
https://doi.org/10.1177/1460458219894494

Health Informatics Journal
 1 –14

© The Author(s) 2019
Article reuse guidelines:  

sagepub.com/journals-permissions
DOI: 10.1177/1460458219894494

journals.sagepub.com/home/jhi

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative 
Commons Attribution-NonCommercial 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) which 

permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is 
attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Multicenter validation of a machine-
learning algorithm for 48-h all-cause 
mortality prediction

Hamid Mohamadlou* 
Saarang Panchavati* 
Jacob Calvert  
Anna Lynn-Palevsky 
Sidney Le
Angier Allen 
Emily Pellegrini 
and Abigail Green-Saxena
Dascena, Inc., USA

Christopher Barton
University of California San Francisco, USA

Grant Fletcher
University of Washington, USA

Lisa Shieh
Stanford University, USA

Philip B Stark
University of California, Berkeley, USA

Uli Chettipally
University of California San Francisco, USA; Kaiser Permanente South San Francisco Medical Center, USA

*These authors contributed equally to this work.

Corresponding author:
Jacob Calvert, Dascena, Inc., 414 13th Street, Suite #500, Oakland, CA 94612, USA. 
Email: jake@dascena.com

894494 JHI0010.1177/1460458219894494Health Informatics JournalMohamadlou et al.
research-article2019

Original Article

https://uk.sagepub.com/en-gb/journals-permissions
https://journals.sagepub.com/home/jhi
mailto:jake@dascena.com
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1460458219894494&domain=pdf&date_stamp=2019-12-30


2 Health Informatics Journal 00(0)

David Shimabukuro 
Mitchell Feldman
University of California San Francisco, USA

Ritankar Das
Dascena, Inc., USA

Abstract
In order to evaluate  mortality predictions based on boosted trees, this retrospective study uses electronic 
medical record data from three academic health centers for inpatients 18 years or older with at least one 
observation of each vital sign. Predictions were made 12, 24, and 48 hours before death. Models fit to 
training data from each institution were evaluated using hold-out test data from the same institution, and 
from the other institutions. Gradient-boosted trees (GBT) were compared to regularized logistic regression 
(LR) predictions, support vector machine (SVM) predictions, quick Sepsis-Related Organ Failure Assessment 
(qSOFA), and Modified Early Warning Score (MEWS) using area under the receiver operating characteristic 
curve (AUROC). For training and testing GBT on data from the same institution, the average AUROCs 
were 0.96, 0.95, and 0.94 across institutional test sets for 12-, 24-, and 48-hour predictions, respectively. 
When trained and tested on data from different hospitals, GBT AUROCs achieved up to 0.98, 0.96, and 0.96, 
for 12-, 24-, and 48-hour predictions, respectively. Average AUROC for 48-hour predictions for LR, SVM, 
MEWS, and qSOFA were 0.85, 0.79, 0.86 and 0.82, respectively. GBT predictions may help identify patients 
who would benefit from increased clinical care.
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Introduction

Timely identification of patients with elevated risk of in-hospital mortality is necessary to best 
allocate limited and costly hospital resources, focus care to prevent patients from deteriorating, and 
anticipate probable patient outcomes.1 This is particularly relevant to emergency departments 
(EDs), where patient assessments are made across a broad spectrum of patient conditions, with 
potentially vastly different and dynamic degrees of urgency. Accurate identification of patients 
who require ICU admission is especially important for resource allocation. While ICU beds account 
for less than 10 percent of beds in US hospitals, ICU bed use and associated costs continue to rise, 
nearly doubling between 2000 and 2010.2,3 Accurate early prediction of deterioration and death can 
alert medical teams to the need for more aggressive care while also helping to minimize overtreat-
ment of more stable patients, in turn lowering health care costs. Mortality prediction tools that are 
accurate at long lookahead times have particular promise for providing optimal care and allocating 
hospital resources.4,5 A 24-h lookahead time is considered clinically relevant in busy hospital set-
tings6 and has been incorporated by several studies into standard metrics for evaluating early warn-
ing systems.6–9

There are several existing mortality prediction tools; they generally use rule-based approaches. 
Such rule-based systems include the Acute Physiology, Age, Chronic Health Evaluation (APACHE),10 
the Modified Early Warning Score (MEWS),11 the Sepsis-Related Organ Failure Assessment 
(SOFA),12 and the quick SOFA (qSOFA) score.13 The clinical utility of these tools is limited due to 
inadequate specificity and sensitivity,1,14 and many rule-based scores, such as MEWS and SOFA, 
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are still manually tabulated at the bedside,15 requiring precious time and attention that could be used 
elsewhere in EDs. These tools weight a collection of patient characteristics at a moment in time, 
then sum the weighted values to create an overall score intended to reflect the risk. Because they use 
a single snapshot of a patient’s characteristics, the scores do not incorporate trends in patient condi-
tions, which can be useful for predicting patient decline.16 Changes in these scores may be informa-
tive, but a tool that directly incorporates trends in patient vital signs may be more reliable.

A machine-learning mortality prediction tool integrated into an electronic health record (EHR) 
system can exploit such trends. Machine-learning algorithms (MLAs) can produce a score that 
depends not only on linear combinations of the input variables but also on nonlinear functions of the 
variables and temporal changes in the variables. Previous studies have demonstrated that machine-
learning mortality risk scores that incorporate temporal information can more accurately predict 
patient outcomes.16–18 Moreover, MLAs are readily optimized for different populations, while exist-
ing rule-based methods are “one size fits all.”17 Machine-learning-based mortality prediction meth-
ods have been tailored to specific critical health conditions, such as sepsis19,20 and cardiac arrest,21 
as well as specific settings, such as the ICU 2,17,22,23 and ED.20 Results from a retrospective evalua-
tion of an auotmated risk adjustment algorithm indicated that the tool demonstrated strong discrimi-
nation (AUROC = 0.94) for ICU mortality prediction among critical care patients;22 however, the 
tool has only been evaluated for the prediction of mortality using data drawn from a common EHR 
system, and it has not been used to risk adjust for other outcomes, such as discharge recommenda-
tion and prediction of unplanned ICU admission. In addition to APACHE,10,24 other commonly used 
risk adjustment tools include the Simplified Acute Physiology Score (SAPS)25 and the Mortality 
Probability Model (MPM).26 These mature algorithms have been validated in a variety of studies 
and have been shown to successfully predict hospital mortality,22,23,27–29 but have low rates of adop-
tion due to cost-prohibitive licensing fees, as well as high costs associated with intensive data col-
lection. For example, although APACHE-IV and MPM0-III algorithms are available for use in the 
public domain at no cost, use of the tools in clinical practice generally requires payment of mainte-
nance fees which are not financially feasible for many hospitals.22 Implementation of common risk 
adjustment algorithms also requires clinicians to collect and document patient data which is often 
not readily available in clinical information systems, creating a data collection burden.30,31 Scoring 
systems, such as MPM, SAPS, and APACHE, also require constant updates to ensure accuracy and 
avoid deterioration in model performance.30 Although APACHE offers high predictive accuracy 
with unlimited resources, constraints on cost and labor create a need for tools which can provide 
viable alternatives to risk prediction without substantial losses in accuracy.31 Therefore, there is a 
need for mortality risk prediction tools for which implementation is less time and labor-intensive for 
the clinician.

To this end, we have developed an automated gradient boosted tree (GBT) machine-learning 
mortality risk prediction tool with 12, 24, and 48 h prediction horizons using patient age and a 
series of measurements of only six vital signs and Glasgow Coma Scale (GCS) values as input. 
These data are already routinely entered into the EHR and therefore require no additional work or 
manual data entry from clinicians. In this investigation, we demonstrate that GBTs (XGBoost) 
outperform regularized logistic regression (LR) and support vector machine (SVM), in addition to 
the commonly used MEWS and qSOFA mortality prediction tools. We test predictions on patient 
data from three academic health centers in the United States to examine the robustness of the pre-
dictions across patient populations in different hospitals without customizing the algorithm to each 
hospital’s data. The mortality risk prediction tool we describe is novel because it is developed 
using only readily available patient EHR data and has been validated for generalizability across a 
variety of datasets and EHR systems, with limited variation in hospital performance, and with a 
minimal data collection burden. It demonstrates higher performance in terms of area under the 
receiver operating characteristic curve (AUROC) than comparable rule-based mortality prediction 
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tools and can be seamlessly integrated into existing clinical workflows. These features allow the 
tool to circumvent barriers to implementation in clinical settings (i.e. lack of algorithm generaliz-
ability and high costs associated with laborious data collection) which are often common to 
machine-learning prediction tools.

Materials and methods

Data sources

Patient records were collected by Stanford Medical Center in Stanford, California; the University 
of California, San Francisco Medical Center in San Francisco, CA (UCSF); and University of 
Washington Medical Center (UW) in Seattle, Washington. Stanford data include records from 
515,452 inpatients from all hospital wards from December 2008 to May 2017. UCSF data contain 
information on 95,869 inpatients across all hospital wards from the Mount Zion, Mission Bay, and 
Parnassus Heights medical campuses. We used inpatient data from June 2011 to March 2016 drawn 
from patient EHR charts. UW data include records from 32,936 adult patients from all hospital 
wards from January 2014 to March 2017. See Table 1 for details on data inputs.

Data collection was passive and had no impact on patient safety. All data were de-identified in 
compliance with the Health Insurance Portability and Accountability Act (HIPAA) Privacy Rule. 
Studies performed on the de-identified data constitute non-human subject studies, and therefore, 
our study did not require Institutional Review Board approval.

Data processing

For all three data sources, we included only records for patients aged 18 years or older who had at 
least one recorded observation of each required measurement (heart rate, respiratory rate, periph-
eral oxygen saturation (SpO2), temperature, systolic blood pressure, diastolic blood pressure, and 
GCS). These covariates were chosen because they are routinely entered into the EHR and would 
be available at the time of mortality prediction. We excluded patient records for which there were 
no raw data or no discharge or death dates. This resulted in 31,292 patients from Stanford, 47,289 
patients from UCSF, and 32,878 patients from UW.

We minimally processed raw EHR data to generate features. Separate case–control matching 
experiments were performed to demonstrate that even when trained using standard procedures, 
models maintained comparable performance when evaluated on a case–controlled test set across 
three sites. Following EHR data extraction and imputation of missing values, we obtained one 
value for each measurement, each hour, for up to 3 h preceding prediction time. We also calculated 

Table 1. Predictor variables used in this study.

Demographics Age

Vital signs Heart rate
Respiratory rate
Peripheral oxygen saturation (SpO2)
Temperature
Systolic blood pressure
Diastolic blood pressure

Other clinical variables GCS

GCS: Glasgow Coma Scale.
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differences between the current hour and the prior hour and between the prior hour and the hour 
before that. We concatenated these values from each measurement into a feature vector.

All data were discretized into 1-h intervals, beginning at the time of the first recorded patient 
measurement, and hourly measurements were required for each input variable. Measurements 
were averaged to produce a single value in cases when multiple observations of the same patient 
measurement were taken within a given hour. This ensures that the measurement rate was the same 
across patients and across time. Missing values were imputed by carrying forward the most recent 
past measurement in cases where no measurement of a clinical variable was available for a given 
hour. For some patients with infrequent measurements of one or more vital signs (not including 
GCS), this simple imputation resulted in many consecutive hours with identical values. We 
excluded patients for whom measurements of two or more vital signs were missing 90 percent or 
more of the time (inferred from the fraction of identical values after imputation), leaving 24,614 
patients from Stanford, 46,980 patients remaining from UCSF, and 32,718 patients from UW. 
Table 2 lists the number of patients sequentially meeting each inclusion criterion.

Our previous publication on the use of GBTs for sepsis detection and prediction describes the 
data processing in further detail.15 Predictions were generated for all experiments using the varia-
bles described in Table 1, including patient age. These measurements were selected for use in this 
study because they are readily available at the patient bedside.

Gold standard

The outcome of interest was in-hospital patient mortality, which was determined retrospectively 
for each patient. In the Stanford and UW datasets, in-hospital mortality was indicated by a death 
date field for each patient. In the UCSF dataset, we used the in-hospital mortality field for each 
patient. In all, 1810 patients of 46,980 from UCSF (3.85%), 263 patients of 24,614 from Stanford 
(1.07%), and 965 patients of 32,718 from UW (2.95%) died in the hospital. However, as the end of 
the next section describes, the mortality rates are effectively higher during training and testing.

The MLA

The classifier was created using the XGBoost method for fitting “boosted” decision trees. We 
applied the XGBoost package for Python32 to the patient age and vital sign measurements and their 

Table 2. Inclusion criteria for patients in the Stanford, UCSF, and UW datasets.

Stanford UCSF UW

Total patients 515,452 95,869 32,936
Patients with raw data 441,211 95,869 32,936
Patients with discharge or death and age data available and ⩾18 years of age 150,838 95,869 32,936
Patients with at least one observation of each required measurementa 31,292 47,289 32,878
Patients with fewer than two mode fractions >0.90 24,614 46,980 32,718
Patients used to train or test the classifier 24,614 46,980 32,718

UCSF: University of California, San Francisco Medical Center in San Francisco, CA; UW: University of Washington 
Medical Center.
All patients who met the final inclusion criteria were included in training or testing sets for one or more experiments in 
this study.
aRequired measurements include heart rate, respiratory rate, peripheral oxygen saturation (SpO2), temperature, systolic 
blood pressure, diastolic blood pressure, and Glasgow Coma Scale (GCS).
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temporal changes, where temporal changes included hourly differences between each measure-
ment beginning 3 h before prediction time. Gradient boosting, which XGBoost implements, is an 
ensemble learning technique that combines results from multiple decision trees to create prediction 
scores. Each tree splits the patient population into smaller and smaller groups, successively. Each 
branch splits the patients who enter it into two groups, based on whether their value of some 
covariate is above or below some threshold—for instance, a branch might divide patients accord-
ing to whether their temperature is above or below 100°F. After some number of branches, the tree 
ends in a set of “leaves.” Each patient is in exactly one leaf, according to the values of his or her 
measurements. Each “leaf” of the tree is predicted to have the same risk of mortality. The covariate 
involved in each split and the threshold value are selected by an algorithm designed to trade off fit 
to the training data and accuracy on out-of-sample data by using cross-validation to avoid “over-
fitting.” We restricted tree depth to a maximum of six branching levels, set the learning rate param-
eter of XGBoost to 0.05, and restricted the tree ensembles to 200 trees to limit the computational 
burden.

For all machine-learning methods used in this study, including gradient boosting and both com-
parators, hyperparameter optimization was performed using cross-validated grid search. We 
included a hyperparameter for the early stopping of the iterative tree-addition procedure to prevent 
overfit of the model on the training data and optimized across this hyperparameter using fivefold 
cross-validation. Due to computational and time constraints, hyperparameter optimization was per-
formed across a sparse parameter grid, where the candidate hyperparameter values were chosen to 
span large ranges of viable parameter space. Cross-validated grid search was conducted to deter-
mine the optimal combination of candidate hyperparameters. While XGBoost has a large number 
of trainable parameters, computational and time constraints limited the set of parameters to be 
tuned to just those parameters with the largest impact on performance on the training data and most 
relevant to the prediction task.

To validate the boosted tree predictor when training and testing was performed on data from the 
same institution, we used fivefold cross-validation. For each model, four-fifths of the patients were 
randomly selected to train the model and the remaining one-fifth were used as a hold-out set to test 
the predictions. To account for the random selection of the training set, reported performance met-
rics are the average performance of the five separately trained models arising from fivefold cross-
validation, each of which was trained on four-fifths of the data and tested on the remaining fifth. 
For AUROC, we also reported the standard deviation of the five AUROC values obtained from 
cross-validation.

We modeled mortality 12, 24, and 48 h before death to evaluate the performance with a variety 
of lead times. For negative class examples, because there was no mortality event from which a 
specific, applicable time-point could be computed for survivors, we used their time of discharge. 
Predictors were trained independently for each distinct lookahead time. In 12, 24, and 48 h long 
lookahead predictions following a 3-h window of measurements, patients must have data for, 
respectively, 15, 27, or 51 respective hours preceding the time of in-hospital mortality or the time 
of discharge. Accordingly, we selected patients with the appropriate stays for the training and test-
ing of each lookahead. This resulted in mortality rates of 4.0–4.5 percent for UCSF patients, 3.4–
3.6 percent for Stanford patients, and 3.0–3.8 percent for UW patients.

Comparison to other machine-learning and rule-based methods

We tested two other classification algorithms, LR and SVM, and compared their performance to 
that of XGBoost. The hyperparameters which control the regularization strength of the LR and 
SVM predictors were set to 0.5 and 0.75, respectively, to limit computational burden.
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To calculate the AUROC for rule-based predictors, we calculated MEWS and qSOFA scores for 
patients in the Stanford database. MEWS and qSOFA scores were calculated using the entire data-
set. We calculated the MEWS score using systolic blood pressure, heart rate, respiratory rate, 
temperature, and GCS from EHR data. Scores were calculated as described in Fullerton et al.33 
MEWS is often calculated from Alert, Voice, Pain, Unresponsive (AVPU) values; however, the 
data more reliably contained GCS data. We, therefore, converted GCS to AVPU as follows: 13–15 
GCS points as Alert; 9–12 GCS points as Voice; 4–8 GCS points as Pain; ⩽3 GCS points as 
Unresponsive. This conversion is similar to that described in Kelly et al.,34 but eliminates the over-
lap between GCS ranges. Such conversions have been used in previous retrospective studies35 
under similar data availability conditions and do not appear to lower the predictive accuracy of 
MEWS. The qSOFA score values were calculated from blood pressure, respiratory rate, and GCS 
values. To compare qSOFA and MEWS to the boosted tree predictor, the boosted tree predictor was 
trained and tested on Stanford data using all six clinical vital signs and GCS.

Cross-population experiments

To test the performance of the boosted tree predictor when subjects in the training set differ demo-
graphically and clinically from those in the test set, we performed cross-population experiments. 
We trained the boosted ensemble for mortality prediction exclusively on one of the three datasets, 
using the entire dataset for training, and then tested model performance on the remaining two data-
sets, without any site-specific retraining. Testing was performed on the entire dataset for each non-
training hospital. We performed these experiments using only age and five patient’s vital signs. The 
five vital signs are systolic blood pressure, diastolic blood pressure, heart rate, temperature, and 
respiratory rate. Other measurements were not included due to limited data availability in the UW 
Medical Center dataset. For all cross-population experiments, the predictor was trained using 
XGBoost32 with the parameters described above. We ran the cross-population validation tests at 12, 
24, and 48 h before patient’s death.

For comparison with the cross-population experiments, we performed single-population experi-
ments (i.e. one population was used both for training and for testing), using the same five patient’s 
vital signs. For each single-population experiment, we performed fivefold cross-validation and 
reported the average AUROC, as well as the standard deviation of the AUROCs obtained from 
each of the five replicates.

Results

The three data sources are all large academic hospitals, but their patient demographics differ (Table 3). 
UCSF patients were typically older than patients at Stanford and UW. Nearly 26 percent of UCSF 
patients were over 70 years of age. Approximately 43 percent of UCSF patients were between 50 and 
70 years of age, compared with approximately 34 percent of Stanford patients and 38 percent of UW 
patients. Differences in patient demographics allowed us to test whether the algorithm’s predictions are 
reliable across different patient populations.

GBTs predicted patient mortality more accurately than the LR, SVM, qSOFA, and MEWS for 
almost all prediction windows on all datasets. When trained and tested on Stanford data, the 
boosted tree predictor had an AUROC of 0.95 for 48-h mortality (Figure 1(a)). When trained and 
tested on data collected from UCSF, the boosted tree predictor had an AUROC of 0.96 for 48-h 
mortality (Figure 1(b)). For training and testing on UW data, the boosted tree predictor had an 
AUROC of 0.92 for 48-h mortality (Figure 1(c)). Feature importance and feature statistics are 
listed in Supplementary Tables 1 and 2.

https://journals.sagepub.com/doi/suppl/10.1177/1460458219894494
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On the Stanford dataset, LR, SVM, MEWS, and qSOFA had AUROCs of 0.89, 0.78, 0.91, and 
0.89 for 48-h mortality prediction, respectively (Table 4). On the UCSF dataset, LR, SVM, MEWS, 
and qSOFA had AUROCs of 0.80, 0.76, 0.93, and 0.88 for 48-h mortality prediction, respectively. 
On the UW dataset, LR, SVM, MEWS, and qSOFA had AUROCs of 0.88, 0.83, 0.74, and 0.70 for 
48-h mortality prediction, respectively. Across the three datasets, LR, SVM, MEWS, and qSOFA 
had average AUROCs of 0.85, 0.79, 0.86, and 0.82 for 48-h mortality prediction, respectively. In 
comparison, the boosted tree predictor had an average AUROC of 0.94 for 48-h prediction.

Detailed performance metrics for the boosted tree predictor, LR predictor, SVM, MEWS, and 
qSOFA are presented in Table 4. All predictor training and testing was done on the Stanford data 
set. The diagnostic odds ratio (DOR) is a global measure for comparing diagnostic accuracy 
between diagnostic tools and is calculated as (True Positive/False Negative)/(False Positive/True 
Negative). Here, DOR represents the ratio of the odds of a true positive prediction of mortality in 

Table 3. Patient demographic information for processed Stanford, University of California, San Francisco 
(UCSF), and University of Washington (UW) cohorts.

Characteristic Stanford (%) UCSF (%) UW (%)

Gender Female 51.78 49.17 38.96
Male 48.22 50.83 61.04

Age (years) 18–29 18.06 8.20 13.65
30–39 14.91 9.08 13.45
40–49 14.96 13.21 14.25
50–59 17.51 19.83 19.15
60–69 16.31 23.15 18.57
> 70 16.82 25.92 20.22

In-hospital death Yes 1.07 3.85 3.03
No 98.93 96.15 96.97

Figure 1. Comparison of receiver operating characteristic (ROC) curves for XGBoost models. ROC 
curves and AUROC for the boosted tree predictor are presented for 12-, 24-, and 48-h mortality 
prediction with training and testing performed on (a) Stanford patient data; (b) University of California, 
San Francisco (UCSF) patient data; and (c) University of Washington (UW) patient data. The Stanford 
and UCSF predictions used patient’s age, systolic blood pressure, diastolic blood pressure, heart rate, 
temperature, respiratory rate, SpO2, and Glasgow Coma Scale, whereas the UW predictions used only 
patient’s age, systolic blood pressure, diastolic blood pressure, heart rate, temperature, and respiratory 
rate.
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patients who died within a given prediction window to the odds of a false positive prediction of 
mortality in patients who did not die within a given prediction window. For all prediction windows, 
the boosted tree predictor had a significantly higher DOR than LR, SVM, MEWS, and qSOFA.

In the cross-population experiments, the GBT algorithm trained and tested on various data sets 
achieved AUROC values up to 0.98 at 12 h before death, 0.96 at 24 h before death, and 0.96 at 48 h 
preceding death (Table 5). Averaged across pairs of training and test sets from different data 
sources, the GBT algorithm produced AUROCs of 0.88, 0.86, and 0.80 for 12-, 24-, and 48-h pre-
diction, respectively. Across training sets, average 12-h cross-population performance was best 
when the predictor was trained on the UW data set.

Discussion

When trained and tested on retrospective data, boosted trees predicted patient mortality more accu-
rately than did LR and SVM comparators and the MEWS and qSOFA risk scoring systems, as 
evidenced by a battery of metrics at a particular operating point (Table 4) and by ROC curves, 
summarizing performance across operating points (Figure 1). MEWS is commonly used in studies 

Table 4. Comparison of AUROC, diagnostic odds ratio (DOR), sensitivity, specificity, and positive and 
negative likelihood ratios (LR+ and LR‒) obtained by XGBoost, LR, SVM, qSOFA, and MEWS for mortality 
prediction using the Stanford dataset.

XGBoost 
boosted tree

LR SVM MEWS score qSOFA score

12 h before 
death

AUROC (SD) 0.972 (0.005) 0.876 (0.009) 0.802 (0.021) 0.949 0.924
DOR 170.073 16.414 7.471 120.624 86.556
Sensitivity 0.797 0.795 0.800 0.811 0.960
Specificity 0.973 0.806 0.634 0.954 0.784
LR+ 35.466 4.162 2.294 17.471 4.436
LR− 0.209 0.255 0.320 0.198 0.051

24 h before 
death

AUROC (SD) 0.951 (0.020) 0.880 (0.003) 0.759 (0.015) 0.933 0.899
DOR 76.614 21.272 3.834 61.006 40.556
Sensitivity 0.800 0.800 0.792 0.887 0.920
Specificity 0.935 0.841 0.501 0.886 0.779
LR+ 16.123 5.054 1.590 7.807 4.158
LR− 0.214 0.238 0.417 0.128 0.103

48 h before 
death

AUROC (SD) 0.948 (0.013) 0.885 (0.002) 0.778 (0.005) 0.911 0.887
DOR 137.540 21.056 5.649 41.504 33.585
Sensitivity 0.800 0.800 0.810 0.838 0.905
Specificity 0.967 0.840 0.565 0.889 0.780
LR+ 28.308 5.011 1.885 7.558 4.103
LR− 0.207 0.238 0.340 0.182 0.122

Predictions were performed 12, 24, and 48 h in advance of patient death. All predictor training and testing was done on 
the Stanford data set using patient measurements for heart rate, respiratory rate, temperature, SpO2, diastolic blood 
pressure, and systolic blood pressure and Glasgow Coma Scale (GCS). Each boosted tree predictor value is the aver-
age of that value over fivefold cross-validation. Consequently, the metrics have not been calculated directly from one 
another (e.g. boosted tree predictor DOR does not agree with the ratio of LR+ to LR−). For each boosted tree, LR, 
and SVM predictor AUROC, the standard deviation (SD) of the five cross-validation AUROCs is also reported. SVM: 
support vector machine; MEWS: Modified Early Warning Score; AUROC: area under the receiver operating characteris-
tic curve; SD: standard deviation; DOR: diagnostic odds ratio; LR: logistic regression.
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evaluating early warning systems to provide context for results.6–9 We chose to compare our algo-
rithm to the MEWS and qSOFA scoring systems because they are well-validated, easily measured 
scores commonly used to predict all-cause mortality in clinical settings in the United States. While 
a 24-h lead time has been previously considered clinically relevant for busy hospital settings6 
because it could be argued that this timescale is too short or too long, we also present results for 
12- and 48-h lead times.

In this context, the AUROC can be somewhat misleading, as it considers performance at operat-
ing points that are not clinically relevant (e.g. sensitivity of 0.99 and specificity of 0.05) and 
because the low prevalence of in-hospital mortality in the three datasets allows even trivial predic-
tors to obtain respectable accuracy (e.g. a predictor that predicts that every patient will survive). 
For this reason, the comparison between the boosted tree predictor, MEWS, and qSOFA in Table 4 
is perhaps most informative. For 12-h prediction, the differences in DOR and specificity are stag-
gering; a positive-class prediction appears to be strong evidence that the patient’s risk of in-hospi-
tal mortality is substantially elevated.

Even when trained and tested on data from different hospitals with different patient demograph-
ics, the boosted tree predictor maintained high levels of accuracy as demonstrated by AUROC 
values up to 2 days in advance of patient death (Table 5). This comparison quantifies the reliability 
of the boosted tree predictor across patient populations (Table 3) and hospitals with different rates 
of in-hospital mortality. The UCSF and UW data are more similar to each other than to the Stanford 
data; both have older patients and higher mortality rates than Stanford (3.85% and 2.95%, respec-
tively, vs 1.07%). This is reflected in the cross-population results (Table 5), for which 12-h predic-
tion on the UW data set is better when the boosted tree predictor is trained on the UCSF set than 
when it is trained on the Stanford set (respective AUROCs of 0.893 and 0.842).

Other machine-learning methods have been developed for in-hospital mortality prediction for 
specific acute conditions, such as sepsis19 and cardiac arrest,21 or for specific settings, such as the 
ICU;17 however, relatively little work has been done using machine-learning methods to predict 
all-cause mortality across all hospital wards. A random forest model developed by Churpek et al.9 
achieved an AUROC of 0.80 on hospital floor patients. An ensemble learning approach by 
Pirracchio et al.2 reported an AUROC of 0.88 for in-hospital mortality in the ICU. Taylor et al.20 
describe a random forest model achieving up to 0.86 AUROC in the ED for patients with sepsis. 
Escobar et al.36 have reported an in-hospital mortality AUROC up to 0.883 across all hospital 
wards using LR. However, each of these approaches requires extensive patient data, including 

Table 5. Average AUROC values for single-population and cross-population experiments using systolic 
blood pressure, diastolic blood pressure, heart rate, temperature, and respiratory rate.

UCSF 
12 h (SD)

UCSF 
24 h (SD)

UCSF 
48 h (SD)

Stanford 
12 h (SD)

Stanford 
24 h (SD)

Stanford 
48 h (SD)

UW 12 h 
(SD)

UW 24 h 
(SD)

UW 48 h 
(SD)

Trained on 
UCSF

0.976 
(0.005)

0.962 
(0.002)

0.962 
(0.003)

0.843 0.802 0.825 0.893 0.879 0.857

Trained on 
Stanford

0.905 0.873 0.734 0.972 
(0.005)

0.951 
(0.020)

0.948 
(0.013)

0.842 0.859 0.663

Trained on 
UW

0.926 0.920 0.908 0.880 0.846 0.829 0.933 
(0.009)

0.928 
(0.019)

0.920 
(0.007)

SD: standard deviation; UCSF: University of California, San Francisco Medical Center; UW: University of Washington 
Medical Center.
For single-population experiments, the standard deviation (SD) of the AUROCs obtained from fivefold cross-validation 
is reported. Testing was performed 12, 24, and 48 h in advance of patient death.
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laboratory results, patient histories, and patient demographics. In contrast, the boosted tree predic-
tor described here makes accurate mortality predictions using as few as five routinely collected 
vital signs.

While MEWS and qSOFA always use the same variables, the boosted tree predictor may use 
other inputs to improve accuracy. The boosted tree predictor can also be tailored to specific patient 
populations and does not require manual data entry or calculation, which most comparable predic-
tion tools currently require. This flexibility provides important clinical advantages over MEWS 
and qSOFA for predicting all-cause mortality.

The boosted tree predictor’s combination of high sensitivity and specificity means that it can 
identify more at-risk patients than LR, SVM, MEWS, and qSOFA while also reducing the number 
of false alarms. The low specificity of many rule-based systems can lead to alarm fatigue; this 
desensitization to alarms is a leading patient safety concern in the United States.37 As demonstrated 
above, the boosted tree predictor we have developed reduces this risk without sacrificing high 
sensitivity.

By providing more accurate predictions of mortality risk up to 48 h in advance, the boosted tree 
predictor could provide clinical teams more time to intervene and potentially improve patient out-
comes. Many conditions can be readily treated in their early stages but have high costs and mortal-
ity once they progress. For instance, survival rates for patients with septic shock have been shown 
to decrease by 7.6 percent each hour before antibiotics are administered after onset, and delays in 
acute kidney injury treatment can lead to total renal failure requiring kidney replacement or to 
increased patient mortality.38,39 For conditions without treatment options, early warning of mortal-
ity may provide patients, families, and caregivers with the means to reduce unnecessary suffering 
and to prepare for the possibility that a patient or family member may not survive.40

The cross-population results also have promising clinical implications. Machine-learning pre-
diction systems generally must be trained on large amounts of retrospective data from a given 
hospital, a process that is burdensome for the hospitals and can delay the implementation of life-
saving systems. Because the predictor was accurate even when trained and tested on data from 
different hospitals, it might outperform existing mortality predictors even without site-specific 
training. This could allow hospitals to adopt the mortality predictor more rapidly and still improve 
patient outcomes.

There are several limitations to our study. Because the data are retrospective, we cannot draw 
strong conclusions about performance in a prospective clinical setting. Although there are impor-
tant demographic differences across the datasets used in this study, all data came from large, urban 
research universities. Performance on patient populations that differ substantially from these, such 
as that of a rural community hospital, may differ. Because of the retrospective nature of this work, 
we do not know how clinicians might adjust their actions based on risk predictions. Nor can we 
know whether earlier or more aggressive treatment would have prevented or postponed the deaths 
of those patients who died.

Reported performance metrics are the average performance of five separately trained models. 
This process was necessary due to the low incidence of mortality in our datasets; dividing the data 
into a larger number of folds for cross-validation would provide too few examples of patient mor-
tality for accurate training.

Conclusion

The boosted tree predictor predicted patient mortality 48 h in advance of death using only patient’s 
vital signs substantially more accurately than two other machine-learning methods and two com-
monly used mortality risk stratification tools. In future studies, we intend to test the algorithm 
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prospectively using real-time clinical data. In a clinical setting, this algorithm may help clinicians 
identify patients for whom more intensive care would prevent deterioration.
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