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ABSTRACT

Introduction: Acute kidney injury (AKI) is common among hospitad patients and has a significant impact
on morbidity and mortality. While early predictiof AKI has the potential to reduce adverse pateritomes,

it remains a difficult condition to predict and greose. The purpose of this study was to evaluatability of a
machine learning algorithm to predict for AKI KDIG&age 2 or 3 up to 48 hours in advance of onsegus

convolutional neural networks (CNN) and patientdiienic Health Record (EHR) data.

Methods: A CNN prediction system was developed to use EHR dathered during patients’ stays to predict
AKI up to 48 hours prior to onset. 12,347 patiemta@unters were retrospectively analyzed from theivéd
Information Mart for Intensive Care Il (MIMIC-IlIlflatabaseComparators: XGBoost AKI prediction model
and the Sequential Organ Failure Assessment (SGE@)ng systemOutcomes:AKI onset.Analytical
Approach: The model was trained on routinely-collected pdtiEEHR data. Measurements included Area
Under the Receiver Operating Characteristic (AURO@Ye, positive predictive value (PPV), and adygtof

additional performance metrics for advance preoiictf AKI onset.

Results: On a hold-out test set, the algorithm attained BMR®C of 0.86 and PPV of 0.24, relative to a cohort

AKI prevalence of 7.62%, for long-horizon AKI pretion at a 48-hour window prior to onset.

Conclusions:A CNN machine learning-based AKI prediction modetperforms XGBoost and the SOFA
scoring system, demonstrating superior performanpeedicting AKI 48 hours prior to onset, withaetiance

on serum creatinine measurements.



INTRODUCTION

Acute kidney injury (AKI) is a complex syndrome asited with large clinical and financial burdeh&:
Despite its prevalence in hospitalized patiehtand reported incidence as high as 70% in thecaliiill, *>**
no treatment has been developed to effectivelyrseviajury to the kidney and restore kidney funefidhe
reasons for this failure have been attributed taydein diagnosis and interventidrt>?*the complex nature of

the AKI syndrome and the staging of its sevetifyand its multiple etiologies:®

Until recently, studies of incidence and outcomie&Kl have produced inconsistent results due to/wvey
definitions of AKI2*?® The Risk, Injury, Failure, Loss, End-stage kiddésease (RIFLE) criteri&, followed

by the Acute Kidney Injury Network (AKINY and most recently the Kidney Disease: Improvingb@l
Outcomes (KDIGO) criterfd **have provided consensus on an AKI definition. KDIGuidelines define acute
kidney injury as an absolute increase of serumticiea (SCr) of >0.3 mg/dL within 48 hours or aatle
increase of >50% over no more than 7 d&ys.Doubling of SCr at steady state reflects an apprate 50%
decrease in kidney function as assessed by gloardiitilation rate (GFRY' Some studies have suggested that
changes in SCr even smaller than 0.3 mg/dL witRimdurs are associated with significant increaselsa risk
of death, dialysis, and other morbiditfe&' *>38and other studies are consistent with worsenirigomues with
increasing AKI stagé.** *®** However, increases of serum creatinine are krtowag kidney injury by hours
to days after the initial kidney insult, and theref recognition of AKI is delayed by reliance onrSC

measurement¥:*

Early AKI detection is critical to improving patieautcome$®“° Given that the components necessary for
defining and staging AKI are routinely availabletlire electronic health record (EH&Y, number of automated
alerts have been developed to predict AKI everits po onset. However, these alerts are genenadjgered by

detecting changes in SCr and/or urine outp@tecause a range of kidney injury can exist befloedoss of



kidney function can be estimated with these stahtidooratory test&°there is great interest in developing
methods that could be used to detect AKI in pasi@n@n earlier stagé?>’ In this paper, we describe our
methodology for the development of a convolutiamaliral network (CNN) prediction system that preslic
AKI up to 48 hours prior to onset, using patientadextracted from the EHR. The CNN model does eqgtire

serum creatinine or urine output values.

METHODS

Description of data. This study uses data from the Multiparameter ligeit Monitoring in Intensive Care
(MIMIC)-I1I version 1.3 dataset’ collected at Beth Israel Deaconess Medical CéntBoston, MA from 2001
to 2012. The MIMIC dataset offers a variety of emu@r information from more than 40,000 unique gr&t

and includes both structured (e.g. lab results)uarsdructured (e.g. clinician notes) data. Dueiffernces in
the storage of patient procedures information, @srict our study to data collected from 2008 t@2Qsing

the MetaVision (iMDSoft) EHR system, and do notlue data collected from 2001 to 2008 using the
CareVue (Philips) systefi.Because the collection of the MIMIC data did niféet patient safety and because
all data were anonymized in accordance with thdthidasurance Portability and Accountability ActifRA)
Privacy Rule, the Institutional Review Boards otiBisrael Deaconess Medical Center and the Massatisu

Institute of Technology have waived the requirenfenpatient consent.

From the MetaVision EHR MIMIC encounters, we setelctor inclusion those stays involving adult patsen
(i.e. age 18 years or older) with at least one omeasent of diastolic blood pressure, systolic blpoessure,
temperature, respiratory rate, heart rate, Sp@d Glasgow Coma Scale. These measurements @lectesl
because they are frequently available and easilgated at the patient bedside, even before clirsaapicion
of AKI is present. These were the only direct viales used during training and testing of the atbamj clinical
notes vectorized with the Doc2Vec algorithm wesmalsed as inputs to the CNN model. Serum creatinas

used as part of the KDIGO criteria, which servethas gold standard of AKI true positive patieritst was not



used as an input in testing. To facilitate the gsialof 48-hour advance prediction of AKI onsethnat five-
hour window of measurements upon which to base aurediction, we required patient stay duratiobeat
least 53 hours in length. For convenience and mitlimal restriction, we required that patient enueus
lasted no more than 1000 hours. To train and esaligorithm on the broadest possible patient saynmol
further inclusion or exclusion criteria were apgli®atients with prevalent AKI, with chronic kidndigease, or
who receive dialysis were therefore included. Ism@ua criteria are listed iRigure 1 for 24 and 48 hour
prediction windowsand the demographic characteristics of encounteeting the inclusion criteria are

reported inTable 1

Overview of preprocessing, training, and testingMIMIC-11l ICU encounter data was gathered in the
following way: encounters from the Metavision datsé in MIMIC-111 were required to be at least 1&sgof
age, and had to include at least one measuremeait l@ast one of the required input features.damh
prediction offsefl, the encounters were filtered such that each erteowas betweeb+ T hours and 1000
hours.5+T hours was required to account for the offset, targive the model the required 5 hours of
measurements used for prediction. For each prediciifsetT, positive examples’ measurements were taken
from betweerb+ T andT hours before onset to use for prediction, whilgatiwe examples’ measurements were
taken from random 5-hour windows in the patientays. Onset was defined as the first time thatehevant
KDIGO criteria were met during the patient staytiéta encounters satisfying the inclusion critevire
immediately allocated to training and testing sRtughly 90% and 10% of all encounters were rangomi
allocated to the training and testing sets, repgeyt stratifying by positive and negative classnhsure equal
representation of classes in both sets. We binmeddta by the hour, imputed missing measuremainds,
standardized measurements on a variable-by-vardss. AKI was defined according to KDIGO Stags 2
KDIGO Stage 3 criteria and positive cases weretitied as those patients reaching KDIGO Stage 3tage 3
during the encounter. KDIGO Stage 2 or Stage Jiflaations were determined for each encountengisith
the corresponding times of KDIGO “onset” where ajppiate. Stage 2 AKI is defined in the KDIGO stagin

system as an increase in SCr to more than 200%0% 3>2- to 3-fold) from baseline or urine outpt 5
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ml/kg per hour for more than 12 hodfsStage 3 AKI is defined as an increase in SCr teertizan 300% (>3-
fold) from baseline, or 4.0 mg/dl &€ 354 mmol/l), or kidney replacement therapy (KRdra decrease in
estimated glomerular filtration rate (eGFR) to <8Bmin per 1.73rh(if <18 years of age), or urine output <
0.5 mL/kg/hr for> 24 hours or anuria fer 12 hours? In both cases, the smaller of either the Modifaabf
Diet in Renal Disease (MDRB) serum creatinine estimate based on KDIGO 201@sijuies or the 20th
percentile of observed creatinine measurementuges for the baseline creatinine measurement im eac
patient encounter. Any missing features requiredrfeasurement, including missing urine or seruraterme

measures, made a contribution of 0 to the totalDIscore.

A Doc2Vec embedding network was created to veatarimical text data. The Doc2Vec algorithm works b
creating vectors for the most common words infe@ldocuments, as well as separate vectors for each
document. These vectors are trained by selectimigidow of words in each document; the corresponding
vectors for these words, in addition to the vefboithe document that the text came from, to preitiie next
word in the sequence. The resulting document veeter used as inputs, while the word vectors aeadied.
The embedding network was prepared on a largeatioifeof mid-stay clinical notes, ranging from pang
complaint to radiology notes, including everythunqgto, but not including, the discharge summaigmfr
encounters allocated to the training set. The nétwmbedded texts into 250-dimensional numericarsgt
which served as inputs to the classifiers, aloregie structured data associated with the staygnates dated
after the onset of AKI were not used as inputdtiermodel to ensure the model is using only datadaat or

before prediction time.

Training data were passed to a convolutional nexeork (CNN) structure, with hyperparametersopted

on the training set using the Python-based optitiwizgackage Talos. Tuned hyperparameters inclea®ing
rate, batch size, optimization loss, L1 and L2 tageation coefficients, and size of dense layarthe model.

A CNN was chosen instead of a recurrent neural ot(RNN) as they are faster to train and have fewe

parameter§’ In addition, the window of time from which thewsttured data was gathered for prediction was
5



relatively short (5 hours). CNN modeling technighase been shown to outperform RNN modeling teakesq
with improved generalizability when applied to sgreeecognition task®. After the end of training on each
fold, network performance was evaluated using thid-but test set. Results were reported as theagedest

set performance across cross-validation folds.

Structured data preprocessing.Structured data were binned by the hour, with iplélintra-hour
measurements of the same variable replaced byaheiage. Missing measurements were handled selyarat
for training and testing sets using last observatarried forward imputation. Any remaining missiagues
were filled in using the measurement median oveltriining data. Quantitative data and documenvec

were then standardized using the training data thatreach feature has mean zero and variance one.

Document vector encoding network and unstructured dta preprocessing.To facilitate the use of
unstructured text data alongside the structuredtipve trained a Doc2V&embedding network with 250
nodes, trained on 238,468 mid-stay clinical ndieEs:ument vectors were produced for the text dasdaie
from each encounter, using 125 epochs of the Doc2\gorithm -- to better ensure the stability demed
document vectors -- and an initial learning rat®.6fL.. The choice of number of epochs and learratgwas
found through experimentation. Clinical notes datédr AKI onset were excluded from inputs wheiinireg

and testing the CNN.

Training of neural network classifier. We constructed a classifier to predict the proligiof the presence of
AKI at a given offset time from prediction usingtRython deep learning library, Keras, that useisnts of
multi-channel, multi-headed attention together witimvolutions to extract information from the qutative
time series data. A separate network for handliwgdocument vector produced by the Doc2Vec netwak
combined downstream through concatenation in g-fidhnected output layer. This allows the model to
incorporate information from both the time seriasadn the electronic health records, as well agjthalitative

information found in the clinical notes. Model paneters were optimized using the Nadam optinfiizzs



implemented in the Keras library with learning raf®.0009 and binary cross-entropy loss. A diago&nhis
neural network architecture is availableSagpplementary Figure S1 Due to the low prevalence of AKIl in the
data, random oversampling was performed to auwificinflate the positive population. This was ddne
picking examples from the positive class at randdath replacement until the number of positive exeap

matched the number of negative examples.

To fit the weights of the network with 10-fold cesgalidation, we split the training data into 1®sets of
roughly equal size, and iteratively used 9 sub®etsitra-fold training and the final subset fotren-fold testing.
Model parameters were fit over the course of 5Gkbpmn the 9 intra-fold training subsets, with eatibn on
the final subset. For each iterate, we obtainextaiver operating characteristic (ROC) curve, dt agea
battery of performance metrics. We then randondgtréhe model parameters before performing another
iterate. From cross-validation, we obtained an ayeiROC curve and average performance metricsy aldh
standard deviation for the performance metrics s€hesults are presented in comparison with an X5&o
classifier and the Sequential Organ Failure AsseasSOFA) scoré which has been shown to
independently predict AKI outcom&%®and therefore serves as a validated comparisonumeefs AKI
prediction. SOFA was computed using all organ systeany missing inputs required for computation
contributed zero points to the total SOFA scoree XiBBoost classifier was trained on the same peszks
training sets -- 5-hour windows of quantitativenidal EHR data -- and evaluated on the same ggsth The
time series data was turned into a list of the &thmeasurements at the different hours and giviGiBoost
as input, requiring no additional feature enginggrDocument vectors were not given as input foBX¥Gst.
XGBoost hyperparameters were tuned using a crdgfated grid search on the training data. Hypenpatars
were optimized using grid-search over the hyperpatars §amma”, which controls how often the trees are
split, and ‘tolsample_bytree”, which controls the number of features randonalested for inputs when

constructing each tree.



RESULTS

The demographic characteristics associated with I2IM ICU encounters meeting the inclusion crigeaf
Figure 1 are provided iMable 1 The study population was 53.29% male, with fey@%%bo) patients younger
than 30 years of age and a substantial percentggsients aged 70 years or more (39.39%). More Hadf
(62.78%) of patients had stays lasting betweend3sasays, with a substantial percentage of patients
experiencing stays of 12 days or longer (11.26%# dverall mortality rate was 39.39%, with 7.62% of
encounters meeting the criteria for KDIGO Stage 3tage 3 at some point in the stay, and 20.6%ayts

meeting some stage of the KDIGO criteria at anypduring the stay.

Performance is evaluated by predicting once in eaclounter using 5 hours of data. This data istaiber
from a random portion of the stay, for negativersgkes, or from the specified model’s offset for ifige
examples. The results from 10-fold cross-validatarthe 90% training set are reportedables 2 and3, for
48 and 24 hr predictions, respectivelyTest performance is reported for the best-perfiognmodel, selected
by cross-validation of the train data. The CNN niadiéh the use of the Doc2Vec embeddings of encaunt
text data outperformed the XGBoost comparator maddlthe SOFA score for advance prediction of KDIGO
Stage 2 or Stage 3 onset. We note that, in ordaratdide non-summative performance metrics (ikee,rhetrics
other than area under the receiver operating ctaistic (AUROC) curve), we selected an operatinmpfor
each model or score which provided a sensitivigrest 0.80. The CNN model performed better (AUR®C o
0.86 for 24 and 48 hr predictions) when text daéaeamade available through Doc2Vec than when ttietse
were unavailable (AUROC of 0.77 and 0.76 for 24 48dhr predictions, respectively). In addition, thelity
of prediction was higher for KDIGO Stage 2 or St8gmnset, as compared with the prediction of oftgedny
of KDIGO Stages 1-3. For corresponding CNN and X@&aoesults without oversampling of the minority
class, se&upplementary Table S1Permutation feature importance methods were im@fged to provide
information on the relative importance of each inyariable. A precision-recall curve comparisormiesn the

CNN model, the XGBoost model, and the SOFA scoprasented ilsupplementary Figure S2.



The CNN model averaged a positive predictive véiRRRV) of 0.24 over cross-validation folds for tt&Hour
prediction of KDIGO Stages 2 and 3, compared toaye PPVs of 0.09 and 0.13 for XGBoost and the SOFA
score, respectivelyfable 2). The advantage of the CNN mostly vanished (PPV.b8) in the absence of text
data through Doc2Vec input. The average PPV wdselsigvhen the CNN classifier was given access to
Doc2Vec input and tasked with 48-hour predictioiKBAGO Stages 1-3 (PPV of 0.31). Relative to tH&2%
prevalence of KDIGO Stages 2 and 3, positive ptaxis made by the CNN model enriched for KDIGO $tag
2 or 3 encounters by a factor of 4.80, whereas X@3Band the SOFA score enriched these encounters by

factors of 2.50 and 2.11, respectively.

The ROC curve comparison of 48-hour predictionfen10% hold-out test set is showrHigure 2. The CNN
model, which was provided text data through Doc2Meait, performed substantially better than the XG&

model and the SOFA score. The XGBoost model andAS@d similar performance on the test set.

DISCUSSION

These experiments demonstrate that a convolutimaaial network can predict AKI up to 48 hours ivaatce
of KDIGO Stage 2 or Stage 3 AKI onset, with AUROErprmance superior to that of an XGBoost classifie
and the SOFA scoring systeifaple 2, Figure 3. Unlike other diseases for which multiple séyescores
exist, AKI represents a group of syndromes that@rsely connected by the characteristic rapid dnogpGFR
seen in AKI patient&? With over 30 definitions of AKI? attempts at a uniform definition for acute kidney
injury have included the RIFLE classificatfdriollowed by the Acute Kidney Injury Network (AKIRfand
most recently the KDIGO criterfd: *°The absence of a consistent uniform definition mwaylain the current
lack of an AKI-specific risk score that serves atamdard of care. To provide context for the grenince of
their models, prior studies focusing on the develept of AKI prediction models have either used the

biomarker serum neutrophil gelatinase associapetéilin (SNGAL) as a comparat@rcompared their model



to other ML model€ or not included a standard of care compar&t6tin the current study, we compare two
ML models as well as provide the SOFA score asnapewator. Although the SOFA score was not developed
for the purpose of long-horizon AKI prediction, lbese of the ubiquity of the SOFA score, and previmage
in AKI outcome prediction, it serves as a validatechparator for our current appro&€i® The XGBoost
comparator is similarly important, primarily dueite broad and successful use in applicationsheratlinical

prediction tasks (e.g., the 2019 Physionet ComptitirCardiology Challendd).

The superiority of the CNN classifier to the XGBbokssifier and the commonly-used SOFA score is
evidenced by key performance metrics, such as AURLCPPV Table 2). The PPV performance
improvement is of particular importance. RomerofBuet al. have argued that AUROC performance may be
misleading for clinicians interested in evaluatihg clinical impact of a diagnostic tool, as AUR@QGes not
incorporate information about the prevalence odmdition.”® In fact, for the same reason, AUROC is useful for
comparing the performance of tools retrospectivalydated on different datasets. This concern iggrPPV
and prevalence is relevant to our study, as weddhat the prevalence of KDIGO Stages 2 or 3 igihbyu

7.6% in the cohort, an estimate consistent withrpgpidemiologic studie¥. The AUROC is a summative

metric which may include ranges of operating powitéch are irrelevant to a given task, whereas E&Vvbe
focused on a clinically relevant operating poirt. @roduce the metrics ifable 2, we chose operating points

for the CNN and comparators which fixed their sewvisies near 0.80.

Beyond the text data input through Doc2Vec, CNNImtions were made using only age and 7 routinely
collected patient measurements (diastolic bloodsunee, systolic blood pressure, temperature, Espy rate,
heart rate, Sp§) and Glasgow Coma Scale) as inputs. Althoughstitidy was restricted to MetaVision
(iIMDSoft) EHR system for technical reasons, the efstnese widely available inputs supports thatrttozlel
could be generalized to broad clinical practicepartantly, the CNN model did not rely on SCr tokea
predictions, distinguishing it from other AKI pretion tools. Creatinine levels can take hours gisda rise to

AKI thresholds as defined in the KDIGO staging eyst; therefore, changes in SCr may reflect pre-exgstin
10



kidney damage. An AKI prediction tool which does depend on SCr measurements may better afford
clinicians the opportunity to intervene early, teyent AKI development or progression, or to lifaitther
kidney damage. Additionally, using only commonlylected variables in the EHR for AKI predictionais
automatic screening of a general patient populdboimpending AKI without requiring specialized

evaluation.

This study contributes to the growing body of refrective machine learning (ML) literature for thregiction

of AKI. " Chiofolo et al. (2019) developed a model for Akégiction and surveillance in ICU patients at ar6-h
prediction window with an AUROC of 0.88 Fletchet et al. (2017) developed the AKlpredictoprognostic
calculator for prediction of AKl in ICU patients dug the first week of sta{/: Their KDIGO Stage 2 and 3
model produced AUROCSs between 0.77 and 0.84. THR@O of 0.84 corresponds to a prediction of KDIGO
Stage 2 and 3 after gathering 24 hours of data paint of comparison, the CNN model used only Greof
data before making a prediction. Recent work bsasewet al. pursued a deep learning approach for
continuous risk prediction of deterioration in altdney injury patients, and evaluated their tmok

Veteran’s Health Administration dataset of 703,a8Rlt patients? Algorithm performance at a 48-hour
prediction window corresponded to a sensitivityp6f8% and a specificity of 82.7%This performance is
reported to be “in range” required for regulatoppeoval®® While these studies make important contributions
to the domain of AKI research, they depend on #eaf SCr to make predictions, which is a laggiragker of
kidney function. In contrast, the CNN describedhis work does not rely on SCr to make predictiohaKI
onset, which allows for both longer lead times anproved predictive performancas well as for generating
predictions on patients who may not yet be cliycaiispected of having AKI and have not yet had SCr
measures drawThe CNN also offers improvement in performanceampared to our prior work! which
utilized the machine learning method of gradierddted trees to predict AKI prior to onset and ideld SCr as

a model input. In comparison, results from our entmwork suggest that AKI predictions can be maidke &

11



more robust machine learning architecture, withreliance on SCr, while achieving stronger predetiv

performance.

While the CNN described in this study offers subs&h lead time in AKI identification (up to 48 hm), and
offers improved predictive performance over ouwvjmes work®! it still requires prospective validation.
Additionally, we cannot determine from this retresfive study what impact the algorithm might hawe o
clinicians and their provision of care in clinicattings, nor provide an analysis of model evadumaéind its
prediction performance in time. While the CNN mogetformance was superior to that of SOFA and
XGBoost, improvements in PPV achieved by the CNMpgared to XGBoost or SOFA are less pronounced
without the use of clinical notes. Algorithm perfance is assessed only on US patients older traa&gvith
stays in the ICU, which limits the generalizabilitfyour results to other patient populations amel of care.
While the majority of the negative class patierdd b serum creatinine measurement at some pdim ilCU
stay, it is possible that inclusion of patientssmg urine measures in the negative class ledeto th
misclassification of some patients in our data$és. also possible that misclassifications coudddroccurred
for some patients in the data set due to inclusiqmatients with a previous diagnosis of CKD andibio
received dialysis. Due to a lack of a standardark AKI score, we used the SOFA score and the X5Bo
model to provide context for our model performanttile the SOFA score has been used in AKI outcome
prediction studie8®°®it was not developed for the purpose of long-famiAKI prediction. Further, while the
XGBoost comparator was included due to its usdhercclinical prediction tasks,it does not serve as a
standard-of-care for AKI predictions. Lastly, besathere have been several proposed consensuisiolesin
for AKI, the algorithm we described may have diffiet results when compared against non-KDIGO dégimdf,

or in settings which utilize a different standamdheir diagnostic procedures.

CONCLUSION

12



A convolutional neural network for AKI predictiomutperforms XGBoost and the traditional SOFA scoring
system, demonstrating superior performance in ptiedi acute kidney injury up to 48 hours prior twset,
without reliance on measurements of changes imseraatinine. Although the use of clinical textaldtrough
a Doc2Vec network substantially strengthens CNMilipt®n performance, the CNN demonstrated superior
performance over both XGBoost and SOFA even whiaical notes were not included as model inputs,
supporting the use of CNN models for the task ofl Akediction. Such a tool may improve predictiomn &arly

detection of AKI in clinical settings, thereby allimg for earlier intervention.
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TABLES

Table 1.Demographic characteristics of MIMIC 11l ICU engaars found in the 48hr dataset and meeting the
inclusion criteria of Figure 1. We note that théedmination of KDIGO positive or negative was madker the

data preprocessing steps described in the Metleudi®s.

Characteristic Count | Percent

Gender Femalé 3,184 46.71
Male 3,186 53.29

Age (days): 18-29 317 4.65
Median 65, IQR (53-77) 30-39 307 450
40-49 665 9.75

50-59 1,244 18.27

60-69 1,599 23.44

70+ 2,687 39.39

Length of Stay (days): <3 43 0.63
oo 3.5 428] 6274
6-8 1,200 17.59

9-11 528 7.74

12+ 768 11.26

In-Hospital Death Yes 1,747 25.61
No 5,074 74.39

KDIGO 2/3 Positive 520 7.62
Negativd 6,301 92.39

KDIGO 1/2/3 Positive 1,410 20.67
Negativd 5,411 79.33
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Table 2. Results from 10-fold cross-validation of prediogel8 hours prior to onseton the MIMIC 1l data
set. The convolutional neural network (CNN) model dompared with an XGBoost classifier, and the
Sequential Organ Failure Assessment (SOFA) sc@&ASrequired no training and thus could be appteed
the entire test set at once, hence no standaratawvis reported. Additional comparison is madeh CNN
model without the use of the Doc2Vec network (ivéthout unstructured text data) and for the preolicof
KDIGO criteria of any stage. Abbreviations: areal@nthe receiver operating characteristic (AURO®Q)e;
diagnostic odds ratio (DOR); positive and negatikelihood ratios (LR+ and LR-, respectively); poge and
negative predictive value (PPV and NPV, respedtjyestandard deviation (SD).

CNN XGBoost SOFA No Doc2Vec | Stage 1 Included] Stage 3 Only

AUROC mean (SD) 0.856 (0.034  0.654 (0.011 0.701 0.763 (0.035 0.778 (0.037 0.819 (0.034
Sensitivity mean (SD) 0.804 (0.000  0.798 (0.000 0.799 0.805 (0.004 0.806 (0.008 0.806 (0.000
Specificity mean (SD) 0.763 (0.057 0.380 (0.004 0.441] 0.623 (0.064 0.649 (0.074 0.679 (0.079
PPV mean (SD) 0.236 (0.039 0.095 (0.001 0.124 0.163 (0.022 0.310 (0.044 0.105 (0.023
NPV mean (SD) 0.975 (0.007 0.956 (0.001 0.964d 0.970 (0.003 0.940 (0.004 0.985 (0.002
Accuracy mean (SD) 0.765 (0.051  0.411 (0.005 0.614 0.638 (0.056 0.672 (0.062 0.683 (0.076
DOR mean (SD) 14.076 (3.779  2.421 (0.059 3.129 7.123 (1.899 8.167 (2.425 9.566 (3.41(0
LR+ mean (SD) 3.558 (0.739 1.287 (0.012 1.429 2.191 (0.362 2.389 (0.478 2.658 (0.66(0
LR- mean (SD) 0.258 (0.023]  0.532 (0.008 0.459 0.316 (0.035 0.301 (0.035 0.288 (0.035
F1 mean (SD) 0.361 (0.047 0.169 (0.001 0.214 0.270 (0.030 0.444 (0.045 0.184 (0.034
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Table 3. Results from 10-fold cross-validation of prediag®4 hours prior to onseton the MIMIC Il data
set. The convolutional neural network (CNN) model dompared with an XGBoost classifier, and the
Sequential Organ Failure Assessment (SOFA) sc@&ASrequired no training and thus could be appted
the entire test set at once, hence no standardta®vis reported. Additional comparison is madehe CNN

model without the use of the Doc2Vec network (vathout unstructured text data) and for the preoicof
KDIGO criteria of any stage. Abbreviations: arealenthe receiver operating characteristic (AUROQ)e;
diagnostic odds ratio (DOR); positive and negatikelihood ratios (LR+ and LR-, respectively); pbge and
negative predictive value (PPV and NPV, respedfjyestandard deviation (SD).

CNN XGBoost SOFA No Doc2Vec | Stage 1 Included] Stage 3 Only

AUROC mean (SD) 0.863 (0.009 0.729 (0.009 0.724 0.769 (0.028 0.834 (0.004 0.867 (0.009
Sensitivity mean (SD) 0.803 (0.00d 0.801 (0.000 0.784 0.801 (0.003 0.798 (0.005 0.795 (0.000
Specificity mean (SD) 0.772 (0.023]  0.463 (0.024 0.537 0.585 (0.064 0.716 (0.018 0.785 (0.024
PPV mean (SD) 0.221 (0.014  0.111 (0.005 0.153 0.153 (0.019 0.359 (0.014 0.131 (0.014
NPV mean (SD) 0.978 (0.00% 0.964 (0.002 0.961] 0.968 (0.003 0.944 (0.001 0.988 (0.000
Accuracy mean (SD) 0.773(0.0290  0.489 (0.024 0.684 0.602 (0.060 0.728 (0.014 0.784 (0.023
DOR mean (SD) 13.905 (1.614  3.484 (0.367 4.200 5.861 (1.440 10.030 (0.824 14.396 (2.217
LR+ mean (SD) 3.545 (0.319 1.494 (0.073 1.694 1.970 (0.292 2.821 (0.178 3.740 (0.452
LR- mean (SD) 0.256 (0.007 0.431 (0.024 0.403 0.344 (0.038 0.282 (0.007 0.261 (0.008
F1 mean (SD) 0.345(0.019 0.194 (0.007 0.247 0.256 (0.027 0.494 (0.013 0.224 (0.029
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FIGURES LEGENDS

Figure 1. Inclusion diagram. Patients were required to Heamt 18 years of age, and must have at least one
measurement of at least one of the input features.

Figure 2. ROC curve comparison of prediction performancegisi convolutional neural net (CNN) classifier,
an XGBoost (XGB) classifier, and the SOFA scorehd8rs prior to AKI onset on the MIMIC 111 ICU holout
data set. AUROC, Area Under the Receiver Opera&imgracteristic curve; SOFA, Sequential Organ Failur
Assessment score.
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ROC Curves at 48hr Offset
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