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A B S T R A C T   

Background: Currently, physicians are limited in their ability to provide an accurate prognosis for COVID-19 
positive patients. Existing scoring systems have been ineffective for identifying patient decompensation. Ma-
chine learning (ML) may offer an alternative strategy. A prospectively validated method to predict the need for 
ventilation in COVID-19 patients is essential to help triage patients, allocate resources, and prevent emergency 
intubations and their associated risks. 
Methods: In a multicenter clinical trial, we evaluated the performance of a machine learning algorithm for 
prediction of invasive mechanical ventilation of COVID-19 patients within 24 h of an initial encounter. We 
enrolled patients with a COVID-19 diagnosis who were admitted to five United States health systems between 
March 24 and May 4, 2020. 
Results: 197 patients were enrolled in the REspirAtory Decompensation and model for the triage of covid-19 
patients: a prospective studY (READY) clinical trial. The algorithm had a higher diagnostic odds ratio (DOR, 
12.58) for predicting ventilation than a comparator early warning system, the Modified Early Warning Score 
(MEWS). The algorithm also achieved significantly higher sensitivity (0.90) than MEWS, which achieved a 
sensitivity of 0.78, while maintaining a higher specificity (p < 0.05). 
Conclusions: In the first clinical trial of a machine learning algorithm for ventilation needs among COVID-19 
patients, the algorithm demonstrated accurate prediction of the need for mechanical ventilation within 24 h. 
This algorithm may help care teams effectively triage patients and allocate resources. Further, the algorithm is 
capable of accurately identifying 16% more patients than a widely used scoring system while minimizing false 
positive results.   

1. Introduction 

COVID-19, caused by the novel coronavirus SARS-CoV-2, remains a 
public health emergency in the United States. The rapidly evolving ev-
idence surrounding pharmaceutical treatments and the lack of estab-
lished preventive resources has made the effective triage of COVID-19 
patients challenging. Prognostic scores such as the Modified Early 
Warning Score (MEWS) [1] guide decision-making for the 

non-COVID-19 critically ill population [2]. However, literature exam-
ining the ability of these scoring systems to predict COVID-19 patient 
prognosis and mortality is limited, and recent research has suggested 
that discriminatory ability of such rules-based scores is moderate to poor 
[3]. 

Epidemiologic predictions indicate that hospitals will continue to see 
large numbers of COVID-19 patients in the coming months [4–6]. Pa-
tient triage will remain important to facilitate the effective allocation of 
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limited resources. Early identification of patients who are at risk of 
decompensation and who are likely to need mechanical ventilation 
would enable physicians to more aggressively monitor these patients, 
which may facilitate a more controlled environment for intubation. 
Inadequate lead time and subsequent emergency intubation of critically 
ill patients is associated with known risks, including peri-intubation 
hypoxia, hypotension, arrhythmia, and cardiac arrest [7]. 

In an effort to address this growing need, researchers have begun to 
develop machine learning (ML)-based models for risk prediction critical 
illness development in COVID-19 patients. Liang et al. [8] developed 
such a model and achieved strong performance in predicting a com-
posite outcome including admission to the intensive care unit (ICU), 
invasive ventilation, or death, and reported an area under the curve 
(AUC) of 0.88. However, the model was only evaluated retrospectively. 
Although retrospective studies are useful for providing preliminary data 
and for guiding future research, many of these analyses are subject to 
threats in internal validity [9,10]. Studies often fail to be replicated in 
prospective clinical settings, leaving uncertainty regarding the perfor-
mance and the utility of the intervention in a live clinical setting [11, 
12]. 

To assess how ML risk prediction models may assist with caring for 
COVID-19 patients in a clinical setting, we have performed the first 
prospective validation of a machine learning algorithm for the predic-
tion of mechanical ventilation requirements in a COVID-19 positive 
population. In the READY clinical trial, we assessed the performance of a 
previously developed algorithm at five US health systems. All pre-
dictions were made two hours after the start of the patient encounter 
using patient data obtained within the first two hours of an emergency 
department (ED) visit. If the patient did not originate in the ED, data as 
used from the first two hours of hospital admission. The algorithm 
predicted the need for mechanical ventilation within the next 24 h. 
Performance was compared to patient evaluation using MEWS, a score 
commonly used to identify likely patient deterioration and mortality. 
The primary endpoint of the study was mechanical ventilation within 
24 h of the prediction. 

The remainder of this paper is organized as follows. Section 2 con-
tains the study methods, including patient enrollment and data pro-
cessing. Section 3 contains the study results. Section 4 contains the 
discussion, including study limitations. Section 5 contains the conclu-
sion of the study. 

2. Methods 

2.1. Patient enrollment 

Patients who enrolled in the READY clinical trial visited the emer-
gency department or were admitted to the hospital at five U.S. hospitals 
between March 24, 2020 and May 4, 2020. Patients were eligible for 
inclusion in the READY clinical trial if their first set of vital sign and lab 
measurements were taken within two hours of ED arrival or admission, 
and if they tested positive for COVID-19 by polymerase chain reaction 
(PCR) during their visit (Fig. 1). In total, 197 patients were eligible for 
inclusion in our study. We enrolled all eligible patients that were 
admitted during the study period. 

Upon admission of an eligible patient to the ED or hospital, data 
collection of available vital sign and lab measurements began 

automatically. The first two hours of data were used to calculate both 
the machine learning algorithm risk prediction score and the compari-
son score (MEWS). Additional details of the implementation of the al-
gorithm are provided as a process state diagram in Supplementary Fig. 1. 
All data were automatically retrieved from the electronic health record 
(EHR) without requiring clinician intervention. Algorithm predictions 
were automatically calculated and were made available to clinicians at 
the hospital to assist with patient care. The outcome of interest was 
COVID-19 patient decompensation leading to mechanical ventilation, 
defined as invasive ventilation requiring endotracheal tube or me-
chanical ventilation not including BIPAP or CPAP. This outcome was 
assessed 24 h after model predictions were made. Those who were 
ventilated were considered to be the positive class; all others were 
considered to be the negative class. 

This study is considered to be of minimal risk for human subjects as 
data collection was passive and did not pose a threat to the subjects 
involved. All patient data was maintained in compliance with the Health 
Insurance Portability and Accountability Act (HIPAA). The project was 
approved by the Pearl Institutional Review Board with a waiver of 
informed consent under study number 20-DASC-122, and is registered 
on ClinicalTrials.gov under study number NCT04390516. 

2.2. Data processing 

The model was created using the XGBoost Classifier method for 
fitting “boosted” decision trees in Python [13]. Gradient boosting, which 
XGBoost implements, is an ensemble learning technique that combines 
results from multiple decision trees to create prediction scores. Each tree 
splits the patient population into smaller and smaller groups, succes-
sively. Each branch splits the patients who enter it into two groups, 
based on whether their value of some feature is above or below some 
threshold. For instance, a branch might divide patients according to 
whether they are male or female, then on the female branch whether 
their creatinine is above or below 0.97 mg/dl, the average creatinine 
level for women. If creatinine is above average, then the patient will 
continue to travel down the higher risk branch; if the creatinine value is 
absent, the algorithm will choose the default branch that results in more 
correctly classified patients in the training data; this may default to the 
low risk or high risk branch depending on the training data. This may 
default to the low risk or high risk branch depending on the training 
data. After some number of branches, the tree ends in a set of “leaves.” 
Each patient falls into exactly one leaf, according to the values of his or 
her measurements. 

Model predictions were generated based only on measurements 
taken in the first two hours after ED arrival or hospital admission. In-
formation on patient demographics was extracted from the EHR. Diag-
nosis of acute conditions present during the patient’s hospital stay, 
including acute kidney injury (AKI), sepsis, pneumonia, and acute res-
piratory distress syndrome (ARDS), were assessed by International 
Classification of Diseases (ICD)-10 code. 

For each patient, exactly 12 values were given to the model. These 
values were diastolic blood pressure (DBP), systolic blood pressure 
(SBP), heart rate (HR), temperature, respiratory rate (RR), oxygen 
saturation (SpO2), white blood cell (WBC), platelet count, lactate, blood 
urea nitrogen (BUN), creatinine, and bilirubin (Supplementary Table 1). 
Missing values were left as “Not a Number” or empty placeholders, 
which are valid inputs to the model. Model prediction scores were 
therefore able to be calculated in the presence of missing data without 
imputing missing measurements. Specifically, each node in the decision 
tree has a default direction that should be traversed in the event that the 
feature in that node is missing. Imputation of missing measurements was 
therefore not performed. The model was trained prior to patient 
enrollment in this study, with training performed on a data set obtained 
from a separate hospital. Additional details of model training are pro-
vided in the supplementary materials and in Supplementary Table 1. 

The extracted measurements were also used to generate MEWS Fig. 1. Patient inclusion flowchart.  
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comparator scores for each patient. MEWS was calculated at the same 
time as the algorithm score and were calculated only when all score 
inputs were available. The algorithm returned prediction scores as 
probabilities (between 0 and 1) that the patient would require me-
chanical ventilation within 24 h. MEWS scores were returned as in-
tegers, which were converted to probabilities by scaling down by the 
maximum score in the data set. For example, given a maximum MEWS 
score of 14, a score of 7 would be scaled down as 7/14 for a probability 
of 0.50. 

Performance metrics were calculated for the algorithm’s ability to 
predict ventilation within 24 h. Reported metrics included sensitivity, 
specificity, positive likelihood ratio, negative likelihood ratio, and 
diagnostic odds ratio. Area under the receiver operating characteristic 
(AUC) was calculated retrospectively based on the probabilities that 
were output by the ML algorithm. The ML algorithm was assessed 
against the MEWS comparator using McNemar’s test with an alpha of 
0.05. 

3. Results 

In total, 197 patients who received a positive diagnosis of COVID-19 
were included in the study. Of these patients, 10 were placed on me-
chanical ventilation within 24 h of the algorithm’s prediction. 
Compared to the general patient population, those who tested positive 
for COVID-19 were likely to be older, more likely to be male, and more 
likely to receive an in-hospital diagnosis of acute respiratory distress 
syndrome (ARDS) or pneumonia (Table 1). Additional clinical infor-
mation is presented in Supplementary Table 2. 

The ML algorithm demonstrated improved performance over MEWS 
for predicting ventilation within 24 h (Table 2). Note that while the 
algorithm is able to compute risk scores in the presence of missing pa-
tient measurements, MEWS was calculated only when all measurements 
were available. The sample on which MEWS was calculated is therefore 
smaller than the full study sample and includes only 183 patients. Given 
the more dire implications of missing patients over providing false 
alerts, we chose an operating point that favored sensitivity over speci-
ficity [14]. The algorithm achieved higher sensitivity (0.90) than MEWS 
(0.78) for a higher value of specificity (Fig. 2). The concurrent increase 
in sensitivity and specificity indicates that the algorithm is capable of 
detecting 16% more patients who will require ventilation as compared 
to the traditional scoring system, while simultaneously reducing false 
positive alerts. Similarly, the algorithm demonstrated improved positive 
and negative likelihood ratios as well as a DOR approximately five times 
higher than MEWS (12.58 vs 2.36). The difference in performance was 
statistically significant (p < 0.05). The algorithm additionally demon-
strated superior positive and negative predictive values when compared 
to MEWS (Supplementary Table 3). The algorithm also obtained a higher 

AUC (0.866) than MEWS when calculated retrospectively (Supplemen-
tary Fig. 2). Confusion matrices for the algorithm and for MEWS are 
presented in the supplement as Supplementary Tables 4 and 5, respec-
tively. Additionally, a detailed breakdown of model inputs and scoring 
system decisions for two patients is presented in Supplementary Table 6. 

4. Discussion 

The READY study is the first clinical trial of a machine learning al-
gorithm for the prediction of ventilation requirements among COVID-19 
patients. We found that the ML algorithm predicted the need for 

Table 1 
Demographic characteristics of patients. All characteristics reported as N (%).   

Demographics All eligible patients (n = 2313) COVID-19 tested (n = 1286) COVID-19 positive (n = 197) 

Age Age < 30 446 (19.3%) 151 (11.7%) 15 (7.6%) 
30–49 516 (22.3%) 267 (20.8%) 30 (15.2%) 
50–59 356 (15.4%) 212 (16.5%) 32 (16.2%) 
60–69 384 (16.6%) 245 (19.1%) 41 (20.8%) 
70–79 340 (14.7%) 213 (16.6%) 44 (22.3%) 
Age > 80 271 (11.7%) 195 (15.2%) 35 (17.8%) 
Age unknown 0 (0.0%) 3 (0.2%) 0 (0.0%) 

Gender Female 1309 (56.6%) 683 (53.1%) 96 (48.7%) 
Male 1004 (43.4%) 603 (46.9%) 101 (51.3%) 
Unknown Sex 0 (0.0%) 3 (0.2%) 0 (0.0%) 

Acute Diagnoses Sepsis 19 (0.8%) 17 (1.3%) 10 (5.1%) 
ARDS 30 (1.3%) 43 (3.3%) 19 (9.6%) 
Pneumonia 44 (1.9%) 52 (4.0%) 26 (13.2%) 
AKI 97 (4.2%) 71 (5.5%) 8 (4.1%) 

ARDS: Acute Respiratory Distress Syndrome. AKI: Acute Kidney Injury. 

Table 2 
Performance metrics of the machine learning algorithm and the Modified Early 
Warning Score.   

MLA (n = 197) MEWS (n = 183) 

AUC 0.866 0.637 
Sensitivity 0.900 0.778 
Specificity 0.583 0.402 
LR+ 2.158 1.301 
LR- 0.172 0.552 
DOR 12.577 2.356 

AUC: Area under the receiver operating characteristic. LR+/-: Positive/Negative 
likelihood ratio. DOR: Diagnostic Odds Ratio. MLA: Machine Learning Algo-
rithm. MEWS: Modified Early Warning Score. 

Fig. 2. Comparison of sensitivity and specificity for the machine learning al-
gorithm and MEWS score. Abbreviations: MLA: Machine Learning Algorithm. 
MEWS: Modified Early Warning Score. 
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mechanical ventilation within 24 h among COVID-19 patients with high 
sensitivity and specificity. This work builds upon our prior work 
developing algorithms to predict patient outcomes including sepsis [15], 
acute kidney injury [16], mortality [17], and patient stability and 
decompensation [18]. While machine learning algorithms have been 
applied to retrospective COVID-19 patient data, no equivalent algo-
rithms have yet been validated in a prospective setting, despite urgent 
need. 

The high sensitivity and specificity achieved by the algorithm 
demonstrate that it is capable of accurate discrimination between 
COVID-19 patients at high risk versus low risk of requiring ventilation 
within 24 h. The high sensitivity, in particular, suggests the algorithm is 
unlikely to provide false negative classifications and that patients in 
need of mechanical ventilation are therefore unlikely to be missed by the 
algorithm. Further, the algorithm’s improvements in sensitivity as 
compared to the traditional scoring system show that the algorithm is 
capable of detecting 16% more patients who will be in need of me-
chanical ventilation; this is a meaningful improvement that can allow for 
effective patient triage and resource allocation. The algorithm also 
achieved this increase in sensitivity while demonstrating a higher 
specificity as compared to MEWS. This suggests the algorithm will 
produce a reduced false positive rate, which may enable more efficient 
allocation of clinician time and of resources. 

Physicians have reported difficulty in predicting the disease course of 
hospitalized COVID-19 patients, as well as difficulties in the identifica-
tion of patients at high risk of rapid decompensation [19,20]. Without 
the benefit of timely warnings, rapid and unexpected deterioration in 
patient conditions come with the high risks of emergency transfers to the 
ICU and emergency intubations. Emergency intubations, in particular, 
have well-documented risks [7,21,22], with at least one complication 
occurring in 22–54% of all intubations performed in critically ill patients 
[23]. Cook et al. found that intubations in the ICU are associated with a 
more than 4-fold higher risk of death or brain damage as compared to 
intubations performed in the operating room; this may be attributable to 
a lack of preparedness due to the increased need for emergency in-
tubations in the ICU setting [24]. Complications related to intubation 
are more likely in patients with limited pulmonary reserve, in patients 
with poor physiological status, and in patients for whom 
pre-oxygenation was not possible [22]. Receiving advance notice of 
patients for whom deterioration is more likely may allow care teams to 
better prepare for intubation procedures and minimize risk to the pa-
tient. Further, early identification of patients for whom ventilation will 
be required may allow physicians to minimize the risk of patient 
self-inflicted lung injury (P-SILI). Vigorous breathing and associated 
high transpulmonary pressures in patients with respiratory distress may 
contribute to the development of P-SILI [25]. Early intubation of pa-
tients requiring mechanical ventilation, when performed with sedation 
and physician control of mechanical power applied to the lung (deter-
mined by transpulmonary pressures and other ventilator-setting deter-
mined variables), may minimize the risk of P-SILI due to vigorous 
spontaneous breathing [26,27]. 

Accurate and early predictions of risk of patient deterioration may 
improve patient triage procedures and resource allocation. The model 
predicted the need for mechanical ventilation using only routinely 
available labs and vital sign data. Demographic data was not required as 
in similar work [8]. Of note, the measurements used as inputs to our 
model were taken during the first two hours after ED arrival or hospital 
admission. Our model was also able to generate predictions in the 
absence of certain inputs. Because the algorithm was developed from 
real world EHR data that contained missing values, we do not anticipate 
missing values to have significantly affected the output of the model. 
This is because some data are missing may be the result of clinicians who 
may have deemed that it was not important to measure that particular 
vital sign or lab value. This can provide useful information about the 
patient in the form of “informative missingness” [28]. This model could 
therefore be used to identify which patients should be considered for 

direct admission to an area of more intensive monitoring, even if they 
appear stable at admission, to prevent emergency transfers and mini-
mize patient morbidity. It is possible that patients at a high risk of 
requiring mechanical ventilation within 24 h have progressed further 
along their disease course as compared to patients who were at low risk 
or, alternatively, are experiencing a more intense host response to the 
virus. High-risk patients may therefore benefit more from supportive or 
immunologic therapies than their low-risk counterparts, who may need 
only antiviral medications. Effective discrimination between these two 
groups may therefore have broad implications for future research into 
patient care beyond triage and admission decisions [29]. 

A literature review has shown that there is limited evidence sup-
porting the use of existing non-ML comparators for the COVID-19 pop-
ulation [30,31]. These studies have largely predicted in-hospital 
mortality rather than short term critical care needs and have generally 
used data from only a single hospital or health center, thus increasing 
uncertainty about the generalizability of results. To fill this gap, there 
have been other attempts to develop ML algorithms to predict patient 
deterioration and mortality in a COVID-19 population. In addition to the 
work by Liang et al. [8], Vaid et al. [32] evaluated the performance of an 
ML algorithm for the prediction of mortality and critical events (defined 
as any of intubation, discharge to hospice, or death) at three, five, seven, 
and ten days. Vaid and colleagues utilized retrospective data from a 
single New York City health system and did not evaluate shorter pre-
diction intervals or examine mechanical ventilation as an individual 
outcome. There is therefore potential ambiguity about how the algo-
rithm may perform in novel clinical settings or for detecting more rapid 
patient deterioration. Singh et al. [33] evaluated the Epic Deterioration 
Index (EDI) prospectively in a population of 174 COVID-19 patients, 
assessing its performance for a composite outcome of requirement of 
ICU care, initiation of mechanical ventilation, or in-hospital death. 
While the EDI showed moderate discrimination for the COVID-19 with a 
maximum AUC of 0.76, the authors again do not examine ventilation as 
an individual outcome. This limits the utility of this score for effective 
patient triage and resource allocation. Further, Singh et al. assessed the 
performance of the EDI at only a single medical center, leaving uncer-
tainty about its performance at medical centers with different patient 
demographic characteristics. While much research has been done on the 
use of ML methods to assist with epidemiologic models and 
population-level forecasting, there remains a significant need for 
investigating the potential for ML methods to assist with prediction and 
decision making on the individual patient level [34]. Several studies 
have explored the potential utility of machine learning for diagnosing 
and detecting COVID-19, largely using imaging data [35,36], though the 
area of patient decompensation prediction remains less explored. 

This study builds upon existing evidence about the ability of algo-
rithms to successfully provide clinical decision support [15–18]. How-
ever, there are several limitations to this study. First, while we included 
patients from several medical centers in our sample, the total sample 
remained relatively small and the outcome of mechanical ventilation 
within 24 h of model prediction was rare in our sample. Building models 
in the emerging stages of a pandemic is difficult due to data limitations 
and uncertainty in the data. This is true of both patient-level and 
population-level prediction [37,38]. These constraints motivate the use 
of flexible, sparse data tolerant algorithms and careful model evaluation. 
Because of the prospective nature of this study, we did not directly assess 
the potential for imbalance in the dataset or consider the use of data 
balancing techniques. It is therefore possible that our dataset is unbal-
anced, which in turn may have impacted the observed sensitivity and 
specificity of the algorithm. Additionally, we cannot make any inference 
about the generalizability of algorithm performance in new settings 
based on the present study and this study design may be impacted by 
multiple hypothesis testing bias. Additionally, because we restricted our 
study population to patients with a confirmed COVID-19 diagnosis, we 
cannot infer the performance of this algorithm for predicting respiratory 
decompensation in prospective settings for non-COVID-19 patients, nor 
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can we make inference about the performance of the algorithm on pa-
tients suspected of, but not ultimately diagnosed with COVID-19. The 
focus of this study was to validate the performance of the predictive 
algorithm and our study protocol therefore did not directly examine 
physician response to algorithm alerts. Therefore, we cannot draw 
conclusions on the effect of patient alerts to influence clinician actions, 
or on patient outcomes. 

5. Conclusion 

A machine learning algorithm for prediction of mechanical ventila-
tion of COVID-19 patients within 24 h of their initial hospital encounter 
demonstrated a high sensitivity (0.90) and specificity (0.58) and out-
performed a commonly used early warning scoring system; the algo-
rithm is capable of detecting 16% more patients than the Modified Early 
Warning Score (p < 0.05) while simultaneously reducing false positive 
alerts. Given the substantial concerns regarding limited resources, 
including mechanical ventilators, during the COVID-19 crisis, accurate 
prediction of patients likely to require mechanical ventilation may help 
to provide significant guidance with respect to triaging patients and 
allocating resources to hospitalized individuals. Further, early identifi-
cation of such individuals may allow for planned ventilation procedures, 
mitigating some of the known risks associated with emergency intuba-
tion. This algorithm may therefore help to improve patient care, mini-
mize clinician burden, and minimize morbidity and mortality during the 
COVID-19 pandemic. 

Summary 

In the READY multicenter clinical trial, we evaluated the perfor-
mance of a machine learning (ML) algorithm for the prediction of 
invasive mechanical ventilation of COVID-19 patients within 24 h of 
their initial hospital encounter. We found that our algorithm achieved 
significantly higher sensitivity (0.90) than MEWS, a scoring system 
commonly used to assess patient status and assign levels of care while 
maintaining a higher specificity (p < 0.05). This accurate advance 
warning of the need for mechanical ventilation of COVID-19 patients is 
important, as physicians have reported difficulty with predicting which 
patients are at high risk of rapid respiratory decompensation. Inade-
quate lead time and subsequent emergency intubation of critically ill 
patients is associated with significant known risks, including peri- 
intubation hypoxia, hypotension, arrhythmia, and cardiac arrest. Ac-
curate advance warning can help improve COVID-19 patient outcomes 
and our algorithm is capable of detecting 16% more patients who will 
require invasive mechanical ventilation than MEWS while also reducing 
false positive alerts. 
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