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Abstract

Background: Racial disparities in health care are well documented in the United States. As machine learning methods become
more common in health care settings, it is important to ensure that these methods do not contribute to racial disparities through
biased predictions or differential accuracy across racial groups.

Objective: The goal of the research was to assess a machine learning algorithm intentionally developed to minimize bias in
in-hospital mortality predictions between white and nonwhite patient groups.

Methods: Bias was minimized through preprocessing of algorithm training data. We performed a retrospective analysis of
electronic health record data from patients admitted to the intensive care unit (ICU) at a large academic health center between
2001 and 2012, drawing data from the Medical Information Mart for Intensive Care–III database. Patients were included if they
had at least 10 hours of available measurements after ICU admission, had at least one of every measurement used for model
prediction, and had recorded race/ethnicity data. Bias was assessed through the equal opportunity difference. Model performance
in terms of bias and accuracy was compared with the Modified Early Warning Score (MEWS), the Simplified Acute Physiology
Score II (SAPS II), and the Acute Physiologic Assessment and Chronic Health Evaluation (APACHE).

Results: The machine learning algorithm was found to be more accurate than all comparators, with a higher sensitivity, specificity,
and area under the receiver operating characteristic. The machine learning algorithm was found to be unbiased (equal opportunity
difference 0.016, P=.20). APACHE was also found to be unbiased (equal opportunity difference 0.019, P=.11), while SAPS II
and MEWS were found to have significant bias (equal opportunity difference 0.038, P=.006 and equal opportunity difference
0.074, P<.001, respectively).

Conclusions: This study indicates there may be significant racial bias in commonly used severity scoring systems and that
machine learning algorithms may reduce bias while improving on the accuracy of these methods.

(JMIR Public Health Surveill 2020;6(4):e22400) doi: 10.2196/22400
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Introduction

Health care disparities are well documented in the United States
[1]. These disparities affect the accessibility of care, quality of
care, and health outcomes of racial minority groups [1-4].
Causes of these inequities are multifaceted and include
socioeconomic factors, institutionalized racism, and a
historically motivated lack of trust between minority populations
and health care providers [1,5,6].

Technology can play a powerful role toward the effort of both
exposing and minimizing disparities in health care. In particular,
artificial intelligence (AI) and machine learning approaches
have the potential to either maintain or reduce systemic
inequities in health care settings and outcomes. Much attention
has been given to the fact that AI and machine learning systems
trained on data that reflects racial disparities will in turn learn
and perpetuate such disparities and their influence on the health
care system [7]. Several studies have found evidence that
machine learning–based algorithms commonly used in health
care settings exhibit differential accuracy by race [8,9]. A recent
study by Vyas et al [10] found that algorithms used across a
broad range of specialties, including cardiology, urology, and
oncology, may exhibit differential accuracy across race even
after so-called race corrections. By attempting to correct for
race, these tools may in fact make it more difficult for nonwhite
patients to receive appropriate care. For example, the authors
note that these corrections move black patients systematically
toward lower risk scores when computing cardiac mortality risk
[11] and estimated kidney function [12], while deeming
nonwhite patients higher risks for complications for procedures
such as vaginal birth following a cesarean delivery [13] and
certain cardiac surgeries [14]. Vyas et al [10] conclude that the
use of these race-corrected tools may not only impact the quality
and timeliness of care that nonwhite patients receive but may
also enshrine certain racial disparities as fact, making disparities
more difficult to minimize.

Despite the potential for bias found in specialized scoring
systems, insufficient attention has yet been paid to how early
warning scores and mortality scores intended for the general
patient population may similarly perpetuate racial disparities
in health outcomes. Many studies on the development and
validation of scoring systems such as the Modified Early
Warning Score (MEWS) [15] report findings from
predominantly white patient samples [16] or do not report race
data at all [15,17,18]. Literature directly examining the potential
for racial bias in these scoring systems has found evidence of
differential performance by race. Several studies of the
emergency severity index (ESI) [19] have found systematic
underestimation of acuity scores for nonwhite patients in general
[20], pediatric [21], and veteran populations [22] when
controlling for a wide range of important confounders. Similarly,

a study of MEWS performance in an Asian population found
reduced accuracy as compared with validation studies performed
on predominantly white samples [23]. These findings have wide
ranging implications and suggest the use of such scores may
accentuate health disparities wherever they are used. Pressingly,
their use in triaging patients during the COVID-19 crisis may
contribute to disparities in COVID-19 outcomes.

To address this issue, we have developed a machine learning
algorithm for the prediction of patient mortality [24], designed
to minimize the potential for racial bias in algorithm prediction
scores. We compare this algorithm performance to commonly
used patient severity scoring systems, including MEWS, the
Simplified Acute Physiology Score II (SAPS II) [25], and the
Acute Physiologic Assessment and Chronic Health Evaluation
(APACHE) [26] score across white and nonwhite racial groups.
This study aims to determine whether a machine learning
algorithm can minimize racial bias in patient risk predictions
as compared with commonly used rules-based methods.

Methods

Data Processing
Data were drawn from the Medical Information Mart for
Intensive Care–III (MIMIC-III) database [27]. The database
consists of data on more than 53,000 patient encounters for
patients admitted to the intensive care unit at a large academic
health center between 2001 and 2012. Patients were included
if they had at least 10 hours of available measurements after
intensive care unit (ICU) admission, had at least one of every
measurement used for model prediction, and had recorded
race/ethnicity data. Patients for whom race/ethnicity was missing
or recorded as declined to state or unknown were considered to
have no available race/ethnicity data. Patient inclusion is shown
in Figure 1. In assessing the potential for differential
performance across racial groups, patients were grouped as
non-Hispanic white or nonwhite.

Data were extracted on age and 13 commonly used patient
measurements, including diastolic blood pressure, systolic blood
pressure, heart rate, temperature, respiratory rate, oxygen
saturation, white blood cell, platelets, creatinine, Glasgow coma
scale, fraction of inspired oxygen, and potassium and sodium
levels. Data on each measure were gathered hourly for 10 hours,
beginning at the time of ICU admission. If multiple values of
a single measure were recorded during a given hour, their
average was taken and used. Not all measures were available
for all patients. Outliers in the data, defined as being above the
99th or below the 1st percentile for the given feature, were
deleted and marked as missing. The algorithm is capable of
making predictions in the presence of missing data. When
calculating the tabular scores for the comparators, missing values
added 0 points towards the total score.
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Figure 1. Attrition diagram for patient inclusion.

Machine Learning Model
The machine learning mortality predictor was developed using
XGBoost [28], a gradient boosting technique. Gradient boosting
combines results from multiple decision trees, where each
decision tree divides patients into successively smaller groups
based on their vital sign values. For example, one branch of a
decision tree might divide patients into two groups depending
on if their heart rate was over or under 90 beats per minute.
Each tree ends in a set of leaves, where each patient is
represented in a single leaf based on their set of measurements.
The particular leaf to which the patient is sent on each decision
tree yields a risk score. The score from each tree is then
weighted and totaled to give the model’s final prediction for
the specified patient. A variety of parameter combinations
controlling tree depth and maximum weights assigned to each
leaf were used to identify the best performing model.

To train the model to make mortality predictions without
discrimination, we preprocessed our training data in two steps.
These steps were performed with the intention of removing
aspects of the data that reflect systemic inequities in health
across racial groups while maintaining the aspects of the data
that reflected relevant patient measurements and outcomes.
First, the patients were separated into age groups defined as
younger than 18 years, 18 to 29 years, 30 to 39 years, 40 to 49
years, 50 to 59 years, 60 to 69 years, and 70 years and older.
This was to control for the high correlation between age and
mortality rate. Second, individual training examples were given
weights based on mortality status and race within each age strata
using a reweighting scheme. This was done by weighting each
training example in the following way: first the expected
probability of observing the given combination of race and
mortality was calculated by assuming statistical independence
of these variables. This was then compared with the observed
probability of the variable combination found in the training
data. This ratio of expected to observed probability was then
used as the weight for each training example. This ratio can be
considered a demographic prevalence ratio and is based on the
method originally described by Kamarin and Calders [7].
Example code for this preprocessing method is included in
Multimedia Appendix 1.

To train and test the machine learning algorithm, we used
10-fold cross-validation. Reported performance metrics are an
average of each model’s performance on each of the 10 test
sets. Several baseline models were assessed as candidates for
development. We compared the performance of gradient-boosted
trees (using XGBoost), logistic regression, and multilayer
perceptron models for mortality prediction. We found that
gradient-boosted trees performed best at baseline and chose

them as the primary model type on which to perform all
subsequent experiments. Pairwise comparisons between
gradient-boosted trees and alternative model types without
preprocessing were made using a Student t test for area under
the receiver operating characteristic (AUROC) and the
McNemar test for distinguishing predictions.

Statistical Analysis
The predictive performance of all comparators was assessed by
associating each comparator score with the mortality rate found
in training encounters that had the same score. In addition, the
highest probability observed for a score was carried forward to
the next score value if it was found to have a lower probability
of death to ensure increasing scores were monotonically
associated with an increased probability of the outcome.
Comparator scores were assessed on each of the 10 folds used
in cross-fold model validation.

For all models, predictions were made after 24 hours of ICU
data were collected, with the mortality outcome defined as any
in-hospital mortality at end of stay. Overall predictive
performance of comparators and the machine learning algorithm
are reported using the area under the receiver operating
characteristic, sensitivity, specificity, diagnostic odds ratio
(DOR), and positive and negative likelihood ratios (LR+ and
LR–).

To assess whether the machine learning algorithm and each
comparator identified similar at-risk individuals, the McNemar
test was used, comparing performance of the two systems at a
sensitivity around 0.75. Performance was assessed both on the
overall sample and after stratifying by race. Racial categories
were defined as white and nonwhite, where only non-Hispanic
white patients were included in the white category (eg, a white
Hispanic patient was considered nonwhite for the purpose of
this analysis).

Model bias was assessed using the equal opportunity difference
statistic. Equal opportunity difference measures the distribution
of false negative results across two groups produced by each
prediction method and assesses the difference in the false
negative rate between the groups. False negative results are of
particular importance for mortality prediction tools as a failure
to provide an alert for a patient at risk of mortality may lead to
a lack of timely care and an increased risk of death. Under an
unbiased predictor, the false negative rate should not differ
between the racial groups; the expected value of the equal
opportunity difference statistic for an unbiased predictor is
therefore 0. Significance of the equal opportunity difference
statistic was assessed using a Student t test under the null
hypothesis that the equal opportunity difference was equal to
0. Equal opportunity difference statistics were assessed
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separately for all prediction models. For all statistical tests, an
alpha of .05 was used.

The final XGBoost model, trained on preprocessed data as
described above, was compared with the XGBoost model trained
on unpreprocessed data to assess the impact of the preprocessing
techniques. Finally, we also assessed feature importance using
Shapley values for machine learning models developed with
and without preprocessing of the training data to assess the
impact of the preprocessing procedure. We additionally
compared feature importance for the final machine learning
model across white and nonwhite racial groups.

Results

Patient demographic data from the MIMIC-III [22] database
for the full cohort and after stratifying by race are presented in
Table 1. A total of 28,460 patients were included in the final
study sample, 23,263 (81.74%) of whom were white and 5197
(18.26%) of whom were nonwhite.

Several models were considered for predicting mortality. When
compared with logistic regression and multilayer perceptron
classification methods for their mortality prediction
performance, the XGBoost model exhibited improved prediction
performance as measured by AUROC, sensitivity, specificity,
DOR, and LR+/– (Multimedia Appendix 1). Comparisons
between XGBoost and other classification models were
statistically significant (P<.001).

The final XGBoost model was trained to be unbiased by
preprocessing the training data to ensure statistical equivalence
of false negative rates for both white and nonwhite patient
populations. The model outperformed all rules-based comparator
scoring systems in predicting in-hospital mortality, achieving
an AUROC of 0.78. The algorithm demonstrated improved
sensitivity, specificity, DOR, and LR+/– as compared with
comparator scores (Table 2). All pairwise comparisons between
the algorithm and a rules-based comparator were statistically
significant (P<.001, by McNemar test). Performance results for
the machine learning algorithm on white and nonwhite patient
populations are included in Multimedia Appendix 1.

Table 1. Demographic and medical information history for the Medical Information Mart for Intensive Care–III study sample by discharge status.

Nonwhite subsetWhite subsetFull sampleCharacteristic

Deceased
(n=1322)

Living
(n=3875)

Deceased
(n=7896)

Living
(n=15,394)

Deceased
(n=9191)

Living
(n=19,269)

597 (45.16)1816 (46.86)3672 (46.66)6313 (41.01)4269 (46.45)8129 (42.19)Female, n (%)

67.73 (15.5)54.99 (17.7)71.91 (14.4)61.4 (17.1)71.31 (14.7)60.11 (17.4)Age, mean (SD)

394 (29.80)933 (24.08)6928 (88.04)12,790 (83.08)8085 (87.97)15,869 (82.36)Cardiovascular, n (%)

201 (15.20)391 (10.09)3243 (41.21)4376 (28.43)3867 (42.07)5778 (29.99)Renal, n (%)

1157 (87.52)3079 (79.46)1517 (19.28)2903 (18.86)1854 (20.17)3843 (19.94)Diabetes, types 1 and 2, n (%)

624 (47.20)1402 (36.18)1032 (13.11)1428 (9.28)1139 (12.39)1626 (8.44)COPDa, n (%)

52 (3.93)195 (5.03)269 (3.42)534 (3.47)321 (3.49)729 (3.78)Sepsis, n (%)

322 (24.36)712 (18.37)2123 (26.98)2944 (19.12)2517 (27.39)3877 (20.12)Severe sepsis, n (%)

184 (13.92)401 (10.35)1070 (13.60)1432 (9.30)1271 (13.83)1823 (9.46)Septic shock, n (%)

431 (32.60)1469 (37.91)2563 (32.57)5882 (38.21)2994 (32.58)7351 (38.15)Mental health disorder, n (%)

107 (8.09)198 (5.11)1864 (23.69)2553 (16.58)2186 (23.78)3265 (16.94)Pneumonia, n (%)

337 (25.49)940 (24.26)836 (10.62)1201 (7.80)1020 (11.10)1602 (8.31)Liverb, n (%)

431 (32.60)644 (16.62)2335 (29.67)2297 (14.92)2766 (30.09)2941 (15.26)Cancer, n (%)

40 (3.03)86 (2.22)62 (0.79)115 (0.75)102 (1.11)201 (1.04)HIV/AIDS, n (%)

aCOPD: chronic obstructive pulmonary disease.
bAcute and subacute necrosis of liver, chronic liver disease and cirrhosis, liver abscess and sequelae of chronic liver disease, and other disorders of
liver.

The algorithm was found to be unbiased as measured by the
equal opportunity difference score, with an insignificant P value
for model bias and an equal opportunity difference of 0.016
(P=.20). The APACHE score was also found to be unbiased,
with an equal opportunity difference of 0.019 (P=.17). However,
both SAPS II and MEWS were found to have statistically
significant bias as measured by equal opportunity difference,
with equal opportunity difference values of 0.038 and 0.074
and P values of .006 and <.001, respectively.

Preprocessing of the training data was found to make a
meaningful difference in model performance. On an XGBoost
model trained on unpreprocessed data, the equal opportunity
difference was found to be larger, at 0.023 (P=.07). A full
comparison of models trained with and without data processing
are presented in Multimedia Appendix 1. In assessing feature
importance for models trained with and without preprocessing
of the training data, we found differences in the importance of
age and Glasgow coma scale features (Figure 2A), which may

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e22400 | p. 4http://publichealth.jmir.org/2020/4/e22400/
(page number not for citation purposes)

Allen et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


reflect differences in the distribution of age and life expectancy
across race in the general population and differences in disease
severity upon presentation to the ICU across racial groups. In
particular, nonwhite patients were generally found to be younger
than white patients before preprocessing, indicating an

interaction between age and race on mortality outcome
prediction. After preprocessing of the training data, feature
importance was found to be similar for all measured features
across racial groups (Figure 2B).

Table 2. Performance metrics for the machine learning algorithm and all comparator scores for mortality prediction on the total study population.

SAPS-IIdAPACHEcMEWSbMLAaStatistics

0.6600.7000.5800.780AUROCe

0.6740.6780.5230.751Sensitivity

0.5110.5960.5770.656Specificity

2.1573.1061.4995.739DORf

1.3781.6781.2382.181LR+g

0.6390.5400.8260.380LR–h

aMLA: machine learning algorithm.
bMEWS: Modified Early Warning Score.
cAPACHE: Acute Physiologic Assessment and Chronic Health Evaluation.
dSAPS II: Simplified Acute Physiology Score II.
eAUROC: area under the receiver operating characteristic.
fDOR: diagnostic odds ratio.
gLR+: positive likelihood ratio.
hLR–: negative likelihood ratio.

Figure 2. Comparison of feature importance between (A) models trained with and without preprocessing of the training data and (B) white and nonwhite
subgroups on the model trained with preprocessing of the training data.

Discussion

Principal Findings
In this study, we examined whether a machine learning
algorithm is capable of predicting mortality with reduced racial
bias as compared with commonly used early warning and
severity scoring systems. We found evidence of statistically

significant bias as measured by the equal opportunity difference
measures of MEWS and SAPS II, but no evidence of bias for
the machine learning algorithm or for APACHE. In addition,
the algorithm displayed better overall performance as measured
by AUROC, sensitivity, specificity, DOR, and LR+/–. The
combination of superior predictive performance and unbiased
performance indicate that the machine learning algorithm may
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be more appropriate than any of the comparator scores for risk
stratification in clinical settings as the algorithm appears most
capable of accurately identifying all patients at risk of in-hospital
mortality.

The ability to demonstrate that a risk prediction tool can be used
without inherent racial bias is a crucial step toward minimizing
health care disparities. Large, well-designed cohort studies have
found significant evidence of racial bias in commonly used
scoring systems, including reduced accuracy of MEWS when
implemented on an Asian population [23] and consistently lower
acuity scores for nonwhite patients when examining the
performance of the ESI [20-22]. This body of evidence indicates
that nonwhite patients may be subject to inferior health care.
Importantly, these persistent racial disparities in the provision
of health care may be reflective of systematic failure to identify
minority patients most likely to require immediate or aggressive
care.

Continued research on ways to deliver equitable performance
from systems such as MEWS and the ESI is essential. However,
while machine learning algorithms can be subject to racial bias
in their own right [7,9], well-designed algorithms may offer
advantages over traditional scoring systems. These advantages
are only present, however, if the algorithm is intentionally
designed with the aim of minimizing racial bias. This paper has
demonstrated the success of a preprocessing technique [7] that
has benefits of making minimal alterations to the training data
and not requiring costly alterations to the model training
procedure. When machine learning prediction models are
developed without this or a similar technique to counteract racial
bias, algorithms used within the health system have been found
to be less accurate for racial minorities. Obermeyer and
colleagues [8] found that an algorithm commonly used across
the United States had reduced accuracy for nonwhite patients
due to the use of health care costs standing as a proxy for overall
patient risk in the model output. Further, they found that
minority patients generally had higher comorbidity index values
when compared with white patients with the same overall risk
score, indicating a systematic underestimation of the health care
needs of nonwhite patients. Obermeyer and colleagues [8] found
that reframing the model prediction task (in this case, from
predicted costs to a measure of predicted health) minimized
racial bias in model accuracy. A study by Chen et al [9] similarly
found that machine learning algorithms displayed higher error
rates when predicting psychiatric readmission and mortality in
minority patients as compared with white patients.

This research seeks to fill a gap beyond addressing bias that can
occur with clinical diagnostic testing. In addition, it adds to the
body of evidence regarding how systemic health care
inequalities emerge and persist and shows that poor calibration
of traditional prediction scores as pertains to nonwhite

populations can potentially influence health care decision
making in the United States [29,30]. Although more research
is needed to assess bias and disparities across a wide range of
settings and applications, the potential harm that can come from
bias in simple severity scores is made clear by recent
recommendations surrounding COVID-19. Several
recommendations for providing care and allocating limited
resources have suggested that aggressive treatment be provided
to patients based on assessment by MEWS, SAPS II, APACHE,
or similar severity scores [31-33]. However, bias in severity
scores used to triage COVID-19 patients could widen existing
racial disparities in COVID-19 [34], and this work makes clear
that less biased methods are achievable and preferable for such
uses.

Limitations
This study has several important limitations. First, the study
used retrospective patient medical records. There are known
inaccuracies in the way that race and ethnicity are recorded in
medical records; this in turn may have impacted the accuracy
of our results [35]. Additionally, our analysis compared
nonwhite to white patients and did not consider more nuanced
categories of racial identity. There may be nuances in the
accuracy of the algorithm and its comparators across these
groups. We also note that overall, our study sample was largely
white, with only around 18% of our sample reporting nonwhite
race or ethnicity. The predominance of white patients in this
study may have biased results; validation of this model on
additional datasets is warranted. Research has indicated the
potential for bias in the way that seemingly objective measures
such as heart rate, respiratory rate, and spirometry, as well as
pain assessments, are made across racial groups [22,36-38]. Lab
measurements also pose the potential for bias due to the
incorporation of race corrections in measures such as estimated
glomerular filtration rate. Additionally, there are further ways
of measuring and assessing discriminatory predictive
performance not assessed in this paper. This is a retrospective
study, and we therefore cannot determine the impact this
algorithm will have on patient care in a live health care setting.

Conclusions
We believe that the potential for bias through this mechanism
is mitigated in our machine learning method as compared with
rules-based methods. This is due to our incorporation of several
laboratory measures collected using standardized methods not
incorporating race corrections, use of measurements obtained
at a variety of time points and therefore likely assessed by a
variety of clinicians, and statistical methods used to minimize
bias during the model training process. Despite its limitations,
the algorithm examined in this study shows promise as one of
many necessary steps toward decreasing racial disparities in
health care.

Acknowledgments
We gratefully acknowledge Megan Handley for her work in editing this manuscript.

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e22400 | p. 6http://publichealth.jmir.org/2020/4/e22400/
(page number not for citation purposes)

Allen et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Authors' Contributions
AA contributed to the data analysis and writing of this study. SM contributed to the conception and revision of this study. AS,
EP, JH, AGS, HB, GB, RPD, AM, and GB contributed to the writing and revision of this study. JC contributed to the conception
of this study. RD contributed to the conception and revision of this study.

Conflicts of Interest
AA, SM, AS, EP, JH, AGS, GB, JC, and RD are employees or contractors of Dascena. The other authors declare no conflict of
interest.

Multimedia Appendix 1
Supplementary materials.
[DOCX File , 21 KB-Multimedia Appendix 1]

References

1. Weinstein JN. In: Weinstein JN, Geller A, Negussie Y, Baciu A, editors. Communities in Action: Pathways to Health
Equity. Washington: National Academies Press; 2017.

2. Wheeler SM, Bryant AS. Racial and ethnic disparities in health and health care. Obstet Gynecol Clin North Am 2017
Mar;44(1):1-11. [doi: 10.1016/j.ogc.2016.10.001] [Medline: 28160887]

3. Siddiqi AA, Wang S, Quinn K, Nguyen QC, Christy AD. Racial disparities in access to care under conditions of universal
coverage. Am J Prev Med 2016 Feb;50(2):220-225. [doi: 10.1016/j.amepre.2014.08.004] [Medline: 25441235]

4. Fiscella K, Sanders MR. Racial and ethnic disparities in the quality of health care. Annu Rev Public Health 2016;37:375-394.
[doi: 10.1146/annurev-publhealth-032315-021439] [Medline: 26789384]

5. Musa D, Schulz R, Harris R, Silverman M, Thomas SB. Trust in the health care system and the use of preventive health
services by older black and white adults. Am J Public Health 2009 Jul;99(7):1293-1299. [doi: 10.2105/AJPH.2007.123927]
[Medline: 18923129]

6. Feagin J, Bennefield Z. Systemic racism and U.S. health care. Soc Sci Med 2014 Feb;103:7-14. [doi:
10.1016/j.socscimed.2013.09.006] [Medline: 24507906]

7. Kamiran F, Calders T. Data preprocessing techniques for classification without discrimination. Knowl Inf Syst 2011 Dec
3;33(1):1-33. [doi: 10.1007/s10115-011-0463-8]

8. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of
populations. Science 2019 Oct 25;366(6464):447-453. [doi: 10.1126/science.aax2342] [Medline: 31649194]

9. Chen IY, Szolovits P, Ghassemi M. Can AI help reduce disparities in general medical and mental health care? AMA J
Ethics 2019 Feb 01;21(2):E167-E179 [FREE Full text] [doi: 10.1001/amajethics.2019.167] [Medline: 30794127]

10. Vyas DA, Eisenstein LG, Jones DS. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms.
N Engl J Med 2020 Aug 27;383(9):874-882. [doi: 10.1056/NEJMms2004740] [Medline: 32853499]

11. Peterson PN, Rumsfeld JS, Liang L, Albert NM, Hernandez AF, Peterson ED, American Heart Association Get With the
Guidelines-Heart Failure Program. A validated risk score for in-hospital mortality in patients with heart failure from the
American Heart Association Get with the Guidelines program. Circ Cardiovasc Qual Outcomes 2010 Jan;3(1):25-32. [doi:
10.1161/CIRCOUTCOMES.109.854877] [Medline: 20123668]

12. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular
filtration rate. Ann Intern Med 2009 May 05;150(9):604-612 [FREE Full text] [Medline: 19414839]

13. Grobman WA, Lai Y, Landon MB, Spong CY, Leveno KJ, Rouse DJ, National Institute of Child Health and Human
Development (NICHD) Maternal-Fetal Medicine Units Network (MFMU). Development of a nomogram for prediction of
vaginal birth after cesarean delivery. Obstet Gynecol 2007 Apr;109(4):806-812. [doi: 10.1097/01.AOG.0000259312.36053.02]
[Medline: 17400840]

14. Shahian DM, Jacobs JP, Badhwar V, Kurlansky PA, Furnary AP, Cleveland JC, et al. The Society of Thoracic Surgeons
2018 adult cardiac surgery risk models: Part 1—background, design considerations, and model development. Ann Thorac
Surg 2018 May;105(5):1411-1418. [doi: 10.1016/j.athoracsur.2018.03.002] [Medline: 29577925]

15. Subbe CP, Slater A, Menon D, Gemmell L. Validation of physiological scoring systems in the accident and emergency
department. Emerg Med J 2006 Nov;23(11):841-845 [FREE Full text] [doi: 10.1136/emj.2006.035816] [Medline: 17057134]

16. Salottolo K, Carrick M, Johnson J, Gamber M, Bar-Or D. A retrospective cohort study of the utility of the modified early
warning score for interfacility transfer of patients with traumatic injury. BMJ Open 2017 May 09;7(5):e016143. [doi:
10.1136/bmjopen-2017-016143] [Medline: 28490566]

17. Fullerton JN, Price CL, Silvey NE, Brace SJ, Perkins GD. Is the Modified Early Warning Score (MEWS) superior to
clinician judgement in detecting critical illness in the pre-hospital environment? Resuscitation 2012 May;83(5):557-562.
[doi: 10.1016/j.resuscitation.2012.01.004] [Medline: 22248688]

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e22400 | p. 7http://publichealth.jmir.org/2020/4/e22400/
(page number not for citation purposes)

Allen et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=publichealth_v6i4e22400_app1.docx&filename=42856d9b38003aaa6fd6910dd5d1d74b.docx
https://jmir.org/api/download?alt_name=publichealth_v6i4e22400_app1.docx&filename=42856d9b38003aaa6fd6910dd5d1d74b.docx
http://dx.doi.org/10.1016/j.ogc.2016.10.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28160887&dopt=Abstract
http://dx.doi.org/10.1016/j.amepre.2014.08.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25441235&dopt=Abstract
http://dx.doi.org/10.1146/annurev-publhealth-032315-021439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26789384&dopt=Abstract
http://dx.doi.org/10.2105/AJPH.2007.123927
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18923129&dopt=Abstract
http://dx.doi.org/10.1016/j.socscimed.2013.09.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24507906&dopt=Abstract
http://dx.doi.org/10.1007/s10115-011-0463-8
http://dx.doi.org/10.1126/science.aax2342
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31649194&dopt=Abstract
https://journalofethics.ama-assn.org/article/can-ai-help-reduce-disparities-general-medical-and-mental-health-care/2019-02
http://dx.doi.org/10.1001/amajethics.2019.167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30794127&dopt=Abstract
http://dx.doi.org/10.1056/NEJMms2004740
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32853499&dopt=Abstract
http://dx.doi.org/10.1161/CIRCOUTCOMES.109.854877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20123668&dopt=Abstract
http://europepmc.org/abstract/MED/19414839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19414839&dopt=Abstract
http://dx.doi.org/10.1097/01.AOG.0000259312.36053.02
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17400840&dopt=Abstract
http://dx.doi.org/10.1016/j.athoracsur.2018.03.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29577925&dopt=Abstract
http://europepmc.org/abstract/MED/17057134
http://dx.doi.org/10.1136/emj.2006.035816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17057134&dopt=Abstract
http://dx.doi.org/10.1136/bmjopen-2017-016143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28490566&dopt=Abstract
http://dx.doi.org/10.1016/j.resuscitation.2012.01.004
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22248688&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


18. Patel R, Nugawela MD, Edwards HB, Richards A, Le Roux H, Pullyblank A, et al. Can early warning scores identify
deteriorating patients in pre-hospital settings? A systematic review. Resuscitation 2018 Nov;132:101-111 [FREE Full text]
[doi: 10.1016/j.resuscitation.2018.08.028] [Medline: 30171976]

19. Emergency Severity Index (ESI): a triage tool for emergency departments. Rockville: Agency for Healthcare Research and
Quality URL: https://www.ahrq.gov/professionals/systems/hospital/esi/index.html [accessed 2020-10-07]

20. Schrader CD, Lewis LM. Racial disparity in emergency department triage. J Emerg Med 2013 Feb;44(2):511-518. [doi:
10.1016/j.jemermed.2012.05.010] [Medline: 22818646]

21. Zook HG, Kharbanda AB, Flood A, Harmon B, Puumala SE, Payne NR. Racial differences in pediatric emergency department
triage scores. J Emerg Med 2016 May;50(5):720-727 [FREE Full text] [doi: 10.1016/j.jemermed.2015.02.056] [Medline:
26899520]

22. Vigil JM, Coulombe P, Alcock J, Kruger E, Stith SS, Strenth C, et al. Patient ethnicity affects triage assessments and patient
prioritization in U.S. Department of Veterans Affairs Emergency Departments. Medicine (Baltimore) 2016 Apr;95(14):e3191
[FREE Full text] [doi: 10.1097/MD.0000000000003191] [Medline: 27057847]

23. Ho LO, Li H, Shahidah N, Koh ZX, Sultana P, Hock Ong ME. Poor performance of the modified early warning score for
predicting mortality in critically ill patients presenting to an emergency department. World J Emerg Med 2013;4(4):273-278
[FREE Full text] [doi: 10.5847/wjem.j.issn.1920-8642.2013.04.005] [Medline: 25215131]

24. Mohamadlou H, Panchavati S, Calvert J, Lynn-Palevsky A, Le S, Allen A, et al. Multicenter validation of a machine-learning
algorithm for 48-h all-cause mortality prediction. Health Informatics J 2020 Sep;26(3):1912-1925. [doi:
10.1177/1460458219894494] [Medline: 31884847]

25. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North
American multicenter study. JAMA 1993;270(24):2957-2963. [Medline: 8254858]

26. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care
Med 1985 Oct;13(10):818-829. [Medline: 3928249]

27. Johnson AEW, Pollard TJ, Shen L, Lehman LH, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care
database. Sci Data 2016;3:160035 [FREE Full text] [doi: 10.1038/sdata.2016.35] [Medline: 27219127]

28. Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. San Francisco California USA; 2016 Presented at:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016; San
Francisco. [doi: 10.1145/2939672.2939785]

29. Weinstein JN. The state of health disparities in the United States. In: Weinstein JN, Baciu A, Negussie Y, Geller A, editors.
Communities in Action: Pathways to Health Equity. Washington: National Academies Press; 2017:57-98.

30. Hall WJ, Chapman MV, Lee KM, Merino YM, Thomas TW, Payne BK, et al. Implicit racial/ethnic bias among health care
professionals and its influence on health care outcomes: a systematic review. Am J Public Health 2015 Dec;105(12):e60-e76.
[doi: 10.2105/AJPH.2015.302903] [Medline: 26469668]

31. Feinstein MM, Niforatos JD, Hyun I, Cunningham TV, Reynolds A, Brodie D, et al. Considerations for ventilator triage
during the COVID-19 pandemic. Lancet Respir Med 2020 Jun;8(6):e53 [FREE Full text] [doi:
10.1016/S2213-2600(20)30192-2] [Medline: 32444270]

32. Maves RC, Downar J, Dichter JR, Hick JL, Devereaux A, Geiling JA, ACCP Task Force for Mass Critical Care. Triage of
scarce critical care resources in COVID-19: an implementation guide for regional allocation: an expert panel report of the
Task Force for Mass Critical Care and the American College of Chest Physicians. Chest 2020 Jul;158(1):212-225 [FREE
Full text] [doi: 10.1016/j.chest.2020.03.063] [Medline: 32289312]

33. Solomon MZ, Wynia MK, Gostin LO. Covid-19 crisis triage—optimizing health outcomes and disability rights. N Engl J
Med 2020 Jul 30;383(5):e27. [doi: 10.1056/NEJMp2008300] [Medline: 32427434]

34. Webb Hooper M, Nápoles AM, Pérez-Stable EJ. COVID-19 and racial/ethnic disparities. JAMA 2020 Jun
23;323(24):2466-2467. [doi: 10.1001/jama.2020.8598] [Medline: 32391864]

35. Polubriaginof FCG, Ryan P, Salmasian H, Shapiro AW, Perotte A, Safford MM, et al. Challenges with quality of race and
ethnicity data in observational databases. J Am Med Inform Assoc 2019 Aug 01;26(8-9):730-736 [FREE Full text] [doi:
10.1093/jamia/ocz113] [Medline: 31365089]

36. Cao Y, Contreras-Huerta LS, McFadyen J, Cunnington R. Racial bias in neural response to others' pain is reduced with
other-race contact. Cortex 2015 Sep;70:68-78 [FREE Full text] [doi: 10.1016/j.cortex.2015.02.010] [Medline: 25798570]

37. Hoffman KM, Trawalter S, Axt JR, Oliver MN. Racial bias in pain assessment and treatment recommendations, and false
beliefs about biological differences between blacks and whites. Proc Natl Acad Sci USA 2016 Apr 19;113(16):4296-4301.
[doi: 10.1073/pnas.1516047113] [Medline: 27044069]

38. Braun L. Race, ethnicity and lung function: a brief history. Can J Respir Ther 2015;51(4):99-101 [FREE Full text] [Medline:
26566381]

Abbreviations
AI: artificial intelligence
APACHE: Acute Physiologic Assessment and Chronic Health Evaluation

JMIR Public Health Surveill 2020 | vol. 6 | iss. 4 | e22400 | p. 8http://publichealth.jmir.org/2020/4/e22400/
(page number not for citation purposes)

Allen et alJMIR PUBLIC HEALTH AND SURVEILLANCE

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S0300-9572(18)30819-0
http://dx.doi.org/10.1016/j.resuscitation.2018.08.028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30171976&dopt=Abstract
https://www.ahrq.gov/professionals/systems/hospital/esi/index.html
http://dx.doi.org/10.1016/j.jemermed.2012.05.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22818646&dopt=Abstract
http://europepmc.org/abstract/MED/26899520
http://dx.doi.org/10.1016/j.jemermed.2015.02.056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26899520&dopt=Abstract
https://doi.org/10.1097/MD.0000000000003191
http://dx.doi.org/10.1097/MD.0000000000003191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27057847&dopt=Abstract
http://europepmc.org/abstract/MED/25215131
http://dx.doi.org/10.5847/wjem.j.issn.1920-8642.2013.04.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25215131&dopt=Abstract
http://dx.doi.org/10.1177/1460458219894494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31884847&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=8254858&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=3928249&dopt=Abstract
http://europepmc.org/abstract/MED/27219127
http://dx.doi.org/10.1038/sdata.2016.35
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27219127&dopt=Abstract
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.2105/AJPH.2015.302903
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26469668&dopt=Abstract
http://europepmc.org/abstract/MED/32444270
http://dx.doi.org/10.1016/S2213-2600(20)30192-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32444270&dopt=Abstract
http://europepmc.org/abstract/MED/32289312
http://europepmc.org/abstract/MED/32289312
http://dx.doi.org/10.1016/j.chest.2020.03.063
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32289312&dopt=Abstract
http://dx.doi.org/10.1056/NEJMp2008300
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32427434&dopt=Abstract
http://dx.doi.org/10.1001/jama.2020.8598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32391864&dopt=Abstract
http://europepmc.org/abstract/MED/31365089
http://dx.doi.org/10.1093/jamia/ocz113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31365089&dopt=Abstract
https://linkinghub.elsevier.com/retrieve/pii/S0010-9452(15)00067-2
http://dx.doi.org/10.1016/j.cortex.2015.02.010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25798570&dopt=Abstract
http://dx.doi.org/10.1073/pnas.1516047113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27044069&dopt=Abstract
http://europepmc.org/abstract/MED/26566381
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26566381&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


AUROC: area under the receiver operating characteristic
DOR: diagnostic odds ratio
ESI: emergency severity index
ICU: intensive care unit
LR+: positive likelihood ratio
LR–: negative likelihood ratio
MEWS: Modified Early Warning Score
MIMIC-III: Medical Information Mart for Intensive Care–III
SAPS II: Simplified Acute Physiology Score II
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