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associated morbidity. The objective of this study is to develop and evaluate a novel application of gradient
boosted tree models trained on patient health record data for the early prediction of ARDS.
Materials and methods: 9919 patient encounters were retrospectively analyzed from the Medical Information
Purpose: Acute respiratory distress syndrome (ARDS) is a serious respiratory condition with high mortality and

Mart for Intensive Care III (MIMIC-III) data base. XGBoost gradient boosted treemodels for early ARDS prediction
were created using routinely collected clinical variables and numerical representations of radiology reports as in-
puts. XGBoost models were iteratively trained and validated using 10-fold cross validation.
Results:Onahold-out test set, algorithm classifiers attained areaunder the receiver operating characteristic curve
(AUROC) values of 0.905 when tested for the detection of ARDS at onset and 0.827, 0.810, and 0.790 for the pre-
diction of ARDS at 12-, 24-, and 48-h windows prior to onset, respectively.
Conclusion: Supervised machine learning predictions may help predict patients with ARDS up to 48 h prior to
onset.
© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Acute respiratory distress syndrome (ARDS) is a clinical syndrome
characterized by hypoxemia in the presence of non-cardiogenic pulmo-
nary edema, and is associated with severe inflammation [1]. ARDS is es-
timated to affect at least 190,000 patients per year in the United States
[2]. It has been cited as one of the leading causes of admission to the in-
tensive care unit (ICU) [3,4], withmortality rates ranging between 30%–
55% [5]. Thewide variation in reported incidence [6] andmortality rates
[2,7-14] may relate to difficulties in the recognition and diagnosis of
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ARDS. Despite highmortality rates and high rates of ICUutilization asso-
ciated with ARDS, it is still critically misdiagnosed and underdiagnosed
in intensive care units on a global scale [1,5,15].

Difficulty in accurately diagnosing ARDS may be explained by a
number of factors. These include differences in risk factors and etiolo-
gies, the availability of diagnostic tools, the quality and interpretation
of chest radiographs, and general clinician ability to recognize ARDS
[7,16]. Healthcare providers also experience challenges in processing
large volumes of clinical data generated while caring for critically ill pa-
tients, which may contribute to poor ARDS recognition [17,18]. The
most recent Berlin definition [19] of ARDS was developed in 2012 in re-
sponse to limitations regarding the reliability and validity of the 1994
American-European Consensus Conference (AECC) definition [20]. Al-
though the Berlin definition has addressed many of the limitations of
the AECC definition [19-21], identifying ARDS in diverse clinical settings
remains dependent on some subjectivity of the diagnosing clinician
[22]. Clinicians' ability to separate ARDS from other heterogeneous
causes of respiratory failure is limited [21,23,24], and it can often be dif-
ficult to diagnose ARDS in patients who have underlyingmedical condi-
tions with similar symptoms [25].

Because ARDS treatment options have limited efficacy, there is an in-
terest in identifying at-risk patients for early prevention strategies such
as antiplatelet therapy [7,26-28]. Early identification of at-risk patients
could also improve treatment options by enabling early clinical trial
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Fig. 1. Inclusion criteria for patient encounters in theMIMIC-III dataset. The final inclusion
criteria is dependent on prediction lookahead; the value presented here reflects the 48-h
prediction, which filters most stringently.

Table 1
Number of encounters included in analysis.

Requirement

All MIMIC-III encounters 53,432
Age exists, age at least 18 53,332
Metavision 23,593
At least 1 observation of each required
measurement

22,752

Offset (hours) 0 12 24 48
Qualifying stay duration
(duration ≥ offset +5 h)

21,728 20,388 15,527 9251
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enrollment [29,30]. The opportunity for preventing ARDS onset is
constrained to a narrowwindow, with onset a median 2 days after hos-
pital admission [7,28,31,40], and despite advances in our understanding
of ARDS pathogenesis no biomarker has been shown to reliably predict
ARDS [32-34,41,42]. Therefore, developing clinical decision support
(CDS) methods to assist clinicians in the accurate and early prediction
of ARDS is a valuable approach for improving patient monitoring, diag-
nosis, treatment, and outcomes.

CDS technologies have the ability to differentiate between groups of
patients with similar conditions, and are useful in informing treatment
decisions and improving patient outcomes [17,33,35-37]. Through in-
formed data analysis, CDS models can analyze relevant patient data
from large electronic health record (EHR) databases and identify co-
horts of patients with similar disease progression. We hypothesize
that supervised machine learning can be used to improve ARDS detec-
tion and early ARDS prediction prior to onset. Here, we describe the de-
velopment and analysis of a novel application of supervised machine
learning model CDS for the detection and early prediction of ARDS.
The benefit of such an approach is that when themodel is implemented
in clinical settings, healthcare providers can potentially identify patients
at risk of developing ARDS before they deteriorate, thus facilitating ef-
fective resource allocation and identifying those patients most likely
to benefit from increased monitoring and care.

2. Materials and methods

2.1. Data selection

Datawere obtained from theMedical InformationMart for Intensive
Care III (MIMIC-III) database, which consists of the inpatient ICU en-
counters at Beth Israel Deaconess Medical Center between 2001 and
2012 [38]. The MIMIC-III publication states that, “the project was ap-
proved by the Institutional Review Boards of Beth Israel Deaconess
Medical Center (Boston, MA) and the Massachusetts Institute of Tech-
nology (Cambridge, MA). Requirement for individual patient consent
was waived because the project did not impact clinical care and all
protected health information was deidentified” [38]. To ensure consis-
tent encoding of data, only data collected with the MetaVision clinical
information system were used. All patient data collected using
MetaVision was from patients admitted during or after 2008.

We applied additional inclusion criteria (Fig. 1) to focus the scope of
our study. Only patients with age data available and at least 18 years of
age were included. Patient stays that did not have at least one observa-
tion of each requiredmeasurement type (see below)were excluded. Fi-
nally, we included only patient stays that had durations within a
specified window. The upper limit on length of stay was set at 1000 h
(approximately 41.7 days) to account for outliers and transcription er-
rors. The lower limit was dependent on lookahead, and the final study
population sizes are listed in Table 1. For example, to predict for up to
48 h before onset of ARDS using a five-hour window, 53 h of patient
data are required for inclusion.

We note that in order to simulate the use case as a screening tool for
the general population, the patient population under consideration was
not restricted to mechanically ventilated patients, unlike other ARDS
studies such as Taoum et al. [39] and Neto et al. [40] We also analyzed
separately a subpopulation in which patients were required to have ex-
perienced at least one hour of mechanical ventilation to be included in
the study population (Supplemental Table 1).

2.2. Data extraction

Beginning at the first recorded measurement, raw measurements
entered into the EHR for each patient stay were binned into one-hour
intervals and averaged or summed within bins to produce a single, sum-
marizing value per interval. Antibiotics, urine output, dobutamine, dopa-
mine, epinephrine, norepinephrine, and phenylephrine measurements
were summed. All other clinical measurements listed in Supplemental
Table 2 were averaged. Encoding the data in this way transformed the
measurements into discrete time series with consistent time steps,
whichweremore readily handled by the algorithm. Not all rawmeasure-
mentswere available at all hours, somissing valueswere filled using last-
one carry forward imputation. This is a natural imputation method for
clinical measurements; observations of a rawmeasurement are expected
to be dependent on previous observations [41,42].

For each patient stay, we took the vector of measurements using a
five hour window. Where appropriate, we also concatenated the
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differences in measurement values between time steps. In this way, at
prediction time, a supervisedmachine learning technique such as gradi-
ent boosted tree ensembles is able to access trend information and co-
variance structure with respect to time windows. This procedure of
transforming time series problems into supervised learning problems
has been used in our previous work [43].

Models were developed using quantitative clinical features taken
from the patient EHR, but patients were only required to have age,
heart rate, respiratory rate, temperature, diastolic and systolic blood
pressure, and SpO2 available. Other quantitative clinical features were
included if available and replaced with “missing” values where not
available. Supplemental Table 2 lists quantitative clinical features in-
cluded for analysis in patient subpopulations with no requiredmechan-
ical ventilation andwith at least one hour ofmechanical ventilation. The
organ dysfunction feature listed in Supplemental Table 2 is defined to be
the number of the following criteria which are met at a given time: sys-
tolic blood pressure < 90 mmHg; lactate >2.0 mmol/L; platelet count
<100,000 μL; and international normalized ratio > 1.5. The machine
learning algorithm applied in this study is capable of learning from the
distribution of missing values and can still gain information from rela-
tively sparse features. We included only those patient stays which
contained at least one measurement of each of the required features.

We extracted radiology reports and preprocessed them for use in the
algorithm. Radiology reports are not expected to be present for every
patient stay; moreover, it is valuable information if a patient stay does
not have any radiology reports generated. Radiology reports contain
complex information concerning clinician insight and the health of a pa-
tient. If the reports were present, our experimental design was able to
access that complex information for machine learning.If the reports
were not present, the MLA was able to learn information about the
lack thereof. Using the Doc2Vec text encoding scheme [44], radiology
reports were converted into numerical feature vectors. The Doc2Vec
encoding network uses the relationships between words and their
neighbors, as well as the relationship between paragraphs within a
text, to generate a numerical embedding. These embeddings are crucial
features in our experimental design for similar reasons; they allow the
machine learning algorithm to access text representations of clinical re-
ality. Numerical embeddings are able to retain much of the relational
structure of the text as a feature vector, without necessarily having to
retain information about the literal text. The Doc2Vec encoding net-
work, as implemented in the Python package gensim [45], was trained
on tokenized training texts, preprocessed to remove numbers and
non-alphanumeric characters. This corpus of training texts was com-
posed of 117,902 radiology reports, drawn from our training data.
Once all training texts were observed and network weights updated,
training procedures were frozen.We then used the fully-trained
Doc2Vec encoding network to infer the feature vectors for all of the ra-
diology reports, similarly tokenized and preprocessed. These feature
vectors were concatenated onto the existing quantitative clinical vari-
ables for patient stays where radiology reports were available. For pa-
tient stays where radiology reports were not available, vectors of the
same size, containingmissing values, were concatenated to the existing
variables.

2.3. Gold standard and definition of onset time

We followed the Berlin definition [19] as operationalized in Neto
et al. [40] to generate gold standard labels for ARDS. By examining the
patient data for the co-occurrence of positive end expiratory pressure
(PEEP) above or equal to 5 cmH2O and PaO2/FiO2 ratio (P/F ratio)
below or equal to 300 mmHg, we encoded positive class labels as 1
and negative class labels as 0. Themention of bilateral opacities or infil-
trates in the patient's radiology report was also required for a positive
class label. In order to ensure the acute nature of ARDS onset, we did
not consider as ARDS positive any encounter involving a tracheostomy
procedure within the first 72 h of their ICU admission. The onset time
for ARDS was set as the time of first co-occurrence for the PEEP and P/
F ratio criteria, and prediction time was set to some number of hours
prior to this onset. Thus a model described as a 24-h model is a model
for predicting ARDS 24 h prior to onset by this co-occurrence definition.

We note that this gold standard does not determine the extent to
which respiratory failure can be attributed to cardiac failure or fluid
overload, which is a departure from the Berlin definition; we elaborate
this limitation in the Discussion. We also emphasize that the measure-
ments used to determine this gold standard were not used in develop-
ment or training of the machine learning algorithm used in this study.
In pilot experiments, we were able to verify the implementation of
ARDS used in this study reproduced ARDS incidence rates observed in
Neto et al [40].

2.4. Experimental methods

For the purposes of evaluation, we reserved 10% of the patient stays
within the MIMIC-III dataset, chosen at random, as a hold-out dataset
and used only the remaining 90% to train, validate, and iterate our pre-
dictive models. This hold-out data represented unseen new data and
could be used to gauge performance of machine learning algorithms
in the setting of novel data prediction. Although we were primarily in-
terested in prediction at 24-h prior to onset, we also trained models
for detection of ARDS at onset and prediction of ARDS at 12-h and 48-
h prior to onset.

All predictive models described in this paper were instances of the
XGBoost gradient boosted tree model [46], implemented using the Py-
thon package. XGBoost is a state-of-the-art tree ensemble method that
builds progressively on the loss generated by weak decision tree base
learners. XGBoost is capable of learning quickly and effectively from
large amounts of data, and is flexible to the point that it is able to
learn even from missing data. By making use of this capability, we
were able to construct predictive models that did not require radio-
graphs or radiology reports tomakemeaningful predictions. It is impor-
tant to note that decision tree models, including tree ensembles, do not
make distributional assumptions, and so are well-suited for settings
where specifying a generative distribution is difficult.

Three of the available hyperparameters for XGBoost were selected
using exhaustive grid searchfive-fold cross validation, performed exclu-
sively on the training data. Five folds for hyperparameter tuning is the
default for hyperparameter grid search due to considerations of compu-
tational constraints, as implemented in Scikit-learn [47]. The
hyperparameters tuned were number of base learners, the learning
rate, and the maximum depth of a base learner. The hyperparameters
were tuned across ranges of values centered around 1000, 0.1, and 5
for number of base learners, learning rate, andmaximumdepth, respec-
tively. The values selected as the centers were determined by iteratively
narrowing the grid search range. These three hyperparameters affected
the values the internal model parameters took over the course of train-
ing, and thus also significantly contributed to the final model
parameters.

The XGBoost predictive models were all iteratively trained and
tested using ten-fold cross validation with early stopping mechanisms
to prevent overfitting. In this validation paradigm, the data were
partitioned into ten random segments, or folds. Training occurred on
nine of the folds, and the remaining fold was used to monitor perfor-
mance for overfitting. Each of the ten models trained were then tested
on the hold-out test set partitioned prior to hyperparameter tuning,
and the final metrics reported were averages for the metrics across
the tenmodels. Metrics reported include area under the receiving oper-
ator curve (AUROC), standard deviation for the areametrics, sensitivity,
specificity, accuracy, recall, diagnostic odds ratio (DOR), and positive
and negative likelihood ratios (LR+ and LR−, respectively). Once all
models were trained, we evaluated performance of the models in
predicting the ARDS labels of the hold-out set and the same perfor-
mance metrics were reported.
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In addition to this main set of experiments validating the effective-
ness of the algorithm as a screening tool developed and tested on the
general patient population, we conducted an additional analysis in
which we developed and evaluated the same algorithm using only me-
chanically ventilated patients. All procedures, from partitioning into
training and hold-out test sets to hyperparameter tuning and training,
were performed identically in this additional experiment.
Fig. 2. Area Under Receiver Operating Characteristic (AUROC) curves and values for ARDS
onset detection and prediction at 12, 24, and 48 h prior to onset. AUROC performance of
XGBoost models on a separate hold-out test set for early ARDS prediction, up to 48 h
prior to onset. Curves are averaged across 10 folds.
3. Results

Among stays meeting the inclusion criteria of Table 1 andwith qual-
ifying duration for the 0-, 12-, 24-, and 48-h offsets, respectively 296
(1.362%), 179 (0.877%), 107 (0.689%), and 25 (0.270%) of stays were la-
beled as ARDS positive according to the gold standard. Analogously, for
the stays meeting the inclusion criteria of Supplemental Table 1 and
with qualifying duration for the 0-, 12-, 24-, and 48-h offsets, respec-
tively 288 (3.199%), 174 (1.998%), 104 (1.366%), and 25 (0.455%) of
stayswere labeled as ARDS positive. Demographic data of all patient en-
counters from the MIMIC-III dataset are presented in Table 2, including
the distribution of admissions to variouswards in the ICU and the distri-
bution of physiologic derangement, represented by MEWS scores, at
admission.

Using the training data, we performed five-fold cross validation on
every combination of hyperparameter values in our pre-specified
hyperparameter ranges. In total there were 72 different hyperparameter
combinations, and with five-fold cross validation, a total of 360 models
were fit on the training data. The evaluation metric used to determine
the best performing hyperparameter combination was AUROC. The
hyperparameters selected to train the final models were: 1000 base
learners, a learning rate of 0.03, and a base learner maximum depth of
six partition levels.

ARDS onset detection and prediction performance is summarized by
the Receiver Operating Characteristic (ROC) curves in Fig. 2. ROC curves
show sensitivity (the fraction of ARDS positive cases that received an
ARDS positive label) as a function of 1 − specificity (the fraction of
ARDS negative cases that received an ARDS positive label). Operating
Table 2
Demographics of subjects included in analyses. Percentage valuesmay not add to 100 due
to rounding. Demographics calculated for patients with stay durations of at least 48 h.

Characteristic Value (%)

Gender Female 4432 (44.7)
Male 5487 (55.3)

Age (years) 18–29 356 (3.6)
30–39 394 (4.0)
40–49 902 (9.1)
50–59 1691 (17.1)
60–69 2335 (23.6)
70+ 4241 (42.8)

ICU ward admission ICU 3937 (39.7)
SICU 1939 (19.5)
CSRU 1515 (15.3)
CCU 1303 (13.1)
TSICU 1225 (12.4)

MEWS severity at admission 0 4099 (41.3)
1 1093 (11.0)
2 1301 (13.1)
3 1193 (12.0)
4 996 (10.0)
5 641 (6.5)
6 340 (3.4)
7 165 (1.7)
8 54 (0.5)
9 22 (0.2)
10 11 (0.1)
11 2 (0.0)
12 2 (0.0)

Median length-of-stay (IQR) days 4 (2, 7)
points of approximately 0.80 sensitivity were selected for each model
to facilitate comparisons of performance. Each ROC curve represents
the average performance under 10-fold cross validation. The classifier
demonstrated an AUROC of 0.905, 0.827, 0.810, and 0.790 for early
ARDS detection and prediction on the test set at 0, 12, 24, and 48 h
prior to onset, respectively (Fig. 2). AUROC curves demonstrated high
sensitivity and specificity of algorithm predictions for ARDS onset up
to 48 h in advance on the test set.

Multiple performance metrics are shown in Table 3, including
AUROC, sensitivity and specificity, representing a variety of clinically
relevant assessments for the general patient population. All metrics
were calculated with common operating points near sensitivity =
0.80 to allow for direct comparisons. Testing performance metrics for
the patient population with at least one hour of mechanical ventilation
are reported in Supplemental Table 3, and the AUROC curves associated
with the performance are shown in Supplemental Fig. 1. In thismechan-
ically ventilated population, our classifier demonstrated AUROC perfor-
mance of 0.843, 0.858, 0.810, and 0.790 for early ARDS detection and
prediction on the test set at 0-, 12-, 24-, and 48- h prior to onset,
respectively.

As shown in Supplemental Table 4, antibiotics administration ap-
pears to yield a significant amount of information about the classifier
across all prediction times in the general patient population. However,
there are few other observable trends in feature importances that are
consistent. It should be noted that the stochastic nature of the XGBoost
algorithm, which extends to the subset of columnswhich it considers in
individual trees in its ensemble, limits the interpretability of feature
importances.

4. Discussion

We have described a method for the early prediction of ARDS using
supervised machine learning models. Model classifiers attained AUROC
values of 0.827, 0.810, and 0.790 for the prediction of ARDS at 12-, 24,
and 48- h prior to onset, respectively (Fig. 2). In addition to high
AUROC values, model classifiers demonstrated high performance for
the detection and prediction of ARDS in regards to sensitivity, specific-
ity, F1, DOR, L+, L-, accuracy, and recall (Table 3). We developed these
models using quantitative clinical features extracted from the patient
EHR data, as well as numerical representations of radiology reports.
Our approach circumvents the issues associated with keyword-based
text analysis by using higher-level representations of the text in radiol-
ogy reports. These numerical representations are used as features in our
model, alongside the patient quantitative, structured data. The use of



Table 3
Model performance metrics on the training and testing (hold-out) sets at 0-, 12-, 24-, and 48-h prediction windows.

Onset 12-h 24-h 48-h

AUROC 0.905
(0.009)

0.827
(0.015)

0.810
(0.035)

0.790
(0.079)

Sensitivity 0.806
(0.000)

0.789
(0.000)

0.818
(0.000)

0.667
(0.000)

Specificity 0.823
(0.014)

0.828
(0.052)

0.683
(0.073)

0.852
(0.063)

F1 0.109
(0.006)

0.079
(0.015)

0.020
(0.018)

0.015
(0.004)

DOR 19.477
(1.829)

19.704
(5.953)

10.452
(3.664)

13.175
(4.485)

LR+ 4.576
(0.354)

4.938
(1.253)

2.719
(0.666)

5.058
(1.495)

LR− 0.235
(0.004)

0.255
(0.017)

0.269
(0.028)

0.393
(0.032)

Accuracy 0.825
(0.010)

0.839
(0.045)

0.817
(0.160)

0.851
(0.061)

Recall 0.774
(0.000)

0.732
(0.017)

0.427
(0.369)

0.333
(0.000)

AUROC: area under the receiving operator curve; DOR: diagnostic odds ratio; LR+ and LR−: positive and negative likelihood ratios, respectively. Values presented aremeans and standard
deviations for the metrics across 10 folds.
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this structured data to complement radiographic reports mitigates de-
lays in obtaining chest radiograph information. In these ways, the
methodwe describe diversifies and improves upon existing approaches
for the prediction of ARDS.

Inability to anticipate which patients are likely to develop ARDS is a
major obstacle to early intervention and to prevention studies [48]. Ep-
idemiologic data suggest that the syndrome is rarely present at the time
of hospital admission or initial emergency department (ED) evaluation,
but develops over a period of hours to days in subsets of at-risk patients
[49-53]. Therefore, evaluating model performance at >24 h preceding
onset is valuable because it facilitates identification of patients who
would benefit from targeted ARDS interventions. Alerting systems for
the longhorizon prediction of ARDShave been validated in similar stud-
ies of mechanically ventilated patients and those with moderate hyp-
oxia [54,55].

While rule-based systems have been used to screen patients for
ARDS by analyzing patient EHR data [48,56-59], non rules-based CDS
systems are capable of efficiently incorporating complex patient data
sets and are therefore less reliant on clinician subjectivity. Several stud-
ies have focused on the development of non rules-basedARDSdetection
systems [17,54,60-64] and represent a promising means for addressing
the challenges clinicians face when identifying pre-existing ARDS. Our
study contributes to this body of literature by addressing the need for
CDS systems that can predict ARDS onset sufficiently in advance to pro-
vide clinicians with time to undertake preventative measures. A previ-
ous study by Taoum et al. described a novel approach for early
prediction of ARDS using continuous physiological signals of heart
rate, respiratory rate, peripheral arterial oxygen saturation and mean
airway blood pressure [39]. Results indicated that ARDS can be detected
in the early phases of occurrencewith a sensitivity of 65% and a specific-
ity of 100%, on average 39 h prior to onset [39]. However, this studywas
undertaken on a small dataset, which limits generalizability and relies
on minute-by-minute samples from physiological monitors to detect
ARDS, which introduces a potential barrier to hospital integration and
which ignores the benefits of unstructured clinical notation data [39].
In contrast, our method uses relatively sparsely sampled structured
data, such as vital signs and lab tests, in addition to unstructured nota-
tion data. The method of Zaglam et al. requires chest radiographs to be
obtained before it may assess the presence or absence of ARDS, which
may hinder the early diagnosis or prediction of ARDS, and does not
use text data [60]. While the rules-based method of Herasevich et al.
uses unstructured radiographic report data, it does so by searching re-
ports for a list of keywords, which is vulnerable to misdiagnosis arising
from the presence of keywords mentioned in ruling out diagnosis, and
which potentially neglects more complicated textual indications of
ARDS [56]. In contrast, our use of Doc2Vec enables the extraction of
rich, contextual information from unstructured texts, including infor-
mation concerning chest radiographs highly relevant to ARDS. Our ap-
proach does so without explicitly requiring radiographs to generate a
prediction score, which allows the tool to be used as a screening tool
for the general population.

Our supervisedmachine learningmodels demonstrate high diagnos-
tic metrics for ARDS recognition and prediction in general patient pop-
ulations (Table 3). The testing curves of Fig. 2 demonstrate the model's
strength in diagnosis at the time of ARDS onset, with an AUROC value
0.905 for the general patient population. These metrics outperform
those reported in other studies [62]. While the quality of diagnostic
metrics decay as they are made increasingly early prior to ARDS onset,
the 12-h prediction of ARDS offers operating pointswith high sensitivity
and specificity. Table 3 illustrates a clinically relevant operating point
with sensitivity of 0.806 and specificity of 0.823. Early prediction of
ARDS onset offers opportunities for increased patientmonitoring, possi-
ble prevention [26-28], and the development of novel preventative
measures.

In the mechanically ventilated subpopulation, our supervised ma-
chine learning models demonstrated a similarly high level of diagnostic
performance for ARDS recognition and prediction (Supplemental
Table 3). Models in both the mechanically ventilated subpopulation
and the general population achieved high sensitivity and specificity
for 12-h prediction of ARDS, with an operating point with sensitivity
of 0.778 and specificity of 0.810 in the mechanically ventilated subpop-
ulation. At the time of ARDS onset, an AUROC of 0.843 was observed in
this subpopulation, compared to AUROC of 0.905 in the general popula-
tion. The performance 12 h prior to onset was higher in the mechani-
cally ventilated subpopulation, with an AUROC of 0.858 compared to
AUROC of 0.827. Overall we observed similar performance in both pa-
tient populations.

We emphasize several limitations of our study. First, the results of
our study may not generalize to analogous experiments conducted
with a definition of ARDS other than the Berlin definition, or different
implementations thereof. Indeed, we use the implementation of the
Berlin definition used by Neto et al. [40], which does not assess the ex-
tent to which respiratory failure can be attributed to cardiac failure or
fluid overload. Strictly speaking, this is a departure from the Berlin def-
inition but, by our assessment, it would be difficult to unambiguously
implement this criterion using available data and without introducing
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bias, for the following reasons. Determining if respiratory failure can be
fully attributed to hydrostatic lung edema, in the absence of a risk factor,
requires an objective assessment. However, it is not always clear which
assessment to undertake, which complicates the incorporation of such
assessments into a gold standard [65]. Moreover, it has been reported
that 30% of ARDS cases include a component of hydrostatic lung
edema [65], so erroneous adjudication of these cases could substantially
under-label encounters as ARDS positive or otherwise introduce signif-
icant bias into ARDS labeling. Second, this study was a retrospective
analysis, which may not translate to prospective improvements in clin-
ical settings. In particular, the retrospective performancemetrics we re-
port cannot capture the complex interaction of clinicians with the
information such a tool would provide, or the limitations of ARDS pre-
vention and treatment options. Finally, this study concerned a single-
center study of ICU data and therefore the results may not translate to
other clinical settings or wards, especially wards of less intensive care.
In future work we hope to develop and evaluate this tool in a variety
of live clinical settings.

5. Conclusion

This analysis demonstrates the use of a gradient boosted tree model
for the early identification and prediction of ARDS using retrospective
patient data. The algorithm developed in this study may assist both in
recruitment for ARDS clinical trials and the improved prediction and
early recognition of ARDS.
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