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A B S T R A C T   

Rationale: Prediction of patients at risk for mortality can help triage patients and assist in resource allocation. 
Objectives: Develop and evaluate a machine learning-based algorithm which accurately predicts mortality in 
COVID-19, pneumonia, and mechanically ventilated patients. 
Methods: Retrospective study of 53,001 total ICU patients, including 9166 patients with pneumonia and 25,895 
mechanically ventilated patients, performed on the MIMIC dataset. An additional retrospective analysis was 
performed on a community hospital dataset containing 114 patients positive for SARS-COV-2 by PCR test. The 
outcome of interest was in-hospital patient mortality. 
Results: When trained and tested on the MIMIC dataset, the XGBoost predictor obtained area under the receiver 
operating characteristic (AUROC) values of 0.82, 0.81, 0.77, and 0.75 for mortality prediction on mechanically 
ventilated patients at 12-, 24-, 48-, and 72- hour windows, respectively, and AUROCs of 0.87, 0.78, 0.77, and 
0.734 for mortality prediction on pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively. The 
predictor outperformed the qSOFA, MEWS and CURB-65 risk scores at all prediction windows. When tested on 
the community hospital dataset, the predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for mortality 
prediction on COVID-19 patients at 12-, 24-, 48-, and 72- hour windows, respectively, outperforming the qSOFA, 
MEWS and CURB-65 risk scores at all prediction windows. 
Conclusions: This machine learning-based algorithm is a useful predictive tool for anticipating patient mortality at 
clinically useful timepoints, and is capable of accurate mortality prediction for mechanically ventilated patients 
as well as those diagnosed with pneumonia and COVID-19.   

1. Introduction 

Infection prevention and control recommendations from the World 
Health Organization (WHO) stress that early detection, effective triage, 
and isolation of potentially infectious patients are essential to prevent 
unnecessary exposures to COVID-19 [1]. However, the rapid spread of 
COVID-19 has outpaced US healthcare facilities’ ability to administer 
diagnostic tests to guide the quarantine and triage COVID-19 patients 
[2–5]. The outbreak significantly affects the availability of necessary 
hospital resources (i.e. respirators [6] and mechanical ventilators 
[7–12]). COVID-19 can be lethal, with a variable case fatality rate 
considered to be between that of severe acute respiratory syndrome 

(SARS; 9.5% [13]) and influenza (0.1%) [14–16] and the potential to 
develop into severe respiratory diseases [17–19]. During this period of 
unprecedented health crisis, clinicians must prioritize care for at-risk 
individuals to maximize limited resources. Mortality prediction tools 
aid in triage and resource allocation by providing advance warning of 
patient deterioration. Our prior work has validated machine-learning 
(ML) algorithms for their ability to predict mortality and patient sta
bility in a variety of settings and on diverse patient populations [20–24]. 

2. Theory 

Of particular interest during the COVID-19 pandemic is mortality 
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prediction of COVID-19 patients, as well as those who have developed 
respiratory complications such as pneumonia and conditions requiring 
mechanical ventilation. Some prior studies predicting mortality in the 
mechanically vented subpopulation have used a logistic regression 
model. When applied on day 21 [25] or 14 [26,27] of mechanical 
ventilation, this provides a probability of 1-year mortality. These studies 
were designed to determine the long-term prognosis of patients 
receiving prolonged mechanical ventilation. Here we present a mortality 
prediction tool applied to intensive care unit (ICU) patients requiring 
mechanical ventilation as well as those diagnosed with pneumonia, with 
mortality prediction windows of 12, 24, 48 and 72 h prior to death. We 
apply this algorithm for the same mortality prediction windows in 
COVID-19 patients. 

3. Materials and methods 

3.1. Data sources 

Patient records were collected from the Medical Information Mart for 
Intensive Care (MIMIC) dataset, an openly available dataset developed 
by the MIT Lab for Computational Physiology, comprising de-identified 
health data associated with ~60,000 intensive care unit admissions 
[28]. It includes demographics, vital signs, laboratory tests, medica
tions, and more. Data collection was passive with no impact on patient 
safety. MIMIC data has been de-identified in compliance with the Health 
Insurance Portability and Accountability Act (HIPAA) Privacy Rule. 

Patient records of COVID-19 polymerase chain reaction (PCR) posi
tive patients were collected from a community hospital and formatted in 
the same manner as the MIMIC dataset. A total of 114 patient encounters 
were collected between 12 March and 12 April 2020. Data collection 
was passive with no impact on patient safety. Dascena establishes de- 
identification by removing all protected health information (PHI) 
identifiers and by jittering all timestamps (including date of birth 
(DOB)) randomly either forwards or backwards in time. Studies per
formed on de-identified patient data constitute non-human subjects 
research, and thus this study has been determined by the Pearl Institu
tional Review Board to be Exempt according to FDA 21 CFR 56.104 and 
45CFR46.104(b) (4): (4) Secondary Research Uses of Data or Specimens 
under study number 20-DASC-119. 

3.1.1. Data processing 
For the MIMIC and community hospital datasets, we included only 

records for patients aged 18 years or older. We excluded patient records 
for which there were no raw data or no discharge or death dates. We 
then filtered for length of stay (LOS) for the different look aheads of 12, 
24, 48, and 72 h. Table 1 lists the number of patients for each inclusion 

criterion from the MIMIC dataset. Inclusion criteria for the community 
hospital dataset are listed in Table 2. We minimally processed raw 
electronic health record (EHR) data to generate features. Following 
imputation of missing values, we averaged one value for each mea
surement each hour for up to 3 h preceding prediction time. We also 
calculated differences between the current hour and the prior hour and 
between the prior hour and the hour before that. We concatenated these 
values from each measurement into a feature vector. For the MIMIC 
dataset, pneumonia patients were identified by International Classifi
cation of Diseases (ICD) codes, while those requiring mechanical 
ventilation and their corresponding start times were determined by 
chart measurements indicative of a mechanical ventilation setting. In 
the community hospital dataset, COVID-19 patients were identified with 
positive SARS-Cov2 PCR tests. 

Data were discretized into 1 h intervals, beginning at the time of the 
first recorded patient measurement and hourly measurements were 
required for each input variable. Measurements were averaged to pro
duce a single value in cases when multiple observations of the same 
patient measurement were taken within a given hour. This ensures that 
the measurement rate was the same across patients and across time. 
Missing values were imputed by carrying forward the most recent past 
measurement in cases where no measurement of a clinical variable was 
available for a given hour. For some patients with infrequent measure
ments of one or more vital signs, this simple imputation resulted in many 
consecutive hours with identical values. 

Our publication on the use of gradient boosted trees for sepsis 
detection and prediction describes the data processing in detail [29]. 
Predictions were generated for all experiments using the following 
variables: Age, Heart Rate, Respiratory Rate, Peripheral Oxygen Satu
ration (SpO2), Temperature, Systolic Blood Pressure, Diastolic Blood 
Pressure, White Blood Cell Counts, Platelets, Lactate, Creatinine, and 
Bilirubin, over an interval of 3 h and their corresponding differentials in 
that interval. 

3.2. Gold standard 

The outcome of interest was in-hospital patient mortality, deter
mined retrospectively for each patient. In the MIMIC dataset, we used 
the expire_flag field to identify the last stays of those patients. Similarly, 
the community hospital dataset contains a deceased flag that is either 
true or false to determine mortality. 

3.2.1. The machine learning algorithm 
The classifier was created using the XGBoost method for fitting 

“boosted” decision trees. We applied the XGBoost package for Python32 
to the patient age and vital sign measurements and their temporal 
changes, where temporal changes included hourly differences between 
each measurement beginning 3 h before prediction time. Gradient 
boosting, which XGBoost implements, is an ensemble learning technique 
that combines results from multiple decision trees to create prediction 
scores. Each tree splits the patient population into smaller and smaller 
groups, successively. Each branch splits the patients who enter it into 

Table 1 
Inclusion criteria for patients in the MIMIC dataset. *Required measurements 
include Age, Heart Rate, Respiratory Rate, Peripheral Oxygen Saturation 
(SpO2), Temperature, Systolic Blood Pressure, Diastolic Blood Pressure, White 
Blood Cell Counts, Platelets, Lactate, Creatinine, and Bilirubin.  

Criterion Encounters 

ICU stays in MIMIC 61,532 
ICU stays with patients aged ≥ 18 years, any measurements present* 53,001 
Length of stay filtering for all patients 12 h 50,695 
Length of stay filtering for all patients 24 h 40,959 
Length of stay filtering for all patients 48 h 26,576 
Length of stay filtering for all patients 72 h 18,275 
Length of stay filtering for mechanically ventilated patients 12 h 24,934 
Length of stay filtering for mechanically ventilated patients 24 h 21,414 
Length of stay filtering for mechanically ventilated patients 48 h 16,085 
Length of stay filtering for mechanically ventilated patients 72 h 12,368 
Length of stay filtering for pneumonia patients 12 h 8879 
Length of stay filtering for pneumonia patients 24 h 7678 
Length of stay filtering for pneumonia patients 48 h 5600 
Length of stay filtering for pneumonia patients 72 h 4169  

Table 2 
Inclusion criteria for patients in the community hospital dataset. *Required 
measurements include Age, Heart Rate, Respiratory Rate, Peripheral Oxygen 
Saturation (SpO2), Temperature, Systolic Blood Pressure, Diastolic Blood Pres
sure, White Blood Cell Counts, Platelets, Lactate, Creatinine, and Bilirubin.  

Criterion Encounters 

COVID positive stays in community hospital 114 
COVID positive stays with patients aged ≥ 18 years, any measurements 

present* 
114 

Length of stay filtering for all COVID positive patients 12 h 114 
Length of stay filtering for all COVID positive patients 24 h 112 
Length of stay filtering for all COVID positive patients 48 h 110 
Length of stay filtering for all COVID positive patients 72 h 103  
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two groups, based on whether their value of some covariate is above or 
below some threshold—for instance, a branch might divide patients 
according to whether their temperature is above or below 100 ◦F. After 
some number of branches, the tree ends in a set of “leaves.” Each patient 
is in exactly one leaf, according to the values of his or her measurements. 
Each “leaf” of the tree is predicted to have the same risk of mortality. The 
covariate involved in each split and the threshold value are selected by 
an algorithm designed to trade off fit to the training data and accuracy 
on out-of-sample data by using cross-validation to avoid “over-fitting.” 
We restricted tree depth to a maximum of six branching levels, set the 
learning rate parameter of XGBoost to 0.1, and restricted the tree en
sembles to 1000 trees to limit the computational burden. 

Hyperparameter optimization was performed using cross-validated 
grid search. We included a hyperparameter for the early stopping of 
the iterative tree-addition procedure to prevent overfit of the model on 
the training data and optimized across this hyperparameter using five
fold cross-validation. Due to computational and time constraints, 
hyperparameter optimization was performed across a sparse parameter 
grid, where the candidate hyperparameter values were chosen to span 
large ranges of viable parameter space. Cross-validated grid search was 
conducted to determine the optimal combination of candidate hyper
parameters. While XGBoost has a large number of trainable parameters, 
computational and time constraints limited the set of parameters to be 
tuned to just those parameters with the largest impact on performance 
on the training data and most relevant to the prediction task. 

To validate the boosted tree predictor when training and testing was 
performed on data from the same institution, we used fivefold cross- 
validation. For each model, four-fifths of the patients were randomly 
selected to train the model and the remaining one-fifth were used as a 
hold-out set to test the predictions. To account for the random selection 
of the training set, reported performance metrics are the average per
formance of the five separately trained models arising from fivefold 
cross-validation, each of which was trained on four-fifths of the data and 
tested on the remaining fifth. For AUROC, we also reported the standard 
deviation of the five AUROC values obtained from cross-validation. 

For patients who died, we modeled mortality 12, 24, 48, and 72 h 
before death to evaluate the performance with a variety of lead times. 
For mechanically ventilated encounters, the time point was the start of 
ventilation for positive and negative class. Predictors were trained 
independently for each distinct lookahead time. In 12, 24, 48 and 72 h 
long lookahead predictions following a 3-h window of measurements, 
patients must have data for, respectively, 15, 27, 51 or 75 respective 
hours preceding the time of in-hospital mortality or the time of 
discharge. Accordingly, we selected patients with the appropriate stays 
for the training and testing of each lookahead. 

3.3. Comparison to rule-based methods 

To calculate the AUROC for rule-based predictors of mortality, we 
calculated quick Sepsis Related Organ Failure Assessment (qSOFA), 
Modified Early Warning Score (MEWS) and CURB-65 scores for patients 
in the MIMIC database. qSOFA has also been used to predict poor out
comes in pneumonia patients, including the need for mechanical 
ventilation, and has been shown to either match or outperform other 
outcome predictors such as SOFA, CRB, CRB-65 and the pneumonia 
severity index (PSI) [30,31]. Among more generally used mortality 
prediction scores, qSOFA has been shown to have similar predictive 
performance to that of Acute Physiology, Age, Chronic Health Evalua
tion (APACHE) II or SOFA, as evidenced by a lack of statistical difference 
between AUROC [32]. The MEWS and CURB-65 scores have also been 
validated for mortality prediction in general patient populations [33,34] 
and those with community-acquired pneumonia [35] or COVID-19 [36], 
respectively. Scores were calculated using the entire dataset. We 
calculated the qSOFA score using systolic blood pressure, respiratory 
rate, and Glasgow Coma Scale (GCS) from EHR data. MEWS was 
calculated using systolic blood pressure, heart rate, respiratory rate, and 

temperature. GCS was used as a proxy for evaluating AVPU. CURB-65 
scores were computed using age, BUN, respiratory rate, as well as sys
tolic and diastolic blood pressure. A GCS of less than or equal to 14 was 
used as a proxy for confusion. Comparator score calculations for patients 
in the community hospital dataset were modified based on available 
data. 

4. Results 

XGBoost model training and testing was performed on the MIMIC 
dataset. Patient demographic information for all ICU encounters as well 
as each subpopulation are presented in Tables 3–5. Patient demographic 
information for all encounters from the community hospital data set are 
listed in Table 6. 

The XGBoost ML algorithm predicted mortality in all ICU patients as 
well as mechanically ventilated and pneumonia patients more accu
rately than qSOFA, MEWS and CURB-65 at all prediction windows ( 
Tables 7 and 8 and Supplementary Table S5). When trained and tested 
on the MIMIC dataset, the XGBoost predictor obtained AUROCs of 0.82, 
0.81, 0.77, and 0.75 for mortality prediction on mechanically ventilated 
patients at 12-, 24-, 48-, and 72- hour windows, respectively, and 
AUROCs of 0.87, 0.78, 0.77, and 0.73 for mortality prediction on 
pneumonia patients at 12-, 24-, 48-, and 72- hour windows, respectively 
(Fig. 1). Feature importance statistics are listed in Supplementary 
Tables S1–S4. 

Detailed performance metrics for the XGBoost predictor on pneu
monia and mechanically ventilated patients are presented in Tables 7 
and 8 and on COVID-19 patients in Table 9. All predictor training and 
testing was performed on the MIMIC data set. The diagnostic odds ratio 
(DOR) is a measure for comparing diagnostic accuracy between tools 
and is calculated as (True Positive/False Negative)/(False Positive/True 
Negative). DOR represents the ratio of the odds of a true positive pre
diction of mortality in patients who died within a certain prediction 
window to the odds of a false positive prediction of mortality in patients 
who did not die within a certain prediction window. For all prediction 
windows, the XGBoost predictor had a higher DOR than qSOFA. 

These results suggest that the XGBoost predictor is capable of pre
dicting mortality in pneumonia, mechanically ventilated, and COVID-19 
patients and outperforms the qSOFA, MEWS and CURB-65 mortality risk 
scores. 

5. Discussion 

Accurate mortality prediction can assist with the allocation of 
limited hospital resources and optimize patient management. Addi
tionally, advanced mortality prediction can facilitate decision making 
with family and caregivers. The commonly used MEWS [37], the 
APACHE [38], Simplified Acute Physiology Score (SAPS II) [39], 
Sepsis-Related Organ Failure Assessment (SOFA) [40], and the quick 
SOFA (qSOFA) score [41] provide a rough estimate of mortality pre
diction, however the specificity and sensitivity of these tools are limited 
for COVID and mechanically ventilated populations [42]. Machine 

Table 3 
Patient demographic information for MIMIC dataset for all encounters (53,001).   

Characteristic MIMIC (%) 

Age 18–29 4.70 
30–39 5.25 
40–49 10.65 
50–59 17.52 
60–69 20.99 
>70 40.90 

Gender Male 43.68 
Female 56.32 

In-hospital Death Yes 9.59 
No 90.41  
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learning (ML) has been previously broadly applied to predictive tasks 
within the biosciences [43–46]. ML-based tools for mortality prediction 
have been applied to sepsis [47,48] cardiac arrest [49], coronary artery 
disease [50], and extubation [51] patient populations, and have been 
implemented in a broad range of clinical settings, including the emer
gency department (ED) [48] and the intensive care unit (ICU) [52–55]. 

Studies of mortality prediction on pneumonia and mechanically 
ventilated patients are particularly relevant for COVID-19 related lung 
complications. We have demonstrated that machine learning algorithms 
are useful predictive tools for anticipating patient mortality at clinically 
useful windows of 12, 24, 48, and 72 h in advance and have validated 
mortality prediction accuracy for COVID-19, pneumonia, mechanically 
ventilated, and all ICU patients (Fig. 1), demonstrating that for all pre
diction types and windows, our ML algorithm outperforms the qSOFA, 
MEWS and CURB-65 severity scores (Tables 7–9). 

A meta-analysis of studies focusing on predicting mortality in 
pneumonia patients showed that of the three commonly used prognostic 
scores which predicted mortality, the Pneumonia Severity Index (PSI) 
had the highest AUROC of 0.81. However, this index was used for pre
dicting 30-day mortality specifically among patients with community 
acquired pneumonia [56]. When trained and tested on the MIMIC 
dataset, the XGBoost predictor obtained AUROCs of 0.87, 0.78, 0.77, 

Table 4 
Patient demographic information for MIMIC dataset for all pneumonia en
counters (9,166).   

Characteristic MIMIC (%) 

Age 18–29 2.97 
30–39 4.34 
40–49 9.33 
50–59 17.17 
60–69 21.01 
>70 45.18 

Gender Male 53.99 
Female 46.01 

In-hospital Death Yes 11.41 
No 88.59  

Table 5 
Patient demographic information for MIMIC dataset for all mechanically 
ventilated encounters (25,895).   

Characteristic MIMIC (%) 

Age 18–29 4.50 
30–39 4.38 
40–49 10.16 
50–59 17.91 
60–69 22.39 
>70 40.66 

Gender Male 59.1 
Female 40.9 

In-hospital Death Yes 15.73 
No 84.27  

Table 6 
Patient demographic information for community hospital dataset encounters.   

Characteristic Community Hospital (%) 

Age 18–29 7.00 
30–39 10.5 
40–49 8.77 
50–59 15.79 
60–69 23.68 
>70 34.21 

Gender Male 58.77 
Female 41.33 

In-hospital Death Yes 21.0 
No 79.0  

Table 7 
Comparison of AUROC, average precision (APR), sensitivity, specificity, F1, 
diagnostic odds ratio (DOR), positive and negative likelihood ratios (LR+ and 
LR‒), accuracy and recall obtained by the machine learning algorithm (MLA) 
and the qSOFA score for mortality prediction at 12-, 24-, 48-, and 72- hour 
windows on pneumonia patients using the MIMIC dataset. Standard deviations 
are listed in parenthesis. For AUROC and APR the operating point was set near a 
sensitivity of 0.800.    

MLA: 
Pneumonia 

qSOFA: 
Pneumonia 

MEWS: 
Pneumonia 

CURB-65: 
Pneumonia 

12 
h 

AUROC 0.865 
(0.0027) 

0.719 0.792 0.595  

APR 0.594 
(0.0075) 

0.242 0.405 0.154  

Sensitivity 0.800 
(0.0000) 

0.933 0.884 0.973  

Specificity 0.761 
(0.0101) 

0.304 0.472 0.169  

F1 0.467 
(0.0094) 

0.280 0.323 0.255  

DOR 12.74 
(0.715) 

6.126 6.831 7.397  

LR+ 3.35 
(0.143) 

1.342 1.674 1.171  

LR- 3.35 
(0.143) 

1.342 1.674 1.171  

Accuracy 0.766 
(0.0088) 

0.385 0.524 0.272  

Recall 0.804 
(0.0000) 

0.933 0.884 0.973 

24 
h 

AUROC 0.783 
(0.0017) 

0.721 0.779 0.612  

APR 0.442 
(0.0070) 

0.267 0.346 0.159  

Sensitivity 0.802 
(0.0000) 

0.932 0.906 0.974  

Specificity 0.594 
(0.0324) 

0.285 0.439 0.142  

F1 0.349 
(0.0160) 

0.271 0.313 0.247  

DOR 5.99 
(0.727) 

5.484 7.552 6.211  

LR+ 1.99 
(0.144) 

1.304 1.614 1.136  

LR- 1.99 
(0.144) 

1.304 1.614 1.136  

Accuracy 0.621 
(0.0283) 

0.367 0.498 0.248  

Recall 0.802 
(0.0000) 

0.932 0.906 0.974 

48 
h 

AUROC 0.769 
(0.0074) 

0.681 0.747 0.606  

APR 0.407 
(0.0099) 

0.264 0.334 0.178  

Sensitivity 0.803 
(0.0000) 

0.917 0.866 0.975  

Specificity 0.580 
(0.0308) 

0.238 0.394 0.122  

F1 0.374 
(0.0158) 

0.284 0.317 0.271  

DOR 5.67 
(0.701) 

3.454 4.211 5.318  

LR+ 1.92 
(0.138) 

1.203 1.429 1.110  

LR- 1.92 
(0.138) 

1.203 1.429 1.110  

Accuracy 0.612 
(0.0264) 

0.335 0.462 0.245  

Recall 0.803 
(0.0000) 

0.917 0.866 0.975 

72 
h 

AUROC 0.726 
(0.0047) 

0.645 0.668 0.592  

APR 0.333 
(0.0168) 

0.227 0.275 0.185  

Sensitivity 0.801 
(0.0030) 

0.933 0.867 0.970  

Specificity 0.202 0.333 0.098 

(continued on next page) 
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and 0.73 for mortality prediction on pneumonia patients at 12-, 24-, 48-, 
and 72- hour windows, respectively (Fig. 1, Table 7). 

When trained and tested on the community hospital dataset, the 
XGBoost predictor obtained AUROCs of 0.91, 0.90, 0.86, and 0.87 for 
mortality prediction on COVID-19 PCR positive patients at 12-, 24-, 48-, 
and 72- hour windows, respectively (Table 9). The algorithm out
performed the qSOFA, MEWS and CURB-65 risk scores at all prediction 

windows (Table 9). This ML algorithm can be used to automatically 
monitor patient populations without incurring additional data entry or 
impeding clinical workflow, and patient alerts can be set to desired 
thresholds for sensitivity and specificity of alerting as needed in different 
care settings. As a clinical decision support tool, the machine learning 
algorithm presented in this study may assist clinicians in navigating the 
complexities surrounding COVID-19 related resource allocation. During 
a pandemic, accurate triage of patients is essential for improving patient 
outcomes, effectively utilizing clinical care teams, and efficiently allo
cating resources. The benefit of our approach is that when our machine 
learning algorithm is implemented in clinical ICU settings, healthcare 
providers can potentially identify patients at risk of significant COVID- 
19 related decompensation before they deteriorate, thus facilitating 
effective resource allocation and identifying those patients most likely to 
benefit from increased care. 

There are several limitations to our study. The ML algorithm devel
oped on the MIMIC dataset used only data from the ICU. Therefore, 
further research is required to evaluate performance of the algorithm in 
other patient care settings. Further, because the algorithm only utilized 
laboratory data and vital signs as inputs, it did not account for actions 
undertaken by the care team. These actions could signify aggressive 
treatment or withdrawal of treatment and could cause changes to al
gorithm inputs, potentially leading to variations in the algorithm’s 
prediction score. On one hand, incorporating care team actions into 

Table 7 (continued )   

MLA: 
Pneumonia 

qSOFA: 
Pneumonia 

MEWS: 
Pneumonia 

CURB-65: 
Pneumonia 

0.507 
(0.0137)  

F1 0.357 
(0.0070) 

0.296 0.315 0.281  

DOR 4.16 
(0.307) 

3.542 3.250 3.541  

LR+ 1.63 
(0.052) 

1.169 1.300 1.075  

LR- 1.63 
(0.052) 

1.169 1.300 1.075  

Accuracy 0.553 
(0.0120) 

0.315 0.416 0.233  

Recall 0.807 
(0.0000) 

0.933 0.867 0.970  

Table 8 
Comparison of AUROC, average precision (APR), sensitivity, specificity, F1, diagnostic odds ratio (DOR), positive and negative likelihood ratios (LR+ and LR‒), 
accuracy and recall obtained by the machine learning algorithm (MLA) and the qSOFA score for mortality prediction at 12-, 24-, 48-, and 72- hour windows on 
mechanically ventilated patients using the MIMIC dataset. Standard deviations are listed in parenthesis. For AUROC and APR the operating point was set near a 
sensitivity of 0.800.    

MLA: Mechanically Ventilated qSOFA: Mechanically Ventilated MEWS: Mechanically Ventilated CURB-65: Mechanically Ventilated 

12 h AUROC 0.815 (0.0030) 0.731 0.808 0.620  
APR 0.598 (0.0055) 0.276 0.417 0.173  
Sensitivity 0.803 (0.0016) 0.969 0.845 0.988  
Specificity 0.647 (0.0241) 0.232 0.630 0.098  
F1 0.394 (0.0159) 0.280 0.400 0.253  
DOR 7.54 (0.902) 9.414 9.287 9.237  
LR+ 2.29 (0.167) 1.261 2.285 1.096  
LR- 2.29 (0.167) 1.261 2.285 1.096  
Accuracy 0.668 (0.0211) 0.331 0.659 0.218  
Recall 0.802 (0.0000) 0.969 0.845 0.988 

24 h AUROC 0.806 (0.0030) 0.729 0.789 0.626  
APR 0.506 (0.0098) 0.274 0.357 0.179  
Sensitivity 0.803 (0.0017) 0.970 0.810 0.987  
Specificity 0.634 (0.0101) 0.244 0.611 0.109  
F1 0.392 (0.0060) 0.289 0.381 0.260  
DOR 7.06 (0.299) 10.384 6.714 9.343  
LR+ 2.20 (0.060) 1.283 2.084 1.108  
LR- 2.20 (0.060) 1.283 2.084 1.108  
Accuracy 0.658 (0.0087) 0.344 0.638 0.230  
Recall 0.802 (0.0000) 0.970 0.810 0.987 

48 h AUROC 0.768 (0.0034) 0.715 0.753 0.611  
APR 0.488 (0.0048) 0.312 0.357 0.209  
Sensitivity 0.804 (0.0019) 0.977 0.826 0.977  
Specificity 0.553 (0.0091) 0.182 0.546 0.085  
F1 0.398 (0.0046) 0.322 0.403 0.298  
DOR 5.08 (0.198) 9.266 5.710 3.840  
LR+ 1.80 (0.038) 1.194 1.818 1.067  
LR- 1.80 (0.038) 1.194 1.818 1.067  
Accuracy 0.595 (0.0076) 0.315 0.592 0.233  
Recall 0.803 (0.0000) 0.977 0.826 0.977 

72 h AUROC 0.749 (0.0053) 0.657 0.665 0.601  
APR 0.406 (0.0115) 0.261 0.278 0.213  
Sensitivity 0.805 (0.0000) 0.977 0.943 0.983  
Specificity 0.558 (0.0135) 0.153 0.261 0.070  
F1 0.413 (0.0068) 0.327 0.347 0.308  
DOR 5.22 (0.288) 7.683 5.799 4.322  
LR+ 1.82 (0.056) 1.154 1.276 1.057  
LR- 1.82 (0.056) 1.154 1.276 1.057  
Accuracy 0.601 (0.0111) 0.297 0.380 0.230  
Recall 0.805 (0.0000) 0.977 0.943 0.983  
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algorithm inputs could be useful feedback to the care team in the sense 
that it may aid them in determining whether a given intervention was 
harmful or beneficial. On the other hand, accounting for actions un
dertaken by the care team may complicate the interpretation of what it 
means to “anticipate” mortality, given that the current state of knowl
edge of the care team is unknown. Finally, because this is a retrospective 
study, we cannot determine the performance of the mortality prediction 
algorithm in a prospective clinical setting. Prospective validation is 
required to determine how clinicians may respond to risk predictions as 
well as whether predictions can affect patient outcomes or resource 
allocation. 

6. Conclusion 

The ML algorithm presented in this study is a useful predictive tool 
for anticipating patient mortality at clinically useful windows up to 72 h 
in advance, and capable of accurate mortality prediction for COVID-19, 
pneumonia, and mechanically ventilated patients. 

Patient and public involvement statement 

Patients and the public were not involved in the design and conduct 

Fig. 1. Comparison of area under the receiver operating characteristic 
(AUROC) curves for XGBoost models. AUROCs for the boosted tree predictor 
are presented for 12-, 24-, 48-, and 72-h mortality prediction with training and 
testing performed on MIMIC data from (A) all ICU patients as well as sub
populations of (B) mechanically ventilated (vented) ICU patients and (C) 
pneumonia ICU patients. 

Table 9 
Comparison of AUROC, average precision (APR), sensitivity, specificity, F1, 
diagnostic odds ratio (DOR), positive and negative likelihood ratios (LR+ and 
LR‒), accuracy and recall obtained by the ML algorithm (MLA) and the qSOFA, 
MEWS and CURB-65 scores for mortality prediction at 12-, 24-, 48-, and 72- hour 
windows on 114 COVID-19 PCR Positive Patients from the community hospital 
data set. Standard deviations are listed in parenthesis. For AUROC and APR the 
operating point was set near a sensitivity of 0.800. n/a (not applicable).    

MLA qSOFA MEWS CURB-65 

12 h AUROC 0.910 (0.0024) 0.791 0.769 0.780  
APR 0.795 (0.0054) 0.510 0.514 0.369  
Sensitivity 0.826 (0.0000) 1.000 1.000 1.000  
Specificity 0.804 (0.0239) 0.000 0.022 0.500  
F1 0.638 (0.0228) 0.338 0.343 0.505  
DOR 19.89 (2.912) n/a n/a n/a  
LR+ 4.29 (0.506) 1.000 1.023 2.000  
LR- 4.29 (0.506) 1.000 1.023 2.000  
Accuracy 0.809 (0.0191) 0.204 0.221 0.602  
Recall 0.826 (0.0000) 1.000 1.000 1.000 

24 h AUROC 0.903 (0.0059) 0.840 0.780 0.764  
APR 0.754 (0.0127) 0.563 0.515 0.354  
Sensitivity 0.826 (0.0000) 0.826 1.000 1.000  
Specificity 0.816 (0.0054) 0.822 0.033 0.444  
F1 0.649 (0.0054) 0.655 0.346 0.479  
DOR 21.03 (0.770) 21.969 n/a n/a  
LR+ 4.48 (0.134) 4.647 1.034 1.800  
LR- 4.48 (0.134) 4.647 1.034 1.800  
Accuracy 0.818 (0.0043) 0.823 0.230 0.558  
Recall 0.826 (0.0000) 0.826 1.000 1.000 

48 h AUROC 0.862 (0.0088) 0.792 0.724 0.802  
APR 0.684 (0.0156) 0.478 0.444 0.384  
Sensitivity 0.818 (0.0000) 1.000 0.955 1.000  
Specificity 0.773 (0.0334) 0.000 0.022 0.522  
F1 0.598 (0.0297) 0.328 0.321 0.506  
DOR 15.80 (3.051) n/a 0.477 n/a  
LR+ 3.69 (0.555) 1.000 0.976 2.093  
LR- 3.69 (0.555) 1.000 0.976 2.093  
Accuracy 0.782 (0.0268) 0.196 0.205 0.616  
Recall 0.818 (0.0000) 1.000 0.955 1.000 

72 h AUROC 0.873 (0.0034) 0.722 0.797 0.751  
APR 0.649 (0.0209) 0.364 0.452 0.320  
Sensitivity 0.819 (0.0190) 1.000 0.857 1.000  
Specificity 0.760 (0.0181) 0.000 0.611 0.467  
F1 0.576 (0.0171) 0.318 0.486 0.467  
DOR 14.64 (2.376) n/a 9.429 n/a  
LR+ 3.43 (0.261) 1.000 2.204 1.875  
LR- 3.43 (0.261) 1.000 2.204 1.875  
Accuracy 0.771 (0.0146) 0.189 0.658 0.568  
Recall 0.810 (0.0000) 1.000 0.857 1.000  
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of the study, choice of outcome measures, or recruitment to the study 
due to the nature of data collection. 
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Supplemental Material 

Table S1 
Feature Importance 12 h outlook using MIMIC dataset  

Rank Feature Importance (f_score) 

1 SpO2_-2 81 
2 HR 77 
3 SysABP_diff_-2 76 
4 DiasABP_-0 68 
5 SysABP_-0 68 
6 WBC_-1 66 
7 HR_-2 64 
8 Platelets_-1 64 
9 RespRate_diff_-1 63 
10 SpO2_diff_-1 62   

Table S2 
Feature Importance 24 h outlook using MIMIC dataset  

Rank Feature Importance (f_score) 

1 SpO2_diff_-1 92 
2 DiasABP_-1 69 
3 Platelets_-1 68 
4 DiasABP_diff_-1 64 
5 Temp_-1 61 
6 RespRate_-2 60 
7 DiasABP_diff_-2 60 
8 WBC_-1 60 
9 HR_diff_-1 57 
10 RespRate_diff_-1 56   
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Table S3 
Feature Importance 48 h outlook using MIMIC dataset  

Rank Feature Importance (f_score) 

1 WBC_-2 48 
2 DiasABP_diff_-2 44 
3 HR_-2 43 
4 DiasABP_-1 41 
5 RespRate_-1 41 
6 Temp_diff_-2 38 
7 Temp_diff_-1 36 
8 Temp_-0 35 
9 SpO2_diff_-2 35 
10 WBC_-1 34   

Table S4 
Feature Importance 72 h outlook using MIMIC dataset  

Rank Feature Importance (f_score) 

1 SysABP_diff_-1 61 
2 Platelets_-0 46 
3 SpO2_-0 46 
4 DiasABP_-2 45 
5 Lactate_-0 45 
6 RespRate_-0 45 
7 SysABP_-1 44 
8 Creatinine_-1 42 
9 Temp_-2 42 
10 RespRate_diff_-1 37   

Table S5 
Comparison of AUROC, average precision (APR), sensitivity, specificity, F1, diagnostic odds ratio (DOR), positive and negative likelihood ratios 
(LR+ and LR‒), accuracy and recall obtained by the machine learning algorithm (MLA) and the qSOFA score for mortality prediction at 12-, 24-, 48-, 
and 72- hour windows on all ICU patients using the MIMIC dataset. Standard deviations are listed in parenthesis. For AUROC and APR the operating 
point was set near a sensitivity of 0.800.    

MLA: 
All ICU 

qSOFA: 
All ICU 

MEWS: 
All ICU 

CURB-65: 
All ICU 

12 h AUROC 0.862 (0.0012) 0.760 0.833 0.652  
APR 0.553 (0.0018) 0.225 0.392 0.131  
Sensitivity 0.801 (0.0000) 0.949 0.897 0.984  
Specificity 0.750 (0.0046) 0.373 0.559 0.185  
F1 0.378 (0.0040) 0.236 0.290 0.198  
DOR 12.09 (0.297) 11.085 11.054 14.088  
LR+ 3.21 (0.059) 1.513 2.033 1.208  
LR- 3.21 (0.059) 1.513 2.033 1.208  
Accuracy 0.755 (0.0041) 0.426 0.590 0.260  
Recall 0.801 (0.0000) 0.949 0.897 0.984 

24 h AUROC 0.819 (0.0018) 0.742 0.804 0.636  
APR 0.432 (0.0052) 0.223 0.339 0.136  
Sensitivity 0.800 (0.0000) 0.939 0.896 0.978  
Specificity 0.671 (0.0036) 0.357 0.524 0.178  
F1 0.338 (0.0023) 0.245 0.292 0.210  
DOR 8.18 (0.131) 8.629 9.473 9.692  
LR+ 2.43 (0.026) 1.462 1.882 1.189  
LR- 2.43 (0.026) 1.462 1.882 1.189  
Accuracy 0.684 (0.0032) 0.416 0.562 0.258  
Recall 0.800 (0.0000) 0.939 0.896 0.978 

48 h AUROC 0.789 (0.0016) 0.706 0.760 0.616  
APR 0.408 (0.0024) 0.232 0.297 0.158  
Sensitivity 0.801 (0.0000) 0.945 0.882 0.977  
Specificity 0.619 (0.0110) 0.282 0.437 0.137  
F1 0.356 (0.0063) 0.269 0.301 0.242  
DOR 6.55 (0.315) 6.781 5.771 6.791  
LR+ 2.10 (0.063) 1.316 1.565 1.132  
LR- 2.10 (0.063) 1.316 1.565 1.132  
Accuracy 0.641 (0.0097) 0.364 0.492 0.241  
Recall 0.801 (0.0000) 0.945 0.882 0.977 

72 h AUROC 0.746 (0.0026) 0.655 0.685 0.603  
APR 0.356 (0.0017) 0.218 0.256 0.182  
Sensitivity 0.802 (0.0015) 0.929 0.872 0.963  
Specificity 0.546 (0.0049) 0.247 0.388 0.111  
F1 0.361 (0.0025) 0.295 0.321 0.270  
DOR 4.86 (0.114) 4.299 4.296 3.216  
LR+ 1.77 (0.020) 1.233 1.423 1.083 

(continued on next page) 
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Table S5 (continued )   

MLA: 
All ICU 

qSOFA: 
All ICU 

MEWS: 
All ICU 

CURB-65: 
All ICU  

LR- 1.77 (0.020) 1.233 1.423 1.083  
Accuracy 0.583 (0.0043) 0.347 0.459 0.236  
Recall 0.801 (0.0000) 0.929 0.872 0.963  

References 

[1] World Health Organization, Clinical management of severe acute respiratory 
infection when Novel coronavirus (2019-nCoV) infection is suspected: interim 
Guidance, Jan 11, 2020. 

[2] Y. Zhai, Y. Wang, M. Zhang, J.H. Gittell, S. Jiang, B. Chen, F. Cui, X. He, J. Zhao, 
X. Wang, From isolation to coordination: how can telemedicine help combat the 
COVID-19 outbreak? medRxiv preprint. https://doi.org/10.1101/2020.02.20.200 
25957, 2020. 

[3] S.R. Johnson, Flu, Coronavirus Challenge Hospitals’ Ability to Withstand Surge of 
Patients, 2020. https://www.modernhealthcare.com/safety-quality/flu-coronavir 
us-challenge-hospitals-ability-withstand-surge-patients. Available from. 

[4] L. Specht, What Does the Coronavirus Mean for the U.S. Health Care System? Some 
Simple Math Offers Alarming Answers, 2020 March 10. Available from https 
://www.statnews.com/2020/03/10/simple-math-alarming-answers-covid-19/. 

[5] R. Li, C. Rivers, Q. Tan, M.B. Murray, E. Toner, M. Lipsitch, The demand for 
inpatient and ICU beds for COVID-19 in the US: lessons from Chinese cities, 
medRxiv (2020) 20033241, https://doi.org/10.1101/2020.03.09.20033241. 

[6] S. Soucheray, Hospitals scramble to keep up with CDC N95, mask guidance. http 
://www.cidrap.umn.edu/news-perspective/2020/03/hospitals-scramble-keep-cd 
c-n95-mask-guidance, 2020. Available from. 

[7] L. Rubinson, F. Vaughn, S. Nelson, et al., Mechanical ventilators in US acute care 
hospitals, Disaster Med. Public Health Prep. 4 (3) (2010) 199–206, https://doi.org/ 
10.1001/dmp.2010.1. 

[8] Johns Hopkins Bloomberg School of Public Health. Center for Health Security, 
Ventilator Stockpiling and Availability in the US, Johns Hopkins Bloomberg 
School of Public Health, Baltimore, MD, February 14, 2020. http://www.cente 
rforhealthsecurity.org/resources/COVID-19/200214-VentilatorAvailability-facts 
heet.pdf. 

[9] E.M. Malatino, Strategic National Stockpile: overview and ventilator assets, Respir. 
Care 53 (1) (2008) 91–95. 

[10] A. Mehrabi, P. Dillon, K. Kelly, et al., Experimental studies on performance of 
ventilators stored in the Strategic National Stockpile, J Emerg Manag 16 (5) (2018 
Sep/Oct) 321–336. 

[11] H.C. Huang, O.M. Araz, D.P. Morton, et al., Stockpiling ventilators for influenza 
pandemics, Emerg. Infect. Dis. 23 (6) (2017) 914–921. 

[12] A. Ajao, S.V. Nystrom, L.M. Koonin, et al., Assessing the capacity of the healthcare 
system to use additional mechanical ventilators during a large-scale public health 
emergency, Disaster Med. Public Health Prep. 9 (6) (2015) 634–641. 

[13] V.J. Munster, M. Koopmans, N. van Doremalen, D. van Riel, E. de Wit, A novel 
coronavirus emerging in China—key questions for impact assessment, N. Engl. J. 
Med. 382 (2020) 692–694. 

[14] E. de Wit, N. van Doremalen, D. Falzarano, V.J. Munster, SARS and MERS: recent 
insights into emerging coronaviruses, Nat. Rev. Microbiol. 14 (8) (2016 Aug) 523. 

[15] AS Lane Fauci, R.R. Hc Redfield, Covid-19—navigating the uncharted, N. Engl. J. 
Med. (2020), https://doi.org/10.1056/NEJMe2002387 published online Feb 28. 

[16] D.D. Rajgor, M.H. Lee, S. Archuleta, N. Bagdasarian, S.C. Quek, The many 
estimates of the COVID-19 case fatality rate, Lancet Infect. Dis. 20 (7) (2020 Jul) 
776–777, https://doi.org/10.1016/S1473-3099(20)30244-9. Epub 2020 Mar 27. 
PMID: 32224313; PMCID: PMC7270047. 

[17] D. Wang, B. Hu, C. Hu, et al., Clinical characteristics of 138 hospitalized patients 
with 2019 novel coronavirus-infected pneumonia in wuhan, China, J. Am. Med. 
Assoc. 323 (11) (2020 Mar 17) 1061–1069, https://doi.org/10.1001/ 
jama.2020.1585. PMID: 32031570; PMCID: PMC7042881. 

[18] C. Huang, Y. Wang, X. Li, et al., Clinical features of patients infected with 2019 
novel coronavirus in Wuhan, China, Lancet 395 (10223) (2020 Feb 15) 497–506, 
https://doi.org/10.1016/S0140-6736(20)30183-5. Epub 2020 Jan 24. Erratum in: 
Lancet. 2020 Jan 30;: PMID: 31986264; PMCID: PMC7159299. 

[19] N. Chen, M. Zhou, X. Dong, et al., Epidemiological and clinical characteristics of 99 
cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, 
Lancet 395 (10223) (2020 Feb 15) 507–513, https://doi.org/10.1016/S0140-6736 
(20)30211-7. Epub 2020 Jan 30. PMID: 32007143; PMCID: PMC7135076. 

[20] H. Mohamadlou, S. Panchavati, J. Calvert, A. Lynn-Palevsky, S. Le, A. Allen, 
E. Pellegrini, A. Green-Saxena, C. Barton, G. Fletcher, L. Shieh, Multicenter 
validation of a machine-learning algorithm for 48-h all-cause mortality prediction, 
Health Inf. J. 26 (3) (2020 Sep) 1912–1925, https://doi.org/10.1177/ 
1460458219894494. Epub 2019 Dec 30. PMID: 31884847. 

[21] J. Calvert, Q. Mao, J.L. Hoffman, M. Jay, T. Desautels, H. Mohamadlou, 
U. Chettipally, R. Das, Using electronic health record collected clinical variables to 
predict medical intensive care unit mortality, Annals of medicine and surgery 11 
(2016 Nov 1) 52–57. 

[22] T. Desautels, J. Calvert, J. Hoffman, Q. Mao, M. Jay, G. Fletcher, C. Barton, 
U. Chettipally, Y. Kerem, R. Das, Using transfer learning for improved mortality 
prediction in a data-scarce hospital setting, Biomed. Inf. Insights 9 (2017 Jun 8), 
1178222617712994. 

[23] J. Calvert, Q. Mao, A.J. Rogers, C. Barton, M. Jay, T. Desautels, H. Mohamadlou, 
J. Jan, R. Das, A computational approach to mortality prediction of alcohol use 
disorder inpatients, Comput. Biol. Med. 75 (2016 Aug 1) 74–79. 

[24] R. Das, D.J. Wales, Machine learning landscapes and predictions for patient 
outcomes, 4, Royal Society open science, 2017 Jul 26, p. 170175, 7. 

[25] S.S. Carson, J.M. Kahn, C.L. Hough, E.J. Seeley, D.B. White, I.S. Douglas, C.E. Cox, 
E. Caldwell, S.I. Bangdiwala, J.M. Garrett, G.D. Rubenfeld, A multicenter mortality 
prediction model for patients receiving prolonged mechanical ventilation, Crit. 
Care Med. 40 (4) (2012 Apr) 1171. 

[26] C.L. Hough, E.S. Caldwell, C.E. Cox, I.S. Douglas, J.M. Kahn, D.B. White, E. 
J. Seeley, S.I. Bangdiwala, G.D. Rubenfeld, D.C. Angus, S.S. Carson, Development 
and validation of a mortality prediction model for patients receiving 14 days of 
mechanical ventilation, Crit. Care Med. 43 (11) (2015 Nov) 2339. 

[27] W.Y. Kim, E.J. Jo, J.S. Eom, J. Mok, M.H. Kim, K.U. Kim, H.K. Park, M.K. Lee, 
K. Lee, Validation of the Prognosis for Prolonged Ventilation (ProVent) score in 
patients receiving 14 days of mechanical ventilation, J. Crit. Care 44 (2018 Apr 1) 
249–254. 

[28] A.E. Johnson, T.J. Pollard, L. Shen, H.L. Li-wei, M. Feng, M. Ghassemi, B. Moody, 
P. Szolovits, L.A. Celi, R.G. Mark, MIMIC-III, a freely accessible critical care 
database, Scientific data 3 (2016 May 24) 160035. 

[29] Q. Mao, M. Jay, J.L. Hoffman, et al., Multicentre validation of a sepsis prediction 
algorithm using only vital sign data in the emergency department, general ward 
and ICU, BMJ Open 8 (1) (2018), e017833. 

[30] M. Kolditz, A. Scherag, G. Rohde, S. Ewig, T. Welte, M. Pletz, CAPNETZ Study 
Group, Comparison of the qSOFA and CRB-65 for risk prediction in patients with 
community-acquired pneumonia, Intensive Care Med. 42 (12) (2016 Dec 1) 
2108–2110. 

[31] H. Zhou, T. Lan, S. Guo, Prognostic prediction value of qSOFA, SOFA, and 
admission lactate in septic patients with community-acquired pneumonia in 
emergency department, Emergency Medicine International 2020 (2020). 

[32] J.Y. Wang, Y.X. Chen, S.B. Guo, X. Mei, P. Yang, Predictive performance of quick 
Sepsis-related Organ Failure Assessment for mortality and ICU admission in 
patients with infection at the, Am. J. Emerg. Med. 34 (9) (2016 Sep 1) 1788–1793. 

[33] C.P. Subbe, M. Kruger, P. Rutherford, L. Gemmel, Validation of a modified early 
warning score in medical admissions, QJM: Int. J. Med. 94 (Issue 10) (October 
2001) 521–526, https://doi.org/10.1093/qjmed/94.10.521. 

[34] V.C. Burch, G. Tarr, C. Morroni, Modified early warning score predicts the need for 
hospital admission and inhospital mortality, Emerg. Med. J. 25 (10) (2008 Oct 1) 
674–678. 

[35] Z.X. Zhang, Y. Yong, W.C. Tan, L. Shen, H.S. Ng, K.Y. Fong, Prognostic factors for 
mortality due to pneumonia among adults from different age groups in Singapore 
and mortality predictions based on PSI and CURB-65, Singap. Med. J. 59 (4) (2018 
Apr) 190–198, https://doi.org/10.11622/smedj.2017079. Epub 2017 Aug 14. 
PMID: 28805234, PMCID: PMC5915635. 

[36] C. Satici, M.A. Demirkol, E.S. Altunok, B. Gursoy, M. Alkan, S. Kamat, B. Demirok, 
C.D. Surmeli, M. Calik, Z. Cavus, S.N. Esatoglu, Performance of pneumonia severity 
index and CURB-65 in predicting 30-day mortality in patients with COVID-19, Int. 
J. Infect. Dis. 98 (2020 Sep 1) 84–89. 

[37] C. Subbe, A. Slater, D. Menon, L. Gemmell, Validation of physiological scoring 
systems in the accident and emergency department, Emerg. Med. J. 23 (11) (2006), 
841e845. PMID:17057134. 

[38] W.A. Knaus, D.P. Wagner, E.A. Draper, et al., The Apache III prognostic system, 
Chest 100 (6) (1991) 1619–1636. 

[39] J.R. Le Gall, S. Lemeshow, F. Saulnier, A new simplified acute physiology score 
(SAPS II) based on a European/North American multicenter study, J. Am. Med. 
Assoc. 270 (24) (1993), 2957e2963. PMID:8254858. 

[40] F.L. Ferreira, Serial evaluation of the SOFA score to predict outcome in critically ill 
patients, J. Am. Med. Assoc. 286 (14) (2001) 1754–1758. 

[41] M. Singer, C.S. Deutschman, C.W. Seymour, et al., The third international 
consensus definitions for sepsis and septic shock (sepsis-3), J. Am. Med. Assoc. 315 
(8) (2016) 801–810. 

[42] G.C. Siontis, I. Tzoulaki, J.P. Ioannidis, Predicting death: an empirical evaluation of 
predictive tools for mortality, Arch. Intern. Med. 171 (19) (2011), 1721e1726. 
PMID:21788535. 

[43] A.J. Ballard, R. Das, S. Martiniani, D. Mehta, L. Sagun, J.D. Stevenson, D.J. Wales, 
Energy landscapes for machine learning, Phys. Chem. Chem. Phys. 19 (20) (2017) 
12585–12603. 

[44] R. Das, D.J. Wales, Energy landscapes for a machine-learning prediction of patient 
discharge, Phys. Rev. 93 (6) (2016 Jun 17), 063310. 

[45] C. Barton, U. Chettipally, Y. Zhou, Z. Jiang, A. Lynn-Palevsky, S. Le, J. Calvert, 
R. Das, Evaluation of a machine learning algorithm for up to 48-hour advance 
prediction of sepsis using six vital signs, Comput. Biol. Med. 109 (2019 Jun 1) 79–84. 

[46] J. Calvert, J. Hoffman, C. Barton, D. Shimabukuro, M. Ries, U. Chettipally, 
Y. Kerem, M. Jay, S. Mataraso, R. Das, Cost and mortality impact of an algorithm- 
driven sepsis prediction system, J. Med. Econ. 20 (6) (2017 Jun 3) 646–651. 

L. Ryan et al.                                                                                                                                                                                                                                    



Annals of Medicine and Surgery 59 (2020) 207–216

216

[47] S.M. Vieira, L.F. Mendonça, G.J. Farinha, et al., Modified binary PSO for feature 
selection using SVM applied to mortality prediction of septic patients, Appl. Soft 
Comput. 13 (8) (2013) 3494–3504. 

[48] R.A. Taylor, J.R. Pare, A.K. Venkatesh, et al., Prediction of in-hospital mortality in 
emergency department patients with sepsis: a local big data-driven, machine 
learning approach, Acad. Emerg. Med. 23 (3) (2016) 269–278. 

[49] U.R. Acharya, H. Fujita, V.K. Sudarshan, et al., An integrated index for detection of 
sudden cardiac death using discrete wavelet transform and nonlinear features, 
Knowl-Based Syst 83 (2015) 149–158. 

[50] M. Motwani, D. Dey, D.S. Berman, et al., Machine learning for prediction of all- 
cause mortality in patients with suspected coronary artery disease: a 5-year 
multicentre prospective registry analysis, Eur. Heart J. 38 (7) (2017) 500–507, 
https://doi.org/10.1093/eurheartj/ehw188. 

[51] M.H. Hsieh, M.J. Hsieh, C.M. Chen, C.C. Hsieh, C.M. Chao, C.C. Lai, Comparison of 
machine learning models for the prediction of mortality of patients with unplanned 
extubation in intensive care units, Sci. Rep. 8 (1) (2018) 17116, https://doi.org/ 
10.1038/s41598-018-35582-2. 

[52] R. Pirracchio, M.L. Petersen, M. Carone, et al., Mortality prediction in intensive 
care units with the Supper ICU Learner Algorithm (SICULA): a population-based 
study, Lancet Resp Med 3 (1) (2015) 42–52. 

[53] A.E. Johnson, T.J. Pollard, R.G. Mark, et al., Reproducibility in critical care: a 
mortality prediction case study, in: Proceedings of the 2nd Machine Learning for 
Healthcare Conference, vol. 68, 2017. Boston, MA. 

[54] R.J. Delahanty, D. Kaufman, S.S. Jones, Development and evaluation of an 
automated machine learning algorithm for in-hospital mortality risk adjustment 
among critical care patients, Crit. Care Med. 46 (6) (2018) e481–e488. 

[55] B.J. Marafino, M. Park, J.M. Davies, et al., Validation of prediction models for 
critical care outcomes using natural language processing of electronic health 
record data, JAMA Netw Open 1 (8) (2018), e185097. 

[56] J.D. Chalmers, A. Singanayagam, A.R. Akram, P. Mandal, P.M. Short, 
G. Choudhury, V. Wood, A.T. Hill, Severity assessment tools for predicting 
mortality in hospitalised patients with community-acquired pneumonia. 
Systematic review and meta-analysis, Thorax 65 (10) (2010 Oct 1) 878–883. 

L. Ryan et al.                                                                                                                                                                                                                                    


