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Abstract
Deep venous thrombosis (DVT) is associated with significant morbidity, mortality, and increased healthcare costs. Standard
scoring systems for DVT risk stratification often provide insufficient stratification of hospitalized patients and are unable to
accurately predict which inpatients are most likely to present with DVT. There is a continued need for tools which can predict
DVT in hospitalized patients. We performed a retrospective study on a database collected from a large academic hospital,
comprised of 99,237 total general ward or ICU patients, 2,378 of whom experienced a DVT during their hospital stay. Gradient
boosted machine learning algorithms were developed to predict a patient’s risk of developing DVT at 12- and 24-hour windows
prior to onset. The primary outcome of interest was diagnosis of in-hospital DVT. The machine learning predictors obtained
AUROCs of 0.83 and 0.85 for DVT risk prediction on hospitalized patients at 12- and 24-hour windows, respectively. At both
12 and 24 hours before DVT onset, the most important features for prediction of DVT were cancer history, VTE history, and
internal normalized ratio (INR). Improved risk stratification may prevent unnecessary invasive testing in patients for whom DVT
cannot be ruled out using existing methods. Improved risk stratification may also allow for more targeted use of prophylactic
anticoagulants, as well as earlier diagnosis and treatment, preventing the development of pulmonary emboli and other sequelae of
DVT.
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Introduction

Venous thromboembolism (VTE), including deep venous

thrombosis (DVT), is a leading cause of cardiovascular disease,

with significant associated morbidity and mortality in the

United States and globally.1 DVT is also associated with sig-

nificant healthcare spending. Estimates of total DVT-related

costs range from $7 to $35 billion USD per year.2 Precluding

timely and accurate diagnosis, DVT can lead to acute life-

threatening complications (i.e. pulmonary embolism) as well

as chronic conditions (i.e. post thrombotic syndrome and recur-

rent DVT).3 Therefore, research on the identification and pre-

vention of DVT has focused on reducing morbidity, mortality,

and medical spending.

Genetic and acquired risk factors affect the course of the

disease. Acquired risk factors such as prolonged immobility

and bed rest, surgery, and impaired blood flow are associated

with hospital stay and acute illness.4 For reasons likely related

to these risk factors, inpatient populations are known to be at a

higher risk of DVT as compared to community dwellers.5 Early

identification of DVT in inpatient populations is essential to

minimize these risks. Because definitive diagnosis of DVT

requires expensive or invasive imaging testing, several meth-

ods have been developed to stratify patients by their DVT risk

and identify patients for whom testing is appropriate. Clinical
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decision rules for the stratification of DVT risk include the

Wells Criteria for assessing VTE risk in patients suspected of

thrombosis6 and the International Medical Prevention Registry

on Venous Thromboembolism (IMPROVE) score for assessing

VTE risk among hospitalized patients.7 In particular, the Wells

score may be useful to rule out DVT in low-risk segments of

the population,8 and the use of the 2 level Wells score is rec-

ommended by the European Society of Cardiology consensus

statement on DVT diagnosis.9 However, the performance of the

Wells score is heterogeneous across age groups, and between

patients with and without a history of VTE.10

Studies have found that many of the existing DVT scores in

clinical use provide insufficient risk stratification of hospita-

lized patients11,12 and are not able to accurately predict which

patients are likely to present with DVT. To improve clinician

ability to identify and monitor patients at a high risk for devel-

opment of DVT, we have developed and retrospectively vali-

dated machine learning algorithms to predict DVT onset 12 and

24 hours in advance.

Materials and Methods

Data Processing

Patient data were extracted from patient electronic medical

records (EMR) at a large academic medical center. We

included data extracted from inpatients seen between May

2011 and November 2017. These data included information

on patient demographics, diagnoses, vital signs and laboratory

data, and medication usage. Data were collected passively, and

were de-identified in compliance with the Health Insurance

Portability and Accountability Act (HIPAA). Studies per-

formed on de-identified data constitute non-human subject

studies, and therefore our study did not require Institutional

Review Board approval.

Gold Standard and Definition of Onset Time

The primary endpoint was diagnosis of in-hospital DVT. DVT

was identified through the presence of an International Classi-

fication of Diseases (ICD) 9 and 10 codes for DVT in the

inpatient chart (Supplementary Table 1), followed by adminis-

tration of an anticoagulant (lenovox®, heparin, aspirin, or war-

farin). Anticoagulants were identified by performing a search

for character strings matching the generic or brand names for

each drug. Time of DVT onset was considered to be the time

when an anticoagulant was first ordered. All encounters not

meeting these criteria were considered to be negative for DVT,

and were assigned an onset time at random to assess the accu-

racy of model predictions. To include all possible DVT patients

in our positive class, no further restrictions were placed on the

types of DVT that were included in this study. In particular,

DVT were not required to be symptomatic for inclusion, and

imaging results were not required or reviewed for the purposes

of this study.

For the purposes of this study, we included data from all

patients with inpatient encounters and with complete chart

data. Chart data were considered incomplete if they did not

contain raw data over at least a period of 3 hours and, in the

case of the positive class, over a sufficient period of time to

allow for a prediction 12 or 24 hours in advance of the DVT

event as defined by our gold standard. Raw data refers to any of

the lab values or clinical measurements in Supplemental

Table 2. Patient inclusion information for patients included in

the 12- and 24-hour prediction experiments is provided in

Table 1. A total of 94,642 patients were included in training

and testing of the 12-hour DVT prediction model, 1,230 of

whom met our DVT gold standard. For training and testing the

24-hour DVT prediction model, a total 90,576 patients were

included, 999 of whom met our gold standard.

Clinical measurements, patient diagnoses, and laboratory

data were extracted to compute algorithm scores (Supplemen-

tary Table 2). All data were collected in the 3 hours preceding

prediction time. Prediction time was defined as 12 hours before

DVT onset time for 12-hour predictions, and 24 hours before

DVT onset time for 24 hour predictions. Clinical and lab mea-

surements were included as hourly measurements and as the

change in value between hourly measurements. Lab values

were included as boolean values indicating the presence of

an abnormal lab result.

Machine Learning Model

Two machine learning models were built: one to predict DVT

12 hours in advance of onset, and one to predict DVT 24 hours

in advance of onset. The machine learning classifiers were

created using gradient boosting for fitting “boosted” decision

trees and were implemented by the XGBoost method. Gradient

boosting is an ensemble learning technique that combines

results from multiple decision trees to create prediction scores.

Each decision tree splits the patient population into succes-

sively smaller groups. Each tree branch splits the patients who

enter it into 2 groups based on whether their covariate value is

above or below a given threshold (e.g. a branch may divide

patients according to whether their temperature is above or

below 100�F.) If a given value is missing for a patient, a

“default” path is taken based on the path that correctly classi-

fies the most patients in the training data. After some number of

branches, the decision tree ends in a set of “leaves” with each

patient represented in exactly 1 leaf, according to the values of

their measurements. All patients in each “leaf” of the decision

tree are predicted to have the same risk of DVT. The covariate

and threshold value involved in each split are selected by an

Table 1. Patient Inclusion for 12- and 24-Hour Prediction
Experiments.

12 hour 24 hour

All inpatients 131,466 131,466
Inpatients with complete chart data 94,642 90,576
Inpatients with DVT 1,230 999
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algorithm designed to minimize loss on the training data and

without overfitting by regularizing the loss function.

Prior to model training, data were randomly split in a 80:20

ratio of training to test data, where test data was only evaluated

after completion of training process. A cross-validated grid

search and 5 fold cross validation were used for the purposes

of hyperparameter optimization. For each algorithm, four-fifths

of the encounters from within the training set were randomly

selected to train a model, and the remaining one-fifth were used

as a validation set. This was repeated a total of 5 times, with a

cross-validated grid search performed during each iteration,

across a sparse parameter grid. The combination of hyperpara-

meters that performed the best across all 5 iterations was

selected for incorporation into the final respective model,

which was subsequently trained on the entirety of the training

data set in XGBoost before being tested on the holdout test set,

which had not been seen during any of the model training

process. To prevent model overfitting, we included a hyper-

parameter for the early stopping of the iterative tree-addition

procedure in the cross-validated grid search. For 12 hour pre-

dictions, we restricted tree depth to a maximum of 4 branching

levels, and set the XGBoost learning rate parameter 0.06. For

24 hour predictions, we restricted tree depth to a maximum of

5 branching levels and set the XGBoost learning rate parameter

0.05. For both models, we restricted tree ensembles to 100 trees

to limit computational burden.

Statistical Analysis

Model performance was assessed using area under the receiver

operating characteristic (AUROC), sensitivity, specificity,

diagnostic odds ratio (DOR), and positive and negative like-

lihood ratios (LRþ and LR-). Model performance was assessed

separately for prediction of DVT 12 and 24 hours in advance

of onset.

Model performance was compared to that of the IMPROVE

score, calculated 12 and 24 hours before DVT onset time.

Performance of IMPROVE was assessed using the same

metrics as above. For ease of comparison, operating points for

both the machine learning and IMPROVE models were chosen

to obtain a sensitivity of approximately 0.80.

Feature importance for all inputs was assessed using Shap-

ley values, which take into account the contribution of a feature

in producing a more accurate model (that is, the degree to

which a feature reduces the error in the loss function). Because

many clinical measurements were incorporated as discrete fea-

tures representing measures as several time points, the impor-

tance of a single measurement type at 2 different time points

could vary.

Results

In total, 99,412 patient encounters were included in our anal-

ysis, 1,230 of whom experienced a DVT during their hospital

stay. Those who experienced a DVT were, on average, older,

more likely to be male, and were more likely to have comor-

bidities or a history of organ transplant (Table 2). Median age

for the total population was 56 years (interquartile range (IQR):

33, 69), and median age among those who experienced a DVT

was 62 (IQR: 47,71). Reason for hospitalization for all patients

is included in Supplementary Table 3.

At 12 hours before onset of DVT, the algorithm demon-

strated an AUROC of 0.83, along with a sensitivity of 0.80 and

a specificity of 0.66 (Table 3). At 24 hours before DVT onset

the algorithm achieved an AUROC of 0.85, and a sensitivity

and specificity of 0.80 and 0.75, respectively (Table 3).

The algorithm outperformed the IMPROVE score at both time

points (Figure 1).

Feature importance were similar for 12 and 24 hour predic-

tion models, with cancer status, VTE history, international

Table 2. Demographic Information for the Study Sample.

Characteristic
12 hr Non-DVT Patients (%)

(n ¼ 93,412)
12 hr DVT (%)

(n ¼ 1,230)
24 hr Non-DVT Patients (%)

(n ¼ 89,577)
24 hr DVT Patients (%)

(n ¼ 999)

Age 18-30 10,936 (11.71%) 86 (6.99%) 10,324 (11.53%) 69 (6.91%)
30-39 14,390 (15.40%) 84 (6.83%) 13,727 (15.32%) 70 (7.01%)
40-49 12,146 (13.00%) 160 (13.01%) 11,599 (12.95%) 132 (13.21%)
50-59 17,310 (18.53%) 246 (20.00%) 16,566 (18.49%) 199 (19.92%)
60-69 19,641 (21.03%) 352 (28.62%) 18,877 (21.07%) 291 (29.13%)
>70 18,989 (20.33%) 302 (24.55%) 18,484 (20.63%) 238 (23.82%)

Sex Male 42,189 (45.16%) 648 (52.68%) 40,314 (45.00%) 526 (52.65%)
Female 51,223 (54.84%) 582 (47.32%) 49,263 (55.00%) 473 (47.35%)

Comorbidities Renal 6,618 (7.08%) 185 (15.04%) 6,489 (7.24%) 154 (15.42%)
Organ Transplant 8,396 (8.99%) 176 (14.31%) 8,285 (9.25%) 152 (15.22%)
Cancer 52,643 (56.36%) 1032 (83.9%) 50,905 (56.83%) 852 (85.29%)
Diabetes 16,875 (18.07%) 301 (24.47%) 16,498 (18.42%) 249 (24.92%)
COPD 5,644 (6.04%) 110 (8.94%) 5,544 (6.19%) 91 (9.11%)
Hepatic 8,006 (8.57%) 181 (14.72%) 7,886 (8.8%) 159 (15.92%)
Cardiovascular 57,983 (62.07%) 1,230 (100%) 56,297 (62.85%) 999 (100%)

Abbreviations used: COPD Chronic obstructive pulmonary disease. DVT: Deep venous thrombosis.

Ryan et al 3



normalized ratio (INR), change in INR, and heart rate being the

top 5 features for both models (Figure 2). Epinephrine, 8 hour

average urine output, age, and antibiotic use were also impor-

tant features of both models as measured by Shapley values.

Discussion

Timely diagnosis of DVT is essential to minimize the risk of

complications like pulmonary emboli and post thrombotic syn-

drome.13 However, the accuracy of common clinical scoring

systems for DVT risk stratification has been shown to be vari-

able in inpatient, elderly, pediatric, and post-operative patient

populations.3 In inpatient settings, commonly used DVT scores

such as the Wells score are inflated by comorbidities and non-

specific physical findings that are common among hospitalized

patients.14 This leads to a moderate or high characterization of

risk among many patients without DVT. Therefore, there is an

ongoing need for improved assessment and accurate identifi-

cation of DVT risk factors specific to hospitalized patients. Our

results demonstrate that machine learning algorithms can be

used to predict DVT 12 and 24 hours in advance of onset. For

both 12- and 24-hour prediction, sensitivity was 80% with

specificity exceeding 65%, indicating strong predictive perfor-

mance while maintaining a low false positive rate. For an in-

patient population at increased risk of DVT, these performance

metrics indicate that this algorithm may be useful for an

improvement of risk assessment over current tools. An explo-

ration of feature importance revealed that the model is utilizing

several known DVT risk factors in generating DVT predic-

tions, in addition to utilizing additional novel clinical and

laboratory measures. Cancer is considered a major provoking

risk factor for VTE, and was the most important feature in

making predictions for both the 12- and 24-hour prediction

models.15,16 As per Virchow’s triad, the classic explanatory

model for VTE, patients with hypercoagulability are predis-

posed to developing thromboses. In line with this well-

recognized relationship, INR, a measure of coagulability, was

another key feature.17 Obesity has been shown to confer addi-

tional risk for VTE.16,18 Consistent with this prior research,

higher weight was associated with greater risk of DVT in our

model. This analysis supports that that model is utilizing

known risk factors for DVT (such as cancer diagnosis and prior

VTE) in generating DVT risk prediction scores.

To avoid referral for testing in patients at low risk of DVT,

various clinical decision rules have been developed for the

purposes of risk stratification,19 including the Wells score,3

Oudega score,20 Gagne score,21 LEFT score,22 and IMPROVE

score.7 The Wells score for DVT is often used by clinicians as a

best-available approach, but multiple studies have reported that

its utility for risk stratification in the inpatient setting is

low.12,14,19 Silveira et al prospectively evaluated the Wells

score for risk stratification among inpatients with suspected

DVT, and found that it performed only slightly better than

chance.12 Further, the Wells score was developed for use on

patients already suspected of a DVT; the score is therefore not

readily interpretable on the general patient population.

The IMPROVE score has similarly been assessed for its ability

to identify patients at risk of experiencing a DVT. In particular,

recent work incorporating D-dimer has been found to increase

the accuracy of the score. A study by Spyropoulos et al23 found

that a modified IMPROVE score incorporating D-dimer was

capable of identifying patients at a 3-fold higher risk of VTE

and who benefited from extended thromboprophylaxis.

Another study found that the IMPROVEDD score, which

incorporates D-dimer measures, demonstrated a higher

AUROC than the IMPROVE score for VTE prediction at

42 days (0.621 vs 0.588).24 However, the low AUROC of the

Table 3. Performance Metrics for DVT Prediction at 12 and 24 Hours Before Onset.

12 Hour MLA
(95% CI)

12 Hour IMPROVE
(95% CI)

24 Hour MLA
(95% CI)

24 Hour IMPROVE
(95% CI)

AUROC 0.83 (0.81, 0.85) 0.78 (0.75, 0.80) 0.85 (0.83, 0.87) 0.79 (0.77, 0.81)
Sensitivity 0.80 (0.75, 0.85) 0.80 (0.75, 0.85) 0.80 (0.84, 0.86) 0.83 (0.78, 0.88)
Specificity 0.66 (0.65, 0.67) 0.61 (0.60, 0.62) 0.75 (0.74, 0.76) 0.60 (0.59, 0.61)
DOR 7.72 (5.64, 10.57) 6.07 (4.44, 8.29) 11.94 (8.43, 16.92) 7.37 (5.09, 10.67)
LRþ 2.34 (2.19, 2.50) 2.03 (1.90, 2.17) 3.19 (2.96, 3.43) 2.08 (1.95, 2.22)
LR- 0.30 (0.24, 0.39) 0.33 (0.26, 0.43) 0.27 (0.20, 0.35) 0.28 (0.21, 0.38)

Abbreviations used: AUROC: Area under the receiver operating characteristic. CI: Confidence interval. DOR: Diagnostic odds ratio. MLA: Machine learning
algorithm. LR: Likelihood ratio.

Figure 1. Receiver operating characteristic (ROC) curves and com-
parison of area under the ROC (AUROC) of the XGBoost (XGB) and
IMPROVE models for 12 and 24 hour prediction of deep venous
thrombosis.
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IMPROVEDD score supports that there is still substantial

unmet need for DVT risk stratification, particularly in the short

term.

Use of clinical decision rules in daily practice is often influ-

enced by the expertise of the clinician using them,3,25 which

may affect efficacy of the decision rules in stratifying patients

most at risk of disease. These standard scoring systems were

generally developed and validated for identifying patients at

low risk of developing DVT, so that DVT can be excluded

without referring a patient for imaging tests.26 Most patients

suspected of having DVT are not ultimately diagnosed26 and

there is a lack of validated high risk stratification methods for

those patients who are particularly likely to develop DVT.

Toward this end, our results demonstrate that machine learning

may offer an opportunity for more precise risk stratification

approaches, enabling improvements in patient monitoring, use

of prophylactic anticoagulants, and earlier diagnosis of DVT to

prevent its sequelae.

Several retrospective studies have applied ML to the predic-

tion of VTE in patient subpopulations. Previous research has

utilized machine learning methods to characterize a patients’

risk of developing DVT and VTE.27 Ferroni et al used kernel

machine learning techniques to predict risk of venous throm-

boembolism in oncology outpatients with high performance,

indicating that a machine learning approach may be of clinical

value for VTE risk stratification in chemotherapy-treated out-

patients. However, this study acknowledged that additional

patient complexities, such as obesity and active patient

therapeutics, may impact the performance of ML in DVT pre-

diction.27 While the model performed well in predicting VTE

among oncology outpatients with an AUROC of 0.716, perfor-

mance remains to be validated in inpatient care settings.

A recent study examined the discriminative ability of the

IMPROVE ensemble machine learning software to predict

VTE onset in a subpopulation of acutely ill patients classified

as high risk for VTE.28 Though the research yielded high dis-

criminative ability with an AUROC of 0.69 for the standard

ML algorithm and .68 c-statistic for the reduced ML (rML)

model, this study did not present results indicating the length

of time prior to onset that VTE can be predicted, and also

remains to be validated in a general inpatient population.28 The

results present a strong argument for the capability of ML to

predict VTE. Expanding on these findings, our research pre-

sents results that may indicate how a ML may be useful in

predicting DVT up to 24 hours in advance of onset while being

used in more general clinical settings.

A prospective cohort study examined the ability of an ML

algorithm to predict the incidence of VTE over the course of

5 years and yielded a 0.75 AUROC.29 The study sample

included patients with estimated DVT risk between 0.5%-

10% over 1 year and 5 year periods.29 Thus, the results are not

necessarily representative of how an ML algorithm can per-

form in a very low-risk population or in a higher-risk patient

population. Additionally, while the ability to predict long-term

risk of VTE remains important, this tool does not allow for

short-term risk prediction of in-patient populations. Our

Figure 2. Feature correlations and distribution of feature importance for each patient. Input variables are ranked in descending order of feature
importance. Red indicates a high feature value; blue indicates a low feature value. Dots to the right resulted in a higher score; dots to the left
resulted in a lower score. The superscript denotes the number of hours prior to the time the algorithm was applied, and D denotes change
between the measurements at each indicated hour. For example, HR0. represents heart rate at the time the algorithm was applied, and D
Antibiotics01 represents the change in antibiotic status from the previous hour to the current hour. Abbreviations used: INR: international
normalized ratio. HR: heart rate. VTE: venous thromboembolism. PPL: pulse pressure.
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research fills these gaps by allowing for short term risk predic-

tions in the general inpatient population, rather than a specific

population restricted to certain risk levels.

There are several limitations to this study. First, because of

the way DVT onset was assessed, it is possible that we

assigned an onset time before DVT development if any

patients were given prophylactic anticoagulants and later

developed an active DVT for which they were given thera-

peutic anticoagulants. However, given our patient population

and the effectiveness of prophylactic anticoagulation to pre-

vent DVTs,30,31 this is likely a rare occurrence in our data set

and is therefore unlikely to significantly impact our findings.

It is also possible that our gold standard for identifying DVT

did not accurately capture the DVT patient population in our

data. There are known difficulties in identifying DVT events

in administrative data.32 Because we did not perform clinician

chart adjudication of patient outcomes, it is possible that

patients were misclassified by our use of ICD codes. How-

ever, we minimized this limitation through the inclusion of

anticoagulants as well as ICD codes for identifying DVT.

Inclusion of treatment information has been found to increase

the PPV of ICD codes for identifying VTE from 72% to

91%.33 It is worth noting that medications used to define our

gold standard and DVT onset time have indications beyond

the treatment of acute DVT. It is therefore possible that

patients in our positive class were misclassified based on their

treatment regimen. Because this is a retrospective study, we

are unable to determine the performance of the DVT predic-

tion algorithm in a prospective clinical setting where data

availability may differ from our study. Future work assessing

algorithm performance in a prospective setting is required to

determine how clinicians may respond to DVT risk predic-

tions, as well as to determine whether predictions impact

patient outcomes or resource allocation.

Conclusion

The machine learning algorithm presented in this study is a

useful predictive tool for anticipating risk of DVT at 12 and

24 hours in advance of onset. Improved prediction and risk

stratification enabled by the machine learning algorithm can

prevent unnecessary invasive testing in patients for whom DVT

cannot be ruled out using existing methods. Improved risk

stratification may also allow for more targeted use of prophy-

lactic anticoagulants, as well as earlier diagnosis and treatment,

preventing the development of pulmonary emboli and other

sequelae of DVT.
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