplementary Table S1. Permutation feature importance methods were implemented to provide 

information on the relative importance of each input variable. A precision-recall curve comparison between the 

CNN model, the XGBoost model, and the SOFA score is presented in Supplementary Figure S2.  
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The CNN model averaged a positive predictive value (PPV) of 0.24 over cross-validation folds for the 48-hour 

prediction of KDIGO Stages 2 and 3, compared to average PPVs of 0.09 and 0.13 for XGBoost and the SOFA 

score, respectively (Table 2). The advantage of the CNN mostly vanished (PPV of 0.16) in the absence of text 

data through Doc2Vec input. The average PPV was highest when the CNN classifier was given access to 

Doc2Vec input and tasked with 48-hour prediction of KDIGO Stages 1-3 (PPV of 0.31). Relative to the 7.62% 

prevalence of KDIGO Stages 2 and 3, positive predictions made by the CNN model enriched for KDIGO Stage 

2 or 3 encounters by a factor of 4.80, whereas XGBoost and the SOFA score enriched these encounters by 

factors of 2.50 and 2.11, respectively. 

 

The ROC curve comparison of 48-hour prediction on the 10% hold-out test set is shown in Figure 2. The CNN 

model, which was provided text data through Doc2Vec input, performed substantially better than the XGBoost 

model and the SOFA score. The XGBoost model and SOFA had similar performance on the test set. 

 

DISCUSSION 

These experiments demonstrate that a convolutional neural network can predict AKI up to 48 hours in advance 

of KDIGO Stage 2 or Stage 3 AKI onset, with AUROC performance superior to that of an XGBoost classifier 

and the SOFA scoring system (Table 2, Figure 2).   Unlike other diseases for which multiple severity scores 

exist, AKI represents a group of syndromes that are loosely connected by the characteristic rapid drop in eGFR 

seen in AKI patients.69 With over 30 definitions of AKI,70 attempts at a uniform definition for acute kidney 

injury have included the RIFLE classification27 followed by the Acute Kidney Injury Network (AKIN)28 and 

most recently the KDIGO criteria.29, 30 The absence of a consistent uniform definition may explain the current 

lack of an AKI-specific risk score that serves as a standard of care.  To provide context for the performance of 

their models, prior studies focusing on the development of AKI prediction models have either used the 

biomarker serum neutrophil gelatinase associated lipocalin (sNGAL) as a comparator,71 compared their model 
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to other ML models72 or not included a standard of care comparator.73,74 In the current study, we compare two 

ML models as well as provide the SOFA score as a comparator. Although the SOFA score was not developed 

for the purpose of long-horizon AKI prediction, because of the ubiquity of the SOFA score, and previous usage 

in AKI outcome prediction, it serves as a validated comparator for our current approach.66-68 The XGBoost 

comparator is similarly important, primarily due to its broad and successful use in applications to other clinical 

prediction tasks (e.g., the 2019 Physionet Computing in Cardiology Challenge75).  

 

The superiority of the CNN classifier to the XGBoost classifier and the commonly-used SOFA score is 

evidenced by key performance metrics, such as AUROC and PPV (Table 2). The PPV performance 

improvement is of particular importance. Romero-Brufau et al. have argued that AUROC performance may be 

misleading for clinicians interested in evaluating the clinical impact of a diagnostic tool, as AUROC does not 

incorporate information about the prevalence of a condition.76 In fact, for the same reason, AUROC is useful for 

comparing the performance of tools retrospectively validated on different datasets. This concern regarding PPV 

and prevalence is relevant to our study, as we found that the prevalence of KDIGO Stages 2 or 3 is roughly 

7.6% in the cohort, an estimate consistent with prior epidemiologic studies.77 The AUROC is a summative 

metric which may include ranges of operating points which are irrelevant to a given task, whereas PPV can be 

focused on a clinically relevant operating point. To produce the metrics in Table 2, we chose operating points 

for the CNN and comparators which fixed their sensitivities near 0.80.  

 

Beyond the text data input through Doc2Vec, CNN predictions were made using only age and 7 routinely 

collected patient measurements (diastolic blood pressure, systolic blood pressure, temperature, respiratory rate, 

heart rate, SpO2, and Glasgow Coma Scale) as inputs. Although this study was restricted to MetaVision 

(iMDSoft) EHR system for technical reasons, the use of these widely available inputs supports that the model 

could be generalized to broad clinical practice.  Importantly, the CNN model did not rely on SCr to make 

predictions, distinguishing it from other AKI prediction tools. Creatinine levels can take hours or days to rise to 

AKI thresholds as defined in the KDIGO staging system78; therefore, changes in SCr may reflect pre-existing 

Jo
urn

al 
Pre-

pro
of



11 

kidney damage. An AKI prediction tool which does not depend on SCr measurements may better afford 

clinicians the opportunity to intervene early, to prevent AKI development or progression, or to limit further 

kidney damage. Additionally, using only commonly collected variables in the EHR for AKI prediction allows 

automatic screening of a general patient population for impending AKI without requiring specialized 

evaluation. 

 

This study contributes to the growing body of retrospective machine learning (ML) literature for the prediction 

of AKI. 79 Chiofolo et al. (2019) developed a model for AKI prediction and surveillance in ICU patients at a 6-hr 

prediction window with an AUROC of 0.88.73 Fletchet et al. (2017) developed the AKIpredictor, a prognostic 

calculator for prediction of AKI in ICU patients during the first week of stay.71 Their KDIGO Stage 2 and 3 

model produced AUROCs between 0.77 and 0.84. The AUROC of 0.84 corresponds to a prediction of KDIGO 

Stage 2 and 3 after gathering 24 hours of data. As a point of comparison, the CNN model used only 5 hours of 

data before making a  prediction. Recent work by Tomasev et al. pursued a deep learning approach for 

continuous risk prediction of deterioration in acute kidney injury patients, and evaluated their tool on a 

Veteran’s Health Administration dataset of 703,782 adult patients.72 Algorithm performance at a 48-hour 

prediction window corresponded to a sensitivity of 55.8% and a specificity of 82.7%.72 This performance is 

reported to be “in range” required for regulatory approval.80 While these studies make important contributions 

to the domain of AKI research, they depend on the use of SCr to make predictions, which is a lagging marker of 

kidney function. In contrast, the CNN described in this work does not rely on SCr to make predictions of AKI 

onset, which allows for both longer lead times and improved predictive performance, as well as for generating 

predictions on patients who may not yet be clinically suspected of having AKI and have not yet had SCr 

measures drawn. The CNN also offers improvement in performance as compared to our prior work, 81 which 

utilized the machine learning method of gradient boosted trees to predict AKI prior to onset and included SCr as 

a model input. In comparison, results from our current work suggest that AKI predictions can be made with a 
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more robust machine learning architecture, without reliance on SCr, while achieving stronger predictive 

performance. 

 

While the CNN described in this study offers substantial lead time in AKI identification (up to 48 hours), and 

offers improved predictive performance over our previous work,81 it still requires prospective validation. 

Additionally, we cannot determine from this retrospective study what impact the algorithm might have on 

clinicians and their provision of care in clinical settings, nor provide an analysis of model evaluation and its 

prediction performance in time. While the CNN model performance was superior to that of SOFA and 

XGBoost, improvements in PPV achieved by the CNN compared to XGBoost or SOFA  are less pronounced 

without the use of clinical notes. Algorithm performance is assessed only on US patients older than age 18, with 

stays in the ICU, which limits the generalizability of our results to other patient populations and levels of care. 

While the majority of the negative class patients had a serum creatinine measurement at some point in the ICU 

stay, it is possible that inclusion of patients missing urine measures in the negative class led to the 

misclassification of some patients in our dataset. It is also possible that misclassifications could have occurred 

for some patients in the data set due to inclusion of patients with a previous diagnosis of CKD and/or who 

received dialysis.  Due to a lack of a standard-of-care AKI score, we used the SOFA score and the XGBoost 

model to provide context for our model performance. While the SOFA score has been used in AKI outcome 

prediction studies,66-68 it was not developed for the purpose of long-horizon AKI prediction. Further, while the 

XGBoost comparator was included due to its use in other clinical prediction tasks,75 it does not serve as a 

standard-of-care for AKI predictions. Lastly, because there have been several proposed consensus definitions 

for AKI, the algorithm we described may have different results when compared against non-KDIGO definitions, 

or in settings which utilize a different standard in their diagnostic procedures. 

 

CONCLUSION 
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A convolutional neural network for AKI prediction outperforms XGBoost and the traditional SOFA scoring 

system, demonstrating superior performance in predicting acute kidney injury up to 48 hours prior to onset, 

without reliance on measurements of changes in serum creatinine. Although the use of clinical text data through 

a Doc2Vec network substantially strengthens CNN prediction performance, the CNN demonstrated superior 

performance over both XGBoost and SOFA even when clinical notes were not included as model inputs, 

supporting the use of CNN models for the task of AKI prediction. Such a tool may improve prediction and early 

detection of AKI in clinical settings, thereby allowing for earlier intervention.  
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TABLES 
 
Table 1. Demographic characteristics of MIMIC III ICU encounters found in the 48hr dataset and meeting the 
inclusion criteria of Figure 1. We note that the determination of KDIGO positive or negative was made after the 
data preprocessing steps described in the Methods section. 

Characteristic Count Percent 

Gender Female 3,186 46.71 

Male 3,186 53.29 

Age (days): 
Median 65, IQR (53-77) 
 

18-29 317 4.65 

30-39 307 4.50 

40-49 665 9.75 

50-59 1,246 18.27 

60-69 1,599 23.44 

70+ 2,687 39.39 

Length of Stay (days): 
Median 5,  
IQR (4-9) 

< 3 43 0.63 

3-5 4,282 62.78 

6-8 1,200 17.59 

9-11 528 7.74 

12+ 768 11.26 

In-Hospital Death Yes 1,747 25.61 

No 5,074 74.39 

KDIGO 2/3 Positive 520 7.62 

Negative 6,301 92.38 

KDIGO 1/2/3 Positive 1,410 20.67 

Negative 5,411 79.33 
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Table 2. Results from 10-fold cross-validation of predictions 48 hours prior to onset on the MIMIC III data 
set. The convolutional neural network (CNN) model is compared with an XGBoost classifier, and the 
Sequential Organ Failure Assessment (SOFA) score. SOFA required no training and thus could be applied to 
the entire test set at once, hence no standard deviation is reported. Additional comparison is made to the CNN 
model without the use of the Doc2Vec network (i.e., without unstructured text data) and for the prediction of 
KDIGO criteria of any stage. Abbreviations: area under the receiver operating characteristic (AUROC) curve; 
diagnostic odds ratio (DOR); positive and negative likelihood ratios (LR+ and LR-, respectively); positive and 
negative predictive value (PPV and NPV, respectively); standard deviation (SD). 
 

 CNN XGBoost SOFA No Doc2Vec Stage 1 Included Stage 3 Only 

AUROC mean (SD) 0.856 (0.034) 0.654 (0.011) 0.701 0.763 (0.035) 0.778 (0.037) 0.819 (0.036) 

Sensitivity mean (SD) 0.804 (0.000) 0.798 (0.000) 0.798 0.805 (0.006) 0.806 (0.008) 0.806 (0.000) 

Specificity mean (SD) 0.763 (0.057) 0.380 (0.006) 0.441 0.623 (0.064) 0.649 (0.074) 0.679 (0.079) 

PPV mean (SD) 0.236 (0.039) 0.095 (0.001) 0.127 0.163 (0.022) 0.310 (0.044) 0.105 (0.023) 

NPV mean (SD) 0.975 (0.002) 0.956 (0.001) 0.960 0.970 (0.003) 0.940 (0.006) 0.985 (0.002) 

Accuracy mean (SD) 0.765 (0.052) 0.411 (0.005) 0.612 0.638 (0.056) 0.672 (0.062) 0.683 (0.076) 

DOR mean (SD) 14.076 (3.779) 2.421 (0.059) 3.123 7.123 (1.899) 8.167 (2.425) 9.566 (3.410) 

LR+ mean (SD) 3.558 (0.739) 1.287 (0.012) 1.429 2.191 (0.362) 2.389 (0.478) 2.658 (0.660) 

LR- mean (SD) 0.258 (0.021) 0.532 (0.008) 0.458 0.316 (0.035) 0.301 (0.035) 0.288 (0.035) 

F1 mean (SD) 0.361 (0.047) 0.169 (0.001) 0.214 0.270 (0.030) 0.444 (0.045) 0.184 (0.036) 
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Table 3. Results from 10-fold cross-validation of predictions 24 hours prior to onset on the MIMIC III data 
set. The convolutional neural network (CNN) model is compared with an XGBoost classifier, and the 
Sequential Organ Failure Assessment (SOFA) score. SOFA required no training and thus could be applied to 
the entire test set at once, hence no standard deviation is reported. Additional comparison is made to the CNN 
model without the use of the Doc2Vec network (i.e., without unstructured text data) and for the prediction of 
KDIGO criteria of any stage. Abbreviations: area under the receiver operating characteristic (AUROC) curve; 
diagnostic odds ratio (DOR); positive and negative likelihood ratios (LR+ and LR-, respectively); positive and 
negative predictive value (PPV and NPV, respectively); standard deviation (SD). 
 

 CNN XGBoost SOFA No Doc2Vec Stage 1 Included Stage 3 Only 

AUROC mean (SD) 0.863 (0.009) 0.729 (0.009) 0.727 0.769 (0.028) 0.834 (0.004) 0.867 (0.009) 

Sensitivity mean (SD) 0.803 (0.000) 0.801 (0.000) 0.784 0.801 (0.003) 0.798 (0.005) 0.795 (0.000) 

Specificity mean (SD) 0.772 (0.021) 0.463 (0.026) 0.537 0.585 (0.066) 0.716 (0.018) 0.785 (0.024) 

PPV mean (SD) 0.221 (0.016) 0.111 (0.005) 0.151 0.153 (0.019) 0.359 (0.014) 0.131 (0.014) 

NPV mean (SD) 0.978 (0.001) 0.964 (0.002) 0.961 0.968 (0.003) 0.944 (0.001) 0.988 (0.000) 

Accuracy mean (SD) 0.773 (0.020) 0.489 (0.024) 0.684 0.602 (0.060) 0.728 (0.014) 0.784 (0.023) 

DOR mean (SD) 13.905 (1.617) 3.484 (0.367) 4.200 5.861 (1.440) 10.030 (0.822) 14.396 (2.212) 

LR+ mean (SD) 3.545 (0.319) 1.494 (0.073) 1.692 1.970 (0.292) 2.821 (0.178) 3.740 (0.452) 

LR- mean (SD) 0.256 (0.007) 0.431 (0.024) 0.403 0.344 (0.038) 0.282 (0.007) 0.261 (0.008) 

F1 mean (SD) 0.345 (0.019) 0.194 (0.007) 0.247 0.256 (0.027) 0.494 (0.013) 0.224 (0.020) 
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FIGURES LEGENDS 

 

 
Figure 1. Inclusion diagram. Patients were required to be at least 18 years of age, and must have at least one 
measurement of at least one of the input features.  

 

Figure 2. ROC curve comparison of prediction performance using a convolutional neural net (CNN) classifier, 
an XGBoost (XGB) classifier, and the SOFA score, 48 hours prior to AKI onset on the MIMIC III ICU hold out 
data set. AUROC, Area Under the Receiver Operating Characteristic curve; SOFA, Sequential Organ Failure 
Assessment score.  
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