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Abstract: Therapeutic agents for the novel coronavirus disease 2019 (COVID-19) have been proposed,
but evidence supporting their use is limited. A machine learning algorithm was developed in order
to identify a subpopulation of COVID-19 patients for whom hydroxychloroquine was associated with
improved survival; this population might be relevant for study in a clinical trial. A pragmatic trial
was conducted at six United States hospitals. We enrolled COVID-19 patients that were admitted
between 10 March and 4 June 2020. Treatment was not randomized. The study endpoint was
mortality; discharge was a competing event. Hazard ratios were obtained on the entire population,
and on the subpopulation indicated by the algorithm as suitable for treatment. A total of 290 patients
were enrolled. In the subpopulation that was identified by the algorithm, hydroxychloroquine was
associated with a statistically significant (p = 0.011) increase in survival (adjusted hazard ratio 0.29,
95% confidence interval (CI) 0.11–0.75). Adjusted survival among the algorithm indicated patients
was 82.6% in the treated arm and 51.2% in the arm not treated. No association between treatment
and mortality was observed in the general population. A 31% increase in survival at the end of the
study was observed in a population of COVID-19 patients that were identified by a machine learning
algorithm as having a better outcome with hydroxychloroquine treatment. Precision medicine
approaches may be useful in identifying a subpopulation of COVID-19 patients more likely to be
proven to benefit from hydroxychloroquine treatment in a clinical trial.
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1. Introduction

There are currently limited treatment options available for individuals that are infected with
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-Cov-2), the etiological agent of the novel
coronavirus disease 2019 (COVID-19) [1,2]. Several therapeutic agents have been evaluated in clinical
trials, but robust evidence supporting their safety and efficacy is limited [3–6].

The aminoquinoline hydroxychloroquine is a well characterized medication that is used in the
treatment of malaria and rheumatic diseases [7]. It has been proposed as a treatment for COVID-19
due to its anti-SARS-CoV-2 activity in vitro [8,9]. However, research examining the administration
of hydroxychloroquine in the treatment of COVID-19 has not produced a clear directive for its use.
Much of the initial data on the effect of hydroxychloroquine for COVID-19 were collected from studies
that have either been uncontrolled or underpowered in order to identify meaningful effects on patient
outcomes [5,10]. However, some of this research has indicated that adverse cardiac events, such as
prolonged QT intervals and arrhythmias, have been linked to use of hydroxychloroquine in combination
with azithromycin for the treatment of COVID-19 [10]. More recently, despite early evidence of benefit,
several clinical trials and meta-analyses of trials have found no effect of hydroxychloroquine on
COVID-19 patient outcomes [11–13]. A number of observational studies have reported an association
between hydroxychloroquine treatment and lower mortality, which suggests a positive effect of the
treatment in COVID-19 patients [14–17]. Of note, a multicenter observational study of hospitalized
Italian COVID-19 patients found that the mortality reduction that was observed among patients treated
with hydroxychloroquine was unlikely to be fully explained by residual confounding, as measured
by the E-value [18] of 1.67 [17]. A retrospective cohort study described a similar association between
reduced mortality and long-term hydroxychloroquine use in patients with rheumatic conditions [19].

As in many other trials of a new therapy, the enrolled populations have been very heterogenous
and they may contain subpopulations of patients who would gain benefit or potentially harm from that
therapy. Research has thus far not focused on the identification of such patients for study of potential
for hydroxychloroquine benefit. Instead, controlled trials of hydroxychloroquine use traditional
inclusion and exclusion criteria for entry into the study [7,20]. However, several studies have suggested
a variety of COVID-19 phenotypes, including phenotypes of more severe, rapidly progressing disease
that is associated with higher rates of mortality [16,21], and hyperinflammatory phenotypes that
are associated with organ damage outside the respiratory system [21]. These phenotypes may have
important implications for treatment effectiveness. Indeed, pharmacokinetic models have suggested
that patient weight and sex impact the metabolism of hydroxychloroquine, with important implications
for effective dosing [22]. The CORIST Collaboration has also suggested that patients with elevated
c-reactive protein may experience greater benefits from hydroxychloroquine [17]. It is likely that more
complex patient characteristics and combinations of characteristics also influence hydroxychloroquine
metabolism and efficacy.

Conditions that are unique to individual patients may either restrict or facilitate their
responsiveness to certain drugs. Ongoing research in the COVID-19 therapeutic space reflects
an incomplete understanding of which patients may respond well to a treatment and which patients
may not. Because the efficacy of any given drug is non-homogenous across patients, there is a need for
finer and more accurate stratification of patient risk and response profiles in COVID-19 therapeutic
research. Since the launching of the precision medicine initiative in 2015 [23], the development
of treatments that account for patient heterogeneity have largely focused on personalized cancer
treatment regimens [24–29]. The rapid decrease in genetic sequencing costs has enabled big-data
based identification of genetic biomarkers [29], which may identify patient subpopulations more likely
to respond to certain treatments. However, the widespread adoption of electronic health records
(EHRs) [30] represents an equally valuable and largely untapped source of data for use in precision
medicine studies seeking to identify digital biomarkers that can be used in order to predict patient
responsiveness to treatment options.
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Towards the end of a precision medicine approach, this study presents a pragmatic clinical trial [31]
of a machine learning algorithm for the identification of patients for whom hydroxychloroquine
treatment is associated with predicted survival. This methodology may lead to better patient selection
criteria for clinical trial design.

2. Experimental Section

2.1. Patient Enrollment

Patients who enrolled in the IDENTIFY trial visited the emergency department or they were
admitted to the hospital at six U.S. hospitals between 10 March 2020 and 4 June 2020. Patients were
eligible for inclusion in the IDENTIFY clinical trial if their first set of vital sign and lab measurements
were taken within 4 h of COVID-19 by polymerase chain reaction (PCR) testing and if they tested
positive for COVID-19 during their visit (Figure 1); all other patients were excluded. These criteria
ensured that the algorithm scores were generated for all of the patients near the time of COVID-19
diagnosis. Further details on patient inclusion criteria are presented in the Appendix A. In total,
290 patients were eligible for inclusion in our study. We enrolled all eligible patients visiting the
emergency department or admitted to the hospital during the study period.
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Figure 1. Patient inclusion flowchart.

This study is considered to be of minimal risk for human subjects, as data collection was passive,
and it did not pose a threat to the subjects involved. All patient data was maintained in compliance
with the Health Insurance Portability and Accountability Act (HIPAA). The Pearl Institutional Review
Board (IRB) approved the project was approved with a waiver of informed consent under study
number 20-DASC-121, and it is registered on ClinicalTrials.gov under study number NCT04423991.

2.2. Data Processing

Algorithm prediction scores were generated based on three hours of patient measures. The patient
scores were calculated passively and routinely every hour from the first time of available EHR
measurements. For each patient, their prediction score was considered to be the algorithm score
calculated closest to the time of COVID-19 diagnosis. The algorithm scores were made available to
clinicians during the study period; however, there was no protocol in place requiring clinicians to
access or act on algorithm scores.

The algorithm scores were computed while using diastolic blood pressure (DBP), systolic
blood pressure (SBP), heart rate (HR), temperature, respiratory rate (RR), oxygen saturation (SpO2),
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white blood cell (WBC), platelet count, lactate, blood urea nitrogen (BUN), creatinine, and bilirubin.
Not all data were available for all patients, and the algorithm was capable of generating scores in
the presence of missing data. The machine learning algorithm was developed while using gradient
boosting with XGBoost, and it was developed on independent data prior to implementation in the
IDENTIFY trial.

2.3. Treatment

The patients were considered to be treated with hydroxychloroquine if they received it at any
point during their hospitalization, before discharge or death. This study was non-interventional.
Because of the non-interventional nature of the study, hydroxychloroquine doses and timing varied
across clinical locations and between patients. Although physicians had access to model prediction
scores, no protocol was in place for requiring that physicians access the prediction scores or utilize
them in making treatment decisions.

2.4. Covariates

For each patient, we extracted data on potential demographic, medication, and health-related
confounders. Confounders were selected based on a priori assumptions regarding relationships
between covariates and on previous literature. Potential demographic factors included age and
sex. Potential health-related confounders included initial oxygen saturation and past medical
history, including any cardiovascular disease, history of pulmonary comorbidity (e.g., pneumonia,
COPD), comorbidity that may contribute to immunocompromised state (e.g., cancer, organ transplant,
diabetes, HIV), or other morbidities (including hepatic, renal, or psychiatric diagnosis). Medication
use during hospitalization was also assessed, and the use of remdesivir, macrolide antibiotics,
including azithromycin, angiotensin receptor blockers (ARB), angiotensin-converting-enzyme inhibitors
(ACEI), and nonsteroidal anti-inflammatory drugs (NSAID) were included as a potential confounder.

2.5. End Point

The primary endpoint was time to in-hospital death in the algorithm indicated population.
Those who were discharged alive were considered to have a competing event. The secondary endpoint
was time to in-hospital death in the overall study population. The time to death was assessed in hours.

Additionally, we assessed two secondary endpoints: hospital length of stay and use of
mechanical ventilation. These analyses were exploratory, and they were not adjusted for confounding
factors. The average length of stay and prevalence of mechanical ventilation use was compared
among hydroxychloroquine users and non-users in the general population and in the algorithm
identified population.

2.6. Statistical Analysis

We calculated bivariate frequencies among the treated and untreated patients in order to examine
associations between potential confounders and treatment with hydroxychloroquine. We also examined
bivariate frequencies among patients that were identified by the algorithm to be suitable for treatment
with hydroxychloroquine.

Fine and Gray models for the subdistribution hazard ratio (HR) [32] were used in order to examine
the association between hydroxychloroquine treatment and time to in-hospital death, with hospital
discharge treated as a competing event. This method allows for an estimation of the incidence
of in-hospital death, despite the presence of a competing event that precludes the observation of
in-hospital death. Incidence was estimated while using Breslow’s estimator. All of the individuals who
had not experienced in-hospital mortality were censored on 4 June 2020 (the end of the study period).

We employed multivariable adjustment and inverse probability of treatment weighting (IPTW)
in order to adjust for baseline confounding variables. We used logistic regression to predict the
probability of treatment with hydroxychloroquine in our study population, conditional on all measured
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confounders, and used these predicted probabilities for constructing stabilized IPTW weights. Models
for the subdistribution hazard were weighted while using IPTW with robust variance estimators,
and they were additionally adjusted for age, sex, initial oxygen saturation, and presence of comorbidities.
These confounders were included in both the propensity score and outcome models in order to minimize
the impact of potential model misspecification in either model.

The association between treatment with hydroxychloroquine and the hazard of in-hospital death
was assessed on two populations: those indicated by the algorithm as suitable for treatment with
hydroxychloroquine, and the full study population. We conducted several sensitivity analyses in
order to assess the robustness of our modeling assumptions. For models that were computed on both
the algorithm indicated and general population, we examined subdistribution models adjusted only
through IPTW, and subdistribution models only adjusted by multivariate adjustment.

Associations were visually represented through partial effects plots. Partial effects plots are a
visual representation comparing the baseline survival curve of the model when the hydroxychloroquine
treatment variable is varied from 0 to 1 (untreated versus treated). These plots are useful for comparing
all subjects’ survival as we vary this covariate, all else being held equal. At each time point, the ratio of
the values of these curves gives us the hazard ratio.

We additionally assessed adjusted hazard ratios comparing death among those that were treated
and untreated with hydroxychloroquine across subgroups defined by gender, age, length of stay,
initial oxygen saturation, lab measurements, and common risk scoring systems. These subgroups
were examined within the whole study population (i.e., both those identified and not identified by the
algorithm) with the aim of determining whether any rules-based criteria are capable of identifying
patients for whom hydroxychloroquine is associated with better survival. Additionally, the feature
importance of model predictors was assessed while using the Gain metric, which measures the relative
contribution of each feature to the overall model. A higher Gain score implies greater importance to
the model.

For all analyses, a two-sided alpha of 0.05 was used in order to determine statistical significance.
All of the analyses were performed in Python version 3.6.

3. Results

In total, 290 patients enrolled in our study, 142 of whom received hydroxychloroquine and 43
of whom were indicated by the algorithm as more likely to have better outcomes when treated with
hydroxychloroquine. Of those that are indicated by the algorithm, 26 patients received treatment
with hydroxychloroquine. In the full study population, those who received hydroxychloroquine were
more likely to be male and more likely to be diagnosed with acute comorbid conditions, such as
pneumonia, indicating increased disease severity. Very few patients were prescribed both remdesivir
and hydroxychloroquine. Table 1 displays demographic information. Table A1 presents detailed
demographic information, including medical history. Differences in distribution of acute and chronic
medical conditions were statistically insignificant, with the exception of initial oxygen saturation and
diagnosis of sepsis.
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Table 1. Demographic characteristics of patients. All of the characteristics reported as N (%) for
dichotomous variables with the exception of initial O2 saturation, which was measured as a continuous
variable, as is reported as mean (SD).

Demographics Full Study
Population

Treated with
HCQ

Not Treated
with HCQ

Indicated for Treatment
by Algorithm

Age

Age < 30 10 (3.4%) 9 (6.3%) 1 (0.7%) 4 (9.3%)
30–39 49 (16.9%) 23 (16.2%) 26 (17.6%) 6 (14.0%)
50–59 34 (11.7%) 21 (14.8%) 13 (8.8%) 3 (7.0%)
60–69 63 (21.7%) 28 (19.7%) 35 (23.6%) 10 (23.3%)
70–79 70 (24.1%) 35 (24.6%) 35 (23.6%) 11 (25.6%)

Age > 80 64 (22.1%) 26 (18.3%) 38 (25.7%) 9 (20.9%)

Gender Female 129 (44.5%) 59 (41.5%) 70 (47.3%) 17 (39.5%)

In Hospital
Conditions

Average Initial
O2 Sat * 93.52 (5.52) 92.96 (5.45) 94.07(5.52) 89.16(7.3)

Sepsis +,* 15 (5.2%) 10 (7.0%) 5(3.4%) 6(14.0%)
ARDS + 37 (12.8%) 21 (14.8%) 16(10.8%) 9(20.9%)

Pneumonia + 40 (13.8%) 30 (21.1%) 10(6.8%) 12(27.9%)
AKI + 26 (9.0%) 13 (9.2%) 13(8.8%) 5 (11.6%)

Arrhythmia + 1 (0.3%) 0 (0.0%) 1 (0.7%) 1(2.3%)

Medications

Remdesivir 16 (5.5%) 5 (3.5%) 11 (7.4%) 3 (7.0%)
Macrolide 130 (44.8%) 85 (59.9%) 45 (30.4%) 22 (51.2%)

ARB 22 (7.6%) 7 (4.9%) 15 (10.1%) 2 (4.7%)
ACEI 26 (9.0%) 16 (11.3%) 10 (6.8%) 1 (2.3%)

NSAID 72 (24.8%) 35 (24.6%) 37 (25.0%) 9 (20.9%)
Hcq 142 (49.0%) 142 (100.0%) 0 (0.0%) 26 (60.5%)

Steroids 85 (29.3%) 52 (36.6%) 33 (22.3%) 16 (37.2%)

Role of the Funding Source: No funding was provided for this study. Abbreviations: ARDS: acute respiratory
distress syndrome. AKI: acute kidney injury. ARB: Angiotensin Receptor Blockers. ACEI: Angiotensin-converting
enzyme inhibitors. NSAID: Non-steroidal anti-inflammatory drug. HCQ: Hydroxychloroquine. + Indicates acute
in-hospital conditions identified by International Classification of Disease (ICD)-10 code during the patient hospital
stay. * Denotes statistically significant difference (p < 0.05).

Dosing information was incomplete in our data. However, among patients with available
information on hydroxychloroquine dosing, the most common dosage was 200 mg twice a day,
followed by 400 mg twice a day, each for either four or eight days consecutively. Figure A1 presents
the distribution of timing of first hydroxychloroquine dose. Mean follow-up time for the full study
population was 47.4 days (1138 h). Maximum follow-up time in the algorithm indicated subpopulation
was 1550 h, while the maximum follow-up time in the overall population was 2200 h. In that time,
a total of 63 individuals experienced the outcome of in-hospital mortality. At the conclusion of the
study on June 4th, 204 patients had been discharged alive, while 23 patients remained in the hospital at
the close of the study. During their hospital stay, the patients were tested for COVID-19 while using
PCR at a median time of 5 h after admission. The machine learning algorithm indicated the patient
to be positive for likely to benefit from hydroxychloroquine or negative for unlikely to benefit at a
median time of 6 h after admission. Those that were treated with hydroxychloroquine had, on average,
higher propensity scores than those not treated with hydroxychloroquine (Figure A2). No stabilized
weights had a value greater than 4.2 (Figure A3).

Among those that were identified by the algorithm as suitable for hydroxychloroquine treatment,
hydroxychloroquine was associated with a non-statistically significant increase in survival time in
the crude analysis (hazard ratio (HR) 0.53, 95% CI 0.22–1.52, p = 0.24). This association became
statistically significant after fully adjusting for measured confounders (HR 0.29, 95% CI 0.11–0.75,
p = 0.01). Adjusted survival among algorithm indicated patients was 82.6% in the hydroxychloroquine
treated arm and 51.2% in the arm not treated with hydroxychloroquine, representing a 31.4% absolute
increase in survival for the algorithm indicated patients at the end of the study period (Figure 2A).
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Among the patients not indicated for treatment by the algorithm, no benefit of treatment
with hydroxychloroquine was observed (Figure A4). Similarly, in the full study population,
hydroxychloroquine was not associated with increased survival in the unadjusted analysis (HR
1.20, 95% CI 0.72–1.99, p = 0.49). Adjustment for confounding variables supported that treatment
with hydroxychloroquine was associated with a non-significant decrease in survival (HR 1.59, 95%
CI 0.89–2.83, p = 0.12) (Figure 2B). Sensitivity analyses did not change the direction or magnitude of
these associations.

Figure 2 shows the partial effects plots for patients that were identified by the algorithm and
the full population, respectively. In Figure 2A, it can be seen that there is a statistically significant
difference between the survival curves of patients that were identified by the algorithm who were
treated with hydroxychloroquine as compared to those who are untreated. This difference is not seen
across the two groups in the full population (Figure 2B). Further, we note that, in Figure 2B, the plots
for the hydroxychloroquine treated and untreated groups are similar for times that are greater than
750 h. This means that the hazard ratio is close to 1 after that time period for all patients in our study,
showing that there is no advantage of hydroxychloroquine for patients for whom events occur after
750 h. We also note that, for algorithm identified patients, use of hydroxychloroquine is associated with
the largest impact on survival before 750 h. This means that patients with the death event happening
earlier (likely indicative of more acute conditions), hydroxychloroquine treatment has a large positive
impact, as reflected in the hazard ratio plots.

Hazard ratios for death comparing those treated and untreated with hydroxychloroquine were
statistically insignificant in all predefined subgroups, except for the one identified by the algorithm,
indicating that no rules-based criteria are capable of identifying patients for whom hydroxychloroquine
treatment is associated with increased survival. While several subgroups, including Systemic
Inflammatory Response Syndrome (SIRS) score above 1 and Simplified Acute Physiology Score
(SAPS)-II score above 2, had point estimates that indicated a potential survival benefit that is associated
with hydroxychloroquine treatment, wide confidence intervals preclude making inference about the
true benefit in these groups (Figure 3).
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On average, those patients who were indicated by the algorithm were more likely to experience
mechanical ventilation during their stay than those not indicated (Table A2). This supports that the
algorithm may be identifying more critically ill patients. Among both indicated and non-indicated
groups, those who were treated with hydroxychloroquine were more likely than their untreated
counterparts to be ventilated during their stay. Similarly, algorithm indicated that patients had
longer average hospital length of stay, again supporting greater disease severity in indicated patients.
Among the algorithm indicated patients, those that were treated with hydroxychloroquine experienced
longer hospital length of stay (Table A2). This may be due to fewer deaths early in hospitalization in
treated as compared to untreated patients. This length of stay difference was less pronounced in the
group not indicated by the algorithm.

In assessing the features that are associated with model performance, lactate and creatinine at
and before the time of model predictions were found to be the most important features in the patient
identification algorithm (Figure A5).

4. Discussion

The IDENTIFY trial is the first clinical trial of a machine learning algorithm that identifies patients
for whom a therapeutic intervention is associated with predicted survival in COVID-19. This study
contributes to the growing body of research evaluating the effect of therapeutic agents on COVID-19
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patient outcomes and it provides for more accurate stratification of patient risk and response profiles
than is currently afforded in existing COVID-19 drug trials. In this study, we identified a subset of
approximately 15% of the overall COVID-19 population who were predicted to have better outcomes
when treated with hydroxychloroquine.

When compared to the overall population, the algorithm predicted better outcomes in those who
were, on average, younger, were male, had lower initial oxygen saturation concurrent with pneumonia,
and who demonstrated increased systemic inflammatory response. Uncertainty remains regarding
the mechanism by which hydroxychloroquine may improve COVID-19 patient outcomes; anti-viral
and anti-inflammatory mechanisms have both been proposed [33,34]. Significant evidence has been
found for the proposed anti-inflammation mechanism, specifically through the inhibition of cytokine
production, reducing Toll-like receptor signaling and reducing CD154 expression in T-cells [34,35],
leading to the inhibition of interleukin-6, tumor necrosis factors, and interleukin-1 production. Several
studies have suggested that the low dose hydroxychloroquine given early in disease course prevents
mortality and intensive care unit admission; researchers have proposed that this finding is due to early
anti-inflammatory treatment preventing downstream effects of inflammatory responses [35]. Similarly,
the CORIST collaboration [17] found that hydroxychloroquine may be particularly effective in patients
with elevated CRP levels. Consistent with an anti-inflammation mechanism of hydroxychloroquine,
the algorithm’s most important inputs include markers of distributive shock often occurring from
systemic inflammatory response and cytokine release syndrome. These markers include systolic
blood pressure, oxygen saturation, BUN, creatinine, and lactate (Figure A4), and it is consistent with
algorithm identification of patients with tissue hypoperfusion or organ dysfunction from systemic
inflammatory response. Reducing inflammation may ameliorate this host response to COVID-19.

The results presented in Figure 2 demonstrate that increased survival was observed in a
subpopulation of hydroxychloroquine treated patients that were identified by the algorithm. In a
subpopulation of patients that were identified by the algorithm as suitable for hydroxychloroquine
treatment, hydroxychloroquine was associated with 31.4% absolute increase in survival at the end of
the study period in the adjusted analysis and a statistically significant hazard ratio (HR 0.29, 95% CI
0.11–0.75, p = 0.01). However, in the full study population, hydroxychloroquine was not associated
with increased survival (adjusted HR 1.59, 95% CI 0.89–2.83, p = 0.12). These results support that,
within the subpopulation of patients indicated by the algorithm as having better outcomes with
hydroxychloroquine treatment, hydroxychloroquine was associated with a clinically meaningful
improvement in survival.

Initial evidence supporting the use of hydroxychloroquine is highly variable [5,10,11]. For example,
while one meta-analysis has indicated that hydroxychloroquine use appears to be safe and it
may reduce the radiological progression of COVID-19 [12], another found an association between
hydroxychloroquine use and increased mortality [13]. Some of the observed variability may be
due to a lack of critically ill patients in many trials, small sample sizes, lack of control arms,
and inclusion of concomitant antivirals in existing studies, as well as continued gaps in our knowledge
regarding COVID-19 progression and variability [33]. Concerns about residual confounding make
the interpretation of results difficult, even in larger observational studies that have found a decreased
risk of mortality [15] or ICU admission [36] associated with hydroxychloroquine. In order to combat
these weaknesses, several large randomized controlled trials (RCTs) of hydroxychloroquine for
COVID-19 have been conducted. In the US, the National Institutes of Health (NIH) announced
recruitment for a robust clinical trial for hydroxychloroquine to be used in conjunction with the
antibiotic azithromycin [37], although recruitment has since been stopped due to insufficient
enrollment [38]. The UK based RECOVERY trial found no survival benefit that was associated
with use of high-dose hydroxychloroquine among COVID-19 patients [11], and a second NIH funded
trial of hydroxychloroquine alone was halted when no evidence of benefit was found [39]. Several other
studies [40–42] have found that, while hydroxychloroquine does not appear to increase the risk of
harm, hydroxychloroquine does not appear to provide a survival benefit in the COVID-19 population.
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However, British regulators have approved continued enrollment in the COPCOV trial investigating
hydroxychloroquine for the prevention of COVID-19. COPCOV enrollment had previously been
paused following the null findings of the RECOVERY trial [43]. Other studies have found no effect of
hydroxychloroquine for preventing infection when used as postexposure prophylaxis [19,44]. Many of
these studies, including the RECOVERY trial and the World Health Organization (WHO) funded
SOLIDARITY trial [45], examined the effect of only high-dose hydroxychloroquine, and the treatment
timing varied across studies. For example, the RECOVERY trial administered hydroxychloroquine
treatment an average of nine days after diagnosis. Recent evidence has suggested a survival benefit from
lower hydroxychloroquine doses [14,17], as well as fewer side effects. The dosing of hydroxychloroquine
treatment reported in earlier studies as compared to more recent studies may help to explain the
variability in results, as well as the evidence of harm from hydroxychloroquine found in some studies.

Because of the variability in findings and uncertainty regarding the true efficacy of
hydroxychloroquine for COVID-19, some researchers have cautioned that widespread use of the drug
in clinical settings may be premature and harmful [46], although this recommendation is based on a
lack of efficacy evidence, rather than convincing evidence against its efficacy. Other researchers have
noted that studies establishing the efficacy of the treatment in COVID-19 patients are essential for
promoting appropriate utilization of existing stores of hydroxychloroquine and ensuring that patients
with rheumatic disease have continued access to the drug [47,48].

As our understanding of hydroxychloroquine treatment in COVID-19 continues to evolve
and, because drug efficacy is variable across patients, it is a worthwhile research effort to identify
subpopulations of patients who may benefit from receiving the treatment in order to improve
patient outcomes. Studies have identified patient demographics, comorbidities, and biochemical
biomarkers that roughly correlate with diverse physiological responses to SARS-COV-2 infection [49–52],
recent work has aimed to define clinical criteria related to these variable responses, including defining
a phenotype of hyperinflammatory COVID-19 [52], which may be helpful for identifying high-risk
hospitalized COVID-19 patients. However, clinical trials of COVID-19 drug treatment efficacy face the
challenge of adequate enrollment to appropriately account for heterogeneity in patient response to
infection and treatment regimes. Additionally, it appears that responsive subgroups may be difficult to
identify based on overt patient characteristics. Mahevas et al. [53] did not find that hydroxychloroquine
improved patient outcomes in admitted patients who required oxygen. Our subgroup analysis
found that no single patient characteristic was able to accurately predict positive hydroxychloroquine
response. IDENTIFY is the first clinical drug trial that uses a machine learning algorithm to identify
subpopulations of patients for whom hydroxychloroquine is associated with a favorable risk-benefit
profile. Recent studies have suggested that the variable responses to hydroxychloroquine among
COVID-19 patients may be due to factors, such as patient weight and sex [22]. Our work builds on
these studies by examining the potential for more complicated combinations of patient characteristics
to also impact hydroxychloroquine response. This work additionally builds on recent observational
studies of hydroxychloroquine and COVID-19 [7,14] and it contributes to the larger global need for
precision medicine approaches to the clinical treatment of COVID-19.

There is evidence regarding the role of machine learning as clinical decision support to guide
medical treatment directions. However, these studies are largely confined to domains outside
epidemiology and pharmacology [54], and more work is needed in order to examine precision
medicine approaches to COVID-19 therapeutic treatments. Although an initial study by Gautret et al.
reported an effective reduction of viral burden in treated patients [5], subsequent work has not upheld
this finding [10]. Among the recent observational studies on hydroxychloroquine, Rosenberg et al.
did not find a significant association between hydroxychloroquine treatment and differences in
in-hospital mortality [20]. However, the authors noted that the observational design of the study
limits the interpretation of their findings. The authors also noted that the patients who received
hydroxychloroquine treatment were more likely to possess certain traits, such as having pre-existing
medical conditions and impaired respiratory or liver function [20]. Similarly, Geleris et al. did not



J. Clin. Med. 2020, 9, 3834 11 of 18

find a significant association between hydroxychloroquine administration and changes in the risk
of intubation or death, but also noted that the observational design of the study limits resulting
interpretations regarding the benefit or harm of hydroxychloroquine treatment [7].

This study has several limitations. While the model that is described in this study may offer an
improved approach to identifying patient populations who may benefit from hydroxychloroquine
treatment and while the model performs favorably in the context of recent COVID-19 work, we note
that the subdistribution hazard does not have a clear causal interpretation [55]. Consequently, these
findings on their own do not necessarily support a causal relationship between hydroxychloroquine
treatment and direct survival benefit. A survival benefit was observed in a population of COVID-19
patients identified by the algorithm as being likely responders to hydroxychloroquine treatment,
but we cannot determine, from the results of this study, what impact hydroxychloroquine may have on
survival in general or on populations of patients who were not identified by the algorithm as being
likely responders to the treatment. We were unable to explore the potential biological mechanisms
for the survival differences found in our study. Future work comparing biological data, such as RNA
titers between the treated and untreated groups and between algorithm identified and non-identified
patients, would improve upon this limitation of our study.

The relatively small sample size of our study, as well as the small number of algorithm-indicated
patients who received hydroxychloroquine, represents another limitation that may have reduced the
power of our analyses or introduced selection bias. The distribution of follow-up time was uneven
between groups. The algorithm indicated that subpopulation had a shorter maximum follow-up
time, which may have introduced bias into the time-to-event analysis and interpretation of results.
However, we believe any impact of this uneven follow-up time to be minimal, as the hazard ratios
for all groups are close to 1 after 750 h. Additionally, information that was related to dosing of
hydroxychloroquine treatment was incomplete in our observational data. Therefore, we were unable
to assess dose-response relationships or control for confounding by dose of treatment. Finally, we note
that, as in all non-randomized research, unmeasured confounders and multiple hypothesis testing bias
may pose a threat to the validity of these results.

Further work confirming the findings of this study could include a validation cohort from a larger
observational database. The characteristics of the machine learning population could also be adapted
for enrollment in a standard clinical trial or for a clinical trial that randomizes subpopulations that
are identified by electronic data analysis. The machine learning algorithm that is presented in this
study could also be used to perform an adaptive clinical trial. In an adaptive trial design, the machine
learning algorithm would identify those patient subgroups that are most likely to show no benefit from
an intervention or who would be harmed by an intervention; these subgroups would then be dropped
from the randomization scheme. Such studies could enrich COVID-19 therapeutics trials with positive
responders, improve safety by enrolling those with a favorable risk-benefit profile, and improve patient
outcomes that are related to COVID-19.

5. Conclusions

A machine learning algorithm has identified a subpopulation of patients as having better outcomes
with hydroxychloroquine treatment. Within this algorithm identified subpopulation, treatment with
hydroxychloroquine was associated with a 31.4% absolute increase in survival at the end of the study
period in the adjusted analysis. These patients represented approximately 15% of the overall COVID-19
study population, which indicated that a large subset of patients may benefit from hydroxychloroquine
treatment globally. These results support that precision medicine may have important applications
towards identifying a subpopulation of COVID-19 patients that warrant further study. The replication
of these results in a larger, interventional randomized clinical trial will serve to confirm these findings
and provide further clarification on COVID-19 treatment guidelines.
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Appendix A

Study Inclusion Criteria

• Patient was admitted to the hospital as an inpatient
• Patient tested positive for COVID 19
• Patient had electronic health record data collected within four hours of receiving a COVID-19 test

Table A1. Detailed demographic characteristics of patients. All characteristics reported as N (%).

Demographics Full Study
Population

Treated with
Hydroxychloroquine

Not Treated with
Hydroxychloroquine

Indicated for
Treatment by

Algorithm

Age

Age < 30 10 (3.4%) 9 (6.3%) 1 (0.7%) 4 (9.3%)
30–39 49 (16.9%) 23 (16.2%) 26 (17.6%) 6 (14.0%)
50–59 34 (11.7%) 21 (14.8%) 13 (8.8%) 3 (7.0%)
60–69 63 (21.7%) 28 (19.7%) 35 (23.6%) 10 (23.3%)
70–79 70 (24.1%) 35 (24.6%) 35 (23.6%) 11 (25.6%)

Age > 80 64 (22.1%) 26 (18.3%) 38 (25.7%) 9 (20.9%)

Gender Female 129 (44.5%) 59 (41.5%) 70 (47.3%) 17 (39.5%)

Diagnoses

Initial O2 Sat 93.52 (5.52) 92.96 (5.45) 94.07 (5.52) 89.16 (7.3)
Sepsis 15 (5.2%) 10 (7.0%) 5 (3.4%) 6 (14.0%)
ARDS 37 (12.8%) 21 (14.8%) 16 (10.8%) 9 (20.9%)

Pneumonia 40 (13.8%) 30 (21.1%) 10 (6.8%) 12 (27.9%)
AKI 26 (9.0%) 13 (9.2%) 13 (8.8%) 5 (11.6%)

Arrhythmia 1 (0.3%) 0 (0.0%) 1 (0.7%) 1 (2.3%)

Medications

Remdesivir 16 (5.5%) 5 (3.5%) 11 (7.4%) 3 (7.0%)
Macrolide 130 (44.8%) 85 (59.9%) 45 (30.4%) 22 (51.2%)

Hydroxy-chloroquine 142 (49.0%) 142 (100.0%) 0 (0.0%) 26 (60.5%)
ARB 22 (7.6%) 7 (4.9%) 15 (10.1%) 2 (4.7%)
ACEI 26 (9.0%) 16 (11.3%) 10 (6.8%) 1 (2.3%)

NSAID 72 (24.8%) 35 (24.6%) 37 (25.0%) 9 (20.9%)
Steroids 85 (29.3%) 52 (36.6%) 33 (22.3%) 16 (37.2%)

History

Cardio 41 (14.1%) 11 (7.7%) 30 (20.3%) 2 (4.7%)
Renal 5 (1.7%) 4 (2.8%) 1 (0.7%) 0 (0.0%)

Hepatic 5 (1.7%) 3 (2.1%) 2 (1.4%) 0 (0.0%)
Diabetes 27 (9.3%) 9 (6.3%) 18 (12.2%) 1 (2.3%)

Organ Transplant 1 (0.3%) 1 (0.7%) 0 (0.0%) 0 (0.0%)
HIV 1 (0.3%) 0 (0.0%) 1 (0.7%) 0 (0.0%)

Psych 21 (7.2%) 8 (5.6%) 13 (8.8%) 0 (0.0%)
COPD 5 (1.7%) 2 (1.4%) 3 (2.0%) 0 (0.0%)
Cancer 32 (11.0%) 15 (10.6%) 17 (11.5%) 1 (2.3%)
ETOH 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
PNA 63 (21.7%) 31 (21.8%) 32 (21.6%) 9 (20.9%)

ARB = Angiotensin Receptor Blockers; ACEI = Angiotensin Converting Enzyme Inhibitors; NSAID = Nonsteroidal
Anti-inflammatory Drug; COPD = Chronic Obstructive Pulmonary Disease; ETOH = Ethanol Alcohol;
PNA = Pneumonia.
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Table A2. Preliminary analysis of hospital length of stay and mechanical ventilation prevalence among
those treated and untreated with hydroxychloroquine. Results are unadjusted for confounding factors.
Hospital length of stay reported as mean (SD) in hours; mechanical ventilation reported as N (%).

Algorithm Indicated Not Algorithm Indicated

Treated Untreated Treated Untreated

Hospital Length of Stay 374.6 (288.1) 147.2 (170.7) 256.2 (268.7) 229.1 (344.9)

Mechanical Ventilation 14 (53.8%) 6 (35.3%) 29 (25.0) 19 (14.5%)
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