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A B S T R A C T

Background: Interventions to better prevent or manage Clostridioides difficile infection (CDI) may signifi-
cantly reduce morbidity, mortality, and healthcare spending.
Methods: We present a retrospective study using electronic health record data from over 700 United States
hospitals. A subset of hospitals was used to develop machine learning algorithms (MLAs); the remaining hos-
pitals served as an external test set. Three MLAs were evaluated: gradient-boosted decision trees (XGBoost),
Deep Long Short Term Memory neural network, and one-dimensional convolutional neural network. MLA
performance was evaluated with area under the receiver operating characteristic curve (AUROC), sensitivity,
specificity, diagnostic odds ratios and likelihood ratios.
Results: The development dataset contained 13,664,840 inpatient encounters with 80,046 CDI encounters;
the external dataset contained 1,149,088 inpatient encounters with 7,107 CDI encounters. The highest
AUROCs were achieved for XGB, Deep Long Short Term Memory neural network, and one-dimensional con-
volutional neural network via abstaining from use of specialized training techniques, resampling in isolation,
and resampling and output bias in combination, respectively. XGBoost achieved the highest AUROC.
Conclusions: MLAs can predict future CDI in hospitalized patients using just 6 hours of data. In clinical prac-
tice, a machine-learning based tool may support prophylactic measures, earlier diagnosis, and more timely
implementation of infection control measures.
© 2021 The Author(s). Published by Elsevier Inc. on behalf of Association for Professionals in Infection Control

and Epidemiology, Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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INTRODUCTION

Clostridioides difficile (C. difficile) infection (CDI) is the leading cause
of hospital-acquired diarrhea and is associated with significant morbid-
ity, mortality, and healthcare costs.1−3 Over 450,000 cases of CDI and
up to 29,000 CDI-related deaths are estimated to occur in the United
States (US) every year.4,5 Over the last decade, a decreasing trend in the
incidence of CDI has been observed;4 however, CDI remains a major
clinical concern for hospitalized patients, especially among the growing
demographic of geriatric patients.2,6 In the US, excess annual healthcare
spending related to CDI is estimated to be as much as $4.8 billion.5 The
average cost of treatment per case is approximately $4,000 with an
average increase in hospital stay of 3.6 days.7,8 Interventions to better
prevent or improve the management of CDI may therefore be of com-
pelling clinical and economic interest to clinicians and health systems.

Currently, there is no gold standard clinical risk assessment tool to
predict in-hospital CDI. This study intends to fill this gap by exploring
the feasibility of using machine learning algorithms (MLAs) to predict
CDI across all hospitalized inpatients, providing early warning of a
patient’s risk of developing CDI. In clinical practice, such a tool may
facilitate enhanced clinical monitoring, earlier diagnosis, and
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Table 1
Data inputs provided to all machine learning algorithms

Demographics
Age Sex
Race
Vital Signs
Systolic blood pressure Respiratory rate
Diastolic blood pressure Peripheral oxygen saturation
Heart rate Temperature
Other Clinical Measurements
Body mass index (BMI)
Laboratory Tests
Sodium Hemoglobin
Creatinine White blood cell count
Blood urea nitrogen (BUN) Platelet count
Glucose Glycated hemoglobin (A1c)
Aspartate aminotransferase Total bilirubin
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improved outcomes. From a public health perspective, such a tool
would also empower clinical teams to implement appropriate infec-
tion control measures, like contact precautions, at earlier time points.
Timely implementation of such infection control measures may help
to minimize the spread of CDI to other vulnerable patients.9

In this study, we compare the performance of 3 different machine
learning architectures in their ability to predict future in-hospital CDI
after only 6 hours of a hospital stay: a gradient boosted decision tree
ensemble implemented with XGBoost, a Deep Long Short TermMem-
ory neural network (D-LSTM), and a 1-dimensional convolutional
neural network (1D-CNN). We systematically evaluate the most
effective training techniques to account for the relatively low preva-
lence of CDI in training data. We then demonstrate the generalizabil-
ity of the best performing MLAs using a dataset distinct from the
development dataset, drawn from diverse health systems.
Alanine aminotransferase Direct bilirubin
Homocysteine
Active Medication Treatment
Proton pump inhibitors Antibiotics (any)
Histamine H2 antagonists Nonsteroidal anti-inflammatory drugs (NSAIDs)
Comorbid Medical Conditions
Hepatic cirrhosis Current tobacco use
Inflammatory bowel disease
MATERIALS ANDMETHODS

Datasets

Electronic health record (EHR) data for adult patients (≥ 18 years)
were extracted from a proprietary national, longitudinal EHR reposi-
tory derived from over 700 hospitals between 2007 and 2021. All
data were collected passively and de-identified in compliance with
the Health Insurance Portability and Accountability Act. As this proj-
ect constituted "nonhuman subjects research" per 45 CFR 46,10 this
project did not require institutional review board approval.

The comprehensive dataset was partitioned prior to any data
analysis into a development dataset and a dataset to verify the gener-
alizability of the final MLAs created. The latter dataset, which shall be
hereafter referred to as the external dataset, was derived from geo-
graphically diverse health systems representing all 4 US census
regions. Partitioning was performed at the level of the healthcare sys-
tem, such that no systems included in the external dataset were
included in the development dataset.

The development dataset was partitioned into an 80:20 split for
training and initial testing of the MLAs. In other words, 80% of the
development dataset was reserved for MLA training, and 20% was
reserved as a hold-out test set to which the MLAs were not exposed
during training. Initial performance results for the MLAs were evalu-
ated on the hold-out test set. The performance of the best performing
MLAs was then also evaluated on the external dataset. Characteristics
of the CDI and non-CDI patients in the datasets were compared using
2-proportions z-tests.
Data Processing

For both the development and the external dataset, the following
inclusion criteria were applied: (1) inpatient hospitalization with at
least 6 hours of data recorded; (2) age ≥ 18 at time of inpatient hospi-
talization; and (3) recorded measurement for at least one vital sign in
the first 6 hours of hospitalization. We excluded patient visits with a
positive laboratory test for CDI prior to 6 hours (the prediction time
for the MLAs) to ensure that predictions were only generated in
patients not yet diagnosed with CDI. We extracted demographics,
vital signs, laboratory tests, other clinical measurements, medication
treatments, and medical history to provide as inputs to the MLAs
(Table 1). Inputs were selected based on a priori relevance to CDI pre-
diction or previously reported associations with CDI risk in the litera-
ture, providing a guide for commonly evaluated measures when
determining the presence of CDI.11,12 During an initial data evalua-
tion, a broad set of potentially relevant features was extracted. A sub-
set of features with the highest prevalence in the dataset was then
selected to maximize input availability.
Patients were considered to be currently receiving a medication if
the medication was ordered within the 30 days prior to hospitalization
or within the first 6 hours of hospitalization. Comorbid medical condi-
tions may have been recorded in the EHR at any time point prior to
prediction generation.

All MLAs incorporated binary features, such as active medication
treatment or presence of medical comorbidities, in the same fashion:
a patient encounter was considered to either have the feature present
prior to prediction or absent prior to prediction. For continuously
measured features, such as vital sign and laboratory measurements,
XGBoost used the last measured value, as well as summary statistics
(mean, standard deviation) of all values measured during the first
6 hours of hospital care. For continuously measured features, the
neural networks used the raw time series data. For the XGBoost
model, a null value was reported if a feature was not measured for a
patient, and the null value was later implicitly handled by the MLA.
For the neural network models, a value of -1 was imputed for missing
values to indicate missingness.

Predictions were made at 6 hours into the hospital stay because 84%
of patients who developed CDI in the development dataset received
diagnostic confirmation via laboratory testing after 6 hours. This time
point also enabled the collection of sufficient clinical data for MLAs, like
the neural networks, which require substantial training data.

Gold standard

Patient encounters were considered positive for CDI if a positive
laboratory test result for CDI was detected via analysis of structured
laboratory data, or through natural language processing of clinical
notes. Patients with any positive molecular test for CDI, including
polymerase chain reaction and enzyme immunoassay tests, were
included in the positive class, consistent with current Infectious Dis-
ease Society of America guidelines for the diagnosis of CDI.13 A posi-
tive test result could be returned at any point after 6 hours during
the hospitalization to satisfy the criterion for a CDI positive encoun-
ter. All patient encounters not meeting this criterion were considered
negative, including patient encounters with negative CDI test results
or with no CDI testing performed.

Machine learning models

Three different MLAs were developed to predict CDI using data
available 6 hours into the inpatient stay. For the development of the
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models, we labeled patient encounters as uniquely positive or nega-
tive per the gold standard. CDI encounters as defined by the gold
standard were included as the positive class. Non-CDI patient
encounters were included as the negative class. The 3 types of models
selected were gradient-boosted decision tree ensemble implemented
via XGBoost, a 1D-CNN, and a D-LSTM. These models were chosen to
represent a variety of classical machine learning and deep learning
methods. XGBoost, a classical method, has achieved high perfor-
mance across a range of health-related prediction tasks.14−16 As deep
learning approaches, convolutional neural networks (CNN) and long
short-term memory networks can effectively incorporate time series
data to predict health outcomes.17,18

The gradient-boosted decision tree classifier was implemented by
the XGBoost method in Python.19 Gradient boosting combines results
from various decision trees to generate prediction scores. Each deci-
sion tree splits the patient population into successively smaller
groups, and each branch of the tree divides patients into 2 groups
according to their covariate value. Each patient encounter was ulti-
mately represented in one “leaf” of the tree. Each encounter in the
same leaf was predicted to have the same risk of CDI. As part of model
training and development, 5-fold cross-validation was performed to
select the optimized hyperparameters for the XGBoost model.
XGBoost was tuned to the following hyperparameters, which were
used when evaluating the performance of the best performing
XGBoost model (described below) on the development hold-out test
set and the external dataset: regularization term of 10, 250 estima-
tors, a maximum tree depth of 10, and a learning rate of 0.1.

The D-LSTM model uses a stacked Bidirectional LSTM followed by
an LSTM layer that extracts both short and long term trends across
features and timesteps. An LSTM allows the model to identify rela-
tionships between different timesteps across the same input, provid-
ing the ability to have features persist through the model and
identify lagging trends in the data. The outputs from the LSTM layers
are fed into successively dense layers where further abstractions
from the time series data are used to develop an understanding of
how features through time can map to a patient having CDI or not.
The 1D-CNN model is a variant of a CNN which applies a convolution
operation to each feature input over the 6-hour time period for which
data was used. The convolution identifies local trends in the data over
time for each of the individual features. Following the convolutions, a
max pooling layer and a dense layer are applied to identify global fea-
tures across all of the inputs, allowing the model to gain an under-
standing on how different inputs are related. The final layer of the
1D-CNN then maps each patient’s data to a value in order to classify a
patient as having or not having CDI. Both neural network architec-
tures concatenate constant-valued features, such as age and sex, with
the outputs from the LSTM or convolution layers to further augment
the predicted outcome. Both neural networks were trained with an
early stopping parameter to minimize the possibility of overfitting
and reduce computation time. The architectures of the neural net-
work models are presented in Supplementary Figure 1.

The incidence of CDI across the general inpatient population has
been reported to be under 2%.20 Low prevalence outcomes present a
training challenge for machine learning classifiers, as the minority
class has far fewer examples in the training data from which the
model can learn the characteristics of the class. Multiple techniques
have been developed to enhance the training of MLAs for the predic-
tion of rare outcomes. To optimize the performance of each of the
MLAs selected for this prediction task, we systematically evaluated
the impact of applying the following training techniques alone and in
combination: positive weight scaling (as part of hyperparameter tun-
ing), resampling the positive class so that CDI achieves 20% preva-
lence, and output bias initialization.21-23 The output bias method was
only evaluated for the neural networks, as the bias term adjusts the
initial output of a network to better reflect the imbalanced
distribution of the data. This adjustment enables the network to
avoid spending training time learning that positive CDI samples are
highly unlikely in the data. As XGBoost builds a tree-based model, no
bias shifting is necessary to fit the model to the training data. Resam-
pling was only performed routinely on the training dataset to ensure
the models had sufficient minority class data to learn during the
training process. Thus, even when this training technique was evalu-
ated, no resampling was performed on the hold-out test or external
datasets. The prevalence of the hold-out test and external datasets
thus remained as described in Supplementary Figure 2, to best
approximate model performance on real-world data. When resam-
pling was not one of the training techniques under investigation, no
resampling during model training occurred. Performance of each
MLA with the specified training technique(s) was evaluated using the
area under the receiver operating characteristic curve (AUROC), and
the combination of techniques resulting in the highest AUROC for
each MLA was selected as the best performing version of the MLA.

The most important input features for each of the best performing
MLAs were then evaluated on the development hold-out test set. For
the XGBoost model, a Shapley Additive Explanations (SHAP) analysis
was performed to evaluate the inputs that the MLA determined to be
the most important features in making predictions.24 A SHAP sum-
mary plot was generated, which ranks the features in terms of
descending importance and visually displays relationships between
the directionality of features (e.g., high or low; present or absent) and
predictions of risk. A mean feature importance plot was also gener-
ated to summarize the average importance of the most important
features, regardless of directionality. The mean feature importance
was determined by taking the magnitude of each feature’s SHAP val-
ues for the entire dataset. For the neural networks, a similar analysis
was performed to generate a mean feature importance plot using the
magnitude of SHAP values across the entire time series of each of the
features. Due to the complexity of the neural networks and the
computational difficulty of calculating the SHAP values on the full
development hold-out test set, the SHAP values were calculated
based on a subset of the data. For the background expectation, 1,000
training samples were used, and 200 testing samples were used to
generate the SHAP summary plot to explain their outputs. Given the
greater analytic complexity of neural networks, a SHAP summary
plot showing the directionality of relationships between feature val-
ues and estimations of risk cannot be generated. For both the
XGBoost and neural network models, feature importance plots were
limited to the top ten most important features used to generate pre-
dictions.

The performance of the best performing XGBoost, D-LSTM and
1D-CNN models were first evaluated on the development hold-out
test set in terms of AUROC, sensitivity, specificity, positive and nega-
tive likelihood ratios (LR+, LR-), and the diagnostic odds ratios (DOR).
For each MLA, the clinical operating points at which sensitivity, speci-
ficity, DOR, LR+ and LR- were evaluated was selected as the point at
which both sensitivity and specificity were maximized. This clinical
operating point was determined by identifying the operating point
that gave the maximum geometric mean of sensitivity and specificity.
To further validate the MLAs and determine whether their perfor-
mance can generalize to health systems from which EHR data was
not used in development, performance of the best performing models
was evaluated on the external dataset using the same metrics.

RESULTS

After application of the study inclusion criteria, the development
dataset contained 13,664,840 total inpatient encounters and 80,046
encounters with a positive CDI test (Supplementary Fig 2). In the 20%
hold-out test set, 2,732,968 inpatient encounters and 16,009 CDI
encounters were included. The prevalence of CDI was therefore



Table 2
Demographic information for the study sample in the development training data, the development hold-out test set and the external dataset

Development Hold-Out Test Set External Dataset

Patients with CDI Patients without CDI P-value Patients with CDI Patients without CDI P-value

Age <30 611 (3.82%) 326489 (12.02%) < .001 1013 (14.25%) 288847 (25.29%) < .001
30-49 2094 (13.08%) 3607013 (22.34%) < .001 1091 (15.35%) 167061 (14.63%) .086
50-59 2476 (15.47%) 429695 (15.82%) .228 1414 (19.9%) 197947 (17.33%) < .001
60-69 3434 (21.45%) 487596 (17.95%) < .001 1564 (22.01%) 192213 (16.83%) < .001
70-80 3759 (23.48%) 480870 (17.70%) < .001 1663 (23.40%) 157499 (13.79%) < .001
80+ 3635 (22.71%) 385296 (14.18%) < .001 362 (5.09%) 138414 (12.12%) < .001

Sex Female 9211 (57.54%) 1578850 (58.11%) .142 3973 (55.9%) 686342 (60.1%) < .001
Male 6791 (42.42%) 1136695 (41.84%) .136 3130 (44.04%) 455159 (39.86%) < .001
Unknown 7 (0.04%) 1414 (0.05%) .645 4 (0.06%) 480 (0.04%) .559

Race White 13283 (82.97%) 2140763 (78.79%) < .001 1057 (14.87%) 163400 (14.31%) .176
Black 1911 (11.94%) 359207 (13.22%) < .001 324 (4.56%) 65082 (5.70%) < .001
Asian 103 (0.64%) 31081 (1.14%) < .001 5081 (71.49%) 792885 (69.43%) < .001
Other/Unknown 712 (4.45%) 185908 (6.84%) < .001 645 (9.08%) 120614 (10.56%) < .001

Ethnicity Hispanic 630 (3.94%) 164492 (6.05%) < .001 557 (7.84%) 93409 (8.18%) .294
Comorbid
Diseases

HIV/AIDS 943 (5.89%) 6027 (0.22%) < .001 74 (1.04%) 2313 (0.20%) < .001
Peripheral vascular disease 50 (0.31%) 6985 (0.26%) .169 239 (3.36%) 12849 (1.13%) < .001
Chronic heart failure 769 (4.80%) 4953 (0.18%) < .001 41 (0.58%) 1511 (0.13%) < .001
Chronic kidney disease 140 (0.87%) 20330 (0.75%) .0647 152 (2.14%) 6433 (0.56%) < .001
Hepatic cirrhosis 702 (4.39%) 25901 (0.95%) < .001 227 (3.19%) 8663 (0.76%) < .001
History of organ transplant 978 (6.11%) 27888 (1.03%) < .001 1163 (16.36%) 9310 (0.82%) < .001
Diabetes mellitus 838 (5.23%) 38670 (1.42%) < .001 9 (0.13%) 2226 (0.19%) < .001
COPD 268 (1.67%) 26351 (0.97%) < .001 71 (1.0%) 4071 (0.36%) < .001
Active cancer 808 (5.05%) 39706 (1.46%) < .001 23 (0.32%) 15028 (1.32%) < .001
HTN 498 (3.11%) 57714 (2.12%) < .001 90 (1.27%) 8519 (0.75%) < .001
Dementia 287 (1.79%) 22481 (0.83%) < .001 149 (2.1%) 7701 (0.67%) .193
IBD 176 (1.10%) 5295 (0.19%) < .001 257 (3.62%) 544 (0.05%) < .001
CDI within the past year 1047 (6.54%) 40164 (1.48%) < .001 376 (5.29%) 7781 (0.68%) < .001

P-values were generated using a 2 proportion z-test. Abbreviations: Acquired immunodeficiency syndrome (AIDS); Chronic obstructive pulmonary disease (COPD); Hypertension
(HTN); Human immunodeficiency virus (HIV); Inflammatory bowel disease (IBD); C. difficile infection (CDI).

Table 3
Area under the receiver operating characteristic curve (AUROC) achieved by XGBoost
gradient-boosted decision tree, Deep Long Short Term Memory neural network (D-
LSTM) and one-dimensional convolutional neural network (1D-CNN) classifiers in
combination with techniques to adjust for low prevalence of predicted outcome

Technique(s) to adjust for low prevalence of
predicted outcome during training

XGBoost D-LSTM 1D-CNN

No Positive Scaling or Other Training Technique 0.815 0.612 0.796
Positive Scaling 0.808 0.799 0.807
Resampling 0.792 0.804 0.800
Output Bias - 0.782 0.796
Positive Scaling + Resampling 0.807 0.803 0.799
Positive Scaling + Output Bias - 0.797 0.809
Resampling + Output Bias - 0.801 0.810
Positive Scaling + Resampling + Output Bias - 0.803 0.809

Results were generated on the development hold-out test set. The highest AUROC
achieved for each machine learning architecture is bolded.
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0.586% in both the overall development dataset and the hold-out test.
The external dataset consisted of 1,149,088 inpatient encounters,
including 7,107 encounters with a positive CDI test (Supplementary
Fig 2). The prevalence of CDI in the external dataset was 0.618%.

Demographics were evaluated on the development hold-out test
set and on the external dataset (Table 2). Patients who developed CDI
were, on average, likely to be older. In the development hold-out test
set, median age among patients without CDI was 59 years (interquar-
tile range (IQR): 40, 74), and median among those with CDI was 68
(IQR: 55, 79). In the external dataset, median age among patients
without CDI was 58 years (interquartile range (IQR): 37, 73), and
median among those with CDI was 67 (IQR: 54, 79). Patients who
developed CDI were also more likely to have a medical history of
heart failure, diabetes mellitus, inflammatory bowel disease, active
cancer, organ transplant, human immunodeficiency virus (HIV) infec-
tion or acquired immunodeficiency syndrome (AIDS), and prior CDI
within the last year (Table 2).

For the XGBoost model, abstaining from the use of any specialized
training techniques to accommodate for the low prevalence of CDI
yielded the highest performance in terms of AUROC (Table 3). For the
2 neural network models, slight differences were seen when compar-
ing the techniques that enabled the best performance: resampling in
isolation for the D-LSTM model, and resampling and output bias in
combination for the 1D-CNN model. These versions of each MLA
were then selected as the best performing MLAs for all subsequent
experiments.

The SHAP analysis for the best performing XGBoost model
revealed that age was the most important feature in generating pre-
dictions, with clinical measurements (eg, sodium, BMI, white blood
cell count, bilirubin, heart rate, diastolic blood pressure) and active
medication treatment with antibiotics or proton pump inhibitors
(PPIs) also among the most important features (Supplementary Fig
3). Age was the most important feature for the D-LSTM model, and
the second most important feature for the 1D-CNN model. Active
antibiotic and PPI treatment remained among the most important
features for the best performing D-LSTM and 1D-CNN. Glycated
hemoglobin (A1c) and White race were identified as important fea-
tures for each neural network, but not for the XGBoost model.

The best performing MLAs were then evaluated on the develop-
ment hold-out test set, and the external dataset. Receiver operating
characteristic (ROC) curves for the MLAs are presented in Figure 1.
The ROC curves revealed that the XGBoost model achieved margin-
ally higher sensitivities across a range of specificities compared to the
neural networks. The ROC curves of the D-LSTM and 1-D LSTM were
very similar, and the clinical operating points of the neural network
models were also similar.



Fig 1. Receiver operating characteristic (ROC) curves of the best performing XGBoost
gradient-boosted decision tree, Deep Long Short Term Memory neural network (D-
LSTM) and one-dimensional convolutional neural network (1D-CNN) models for pre-
dicting C. difficile infection using the first 6 hours of inpatient hospitalization data. ROC
curves were separately derived on (A) the development hold-out test set and (B) the
external dataset. The clinical operating point for each model was selected via the maxi-
mum geometric mean of sensitivity and specificity, and was designated with a red x.
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The best performing MLAs were also evaluated in terms of sensi-
tivity, specificity, DOR, LR+ and LR- (Table 4). Overall, the XGBoost
model achieved the highest performance in terms of AUROC. When
operating points were selected via geometric mean to balance sensi-
tivity and specificity, the neural networks demonstrated statistically
significantly higher sensitivity than the XGBoost model. However,
the operating point selected for the XGBoost model resulted in statis-
tically significantly greater specificity than the D-LSTM and 1D-CNN.

The XGBoost MLA maintained its predictive performance in the
external dataset. In comparison, the neural network models demon-
strated decreased performance on the external dataset. In addition,
for several performance metrics where XGBoost demonstrated non-
statistically significant improvements over the neural network mod-
els on the hold-out test set, these improvements became statistically
significant on the external dataset.

DISCUSSION

Risk stratification of individual patients early in a hospital admis-
sion may assist in the prevention of CDI in high risk patients.25,26

Using real-world EHR data, we developed 3 different MLAs to predict
CDI at any point during an inpatient stay based on only 6 hours of
data. In clinical practice, use of a machine learning-based CDI predic-
tion tool may enable patients to benefit from increased monitoring
and treatment earlier in their disease course and facilitate timely
implementation of appropriate infection control practices.

Our results demonstrate that MLAs can predict CDI with excellent
discrimination (AUROC > 0.8).27 Many of the important features used
by the models to predict CDI were similar across MLAs, and have pre-
viously been identified as risk factors for CDI.11,12 The highest per-
forming MLA in terms of AUROC values was the XGBoost model,
while the neural networks achieved higher sensitivities at the opti-
mized operating points. The ROC curve demonstrates the range of
possible sensitivity and specificity values at which an MLA (or other
screening test) may operate.27 A different operating point along the
XGBoost curve could therefore have intentionally been selected so
that the XGBoost model outperformed the D-LSTM and 1D-CNN in
terms of sensitivity. Indeed, at any fixed specificity, the XGBoost
model achieved a higher sensitivity than either neural network, as
shown by the ROC curves. However, the fact that our standardized
approach to selection of an operating point which balanced out sensi-
tivity and specificity yielded an operating point with a lower sensitiv-
ity but higher specificity than the neural networks indicates that the
XGBoost model learned to predict a more skewed distribution, with a
greater imbalance between the majority negative class and minority
positive class, than the neural networks. This observation is interest-
ing in light of the superior predictive performance of XGBoost when
there is no use of a specialized training technique to adjust for class
imbalance compared to XGBoost’s performance when such training
techniques are used. The XGBoost model may therefore have learned
from the class imbalance in training, such that the operating point
reflected this MLA having more effectively “learned” to correctly
identify encounters without the disease, the very definition of
specificity.28

In this study, XGBoost achieved comparable predictive perfor-
mance for CDI to the performance of more complex architectures,
like D-LSTM and 1D-CNN. A variety of neural network architectures
have been used to model time series data, in part because they can
incorporate long input sequences and learn from time series with
missing data.29 In particular, recurrent neural network architectures
have been applied to many clinical time series classification tasks.30-
32 However, in this instance, neither of the neural network models
outperformed XGBoost. This may be because predictions were made
on the basis of relatively short (6 hour) windows of time series data;
neural networks may exhibit an advantage over XGBoost for longer
time series. While XGBoost achieved comparable performance for
the specified task on the available datasets, more complex neural net-
works may still provide a predictive advantage for different tasks or
on different populations.33-35

The XGBoost MLA maintained its performance when examined on
both the development hold-out test set and the external dataset. The
performance of both neural networks decreased slightly when exam-
ined on the external dataset versus on the development hold-out test
set. Increased MLA complexity is associated with greater model vari-
ance — and thus greater potential for overfitting to training data,
which can impede generalizability to different datasets.36 Both 1D-
CNN and LSTM are far more complex and thus, more prone to



Table 4
Predictive performance of the best performing XGBoost gradient-boosted decision tree, Deep Long Short Term Memory neural network (D-LSTM) and 1-dimensional convolutional
neural network (1D-CNN) models on the hold-out test set and external dataset

Development Hold-Out Test Set External Dataset

XGBoost D-LSTM 1D-CNN XGBoost D-LSTM 1D-CNN

AUROC (95% CI) 0.815
(0.812 - 0.819)

0.804
(0.801 - 0.807)

0.810
(0.807 - 0.813)

0.815
(0.810 - 0.819)

0.789
(0.784 - 0.793)

0.781
(0.776 - 0.785)

Sensitivity
(95% CI)

0.686
(0.679 - 0.694)

0.739
(0.731 - 0.746)

0.739
(0.733 - 0.746)

0.687
(0.678 - 0.698)

0.718
(0.707 - 0.728)

0.709
(0.697 - 0.717)

Specificity
(95% CI)

0.779
(0.778 - 0.779)

0.713
(0.713 - 0.714)

0.724
(0.723 - 0.724)

0.776
(0.775 - 0.777)

0.708
(0.707 - 0.709)

0.706
(0.705 - 0.706)

DOR
(95% CI)

7.710
(7.440 - 7.978)

7.043
(6.767 - 7.328)

7.427
(7.183 - 7.683)

7.628
(7.291 - 8.032)

6.169
(5.852 - 6.472)

5.835
(5.507 - 6.097)

LR+
(95% CI)

3.103
(3.067 - 3.135)

2.578
(2.552 - 2.605)

2.677
(2.487 - 2.533)

3.071
(3.026 - 3.121)

2.458
(2.419 - 2.491)

2.408
(2.367 - 2.439)

LR-
(95% CI)

0.402
(0.393 - 0.412)

0.366
(0.356 - 0.377)

0.360
(0.352 - 0.369)

0.403
(0.389 - 0.415)

0.398
(0.385 - 0.413)

0.412
(0.400 - 0.430)

The highest performance metric achieved in each dataset is bolded. Abbreviations: Area under the receiver operating characteristic curve (AUROC); Diagnostic odds ratio (DOR);
Likelihood ratio (LR).
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overfitting than XGBoost. In addition, the XGBoost model architec-
ture has a maximum depth which limits the impact of each feature
on each tree the model builds.19 This functionality can lead to overall
better generalizability to hold-out test and external datasets. Model
complexity may thus impact the transferability of MLAs, such that
more computationally intense MLAs may benefit from dataset-spe-
cific customization encompassing the entire development process,
including feature selection, hyperparameter tuning and training.

This study further explored the impact on MLA performance of
varied training techniques to account for the low prevalence of CDI.
For both neural network models, resampling the positive class to arti-
ficially boost CDI prevalence in the training data significantly
improved MLA performance. When resampling occurred, the neural
networks were trained using batch gradient descent, and thus were
able to “see” significantly more of the positive class through the train-
ing process than without resampling, likely enhancing the efficacy of
the training process. The best performing D-LSTM MLA only used
resampling, while the best performing 1D-CNN MLA used both
resampling and an output bias initialization. This difference may be
due to the fact that the modified output bias initialization helped
nudge the 1D-CNN out of a local minimum, while there no such
impact would occur for the D-LSTM. The best performing XGBoost
model required no adjustment techniques to account for the class
imbalance, including hyperparameter tuning which led to the posi-
tive weight scaling being unitary. Resampling did not improve
XGBoost’s performance, unlike with the neural networks. The lack of
improvement may be attributable to the nature of the MLA. Tree-
based models rely on splits in data based on strict thresholds. For a
positive class with a range of feature values,is tree-based models may
benefit less from upsampling since the positive class still spans a
wide range of values, therefore preventing the model from learning
quality splits for the trees.

To reduce the risk of infection-related adverse patient outcomes
and healthcare costs, a number of conventionally hand-tabulated
scoring systems have been developed to evaluate various outcomes
associated with CDI.37-39 These systems include the CARDS score for
CDI-associated hospital mortality,37 the ATLAS score for patient
responsiveness to CDI therapy,38 and Horn’s index for CDI patient
prognosis.39 These existing scores have several limitations, in addi-
tion to their development for purposes other than predicting the
future development of CDI. Some scores were developed using small,
administrative databases39 or using data that did not account for
individual-level prognostic markers,37 meaning that resulting scores
may not be widely generalizable. There is a continued need for reli-
able, and accurate risk stratification tools to identify patients with an
increased likelihood of developing CDI.40
Risk stratification models have also been developed to explic-
itly predict which patients are at risk for developing CDI, including
models that use EHR data40-44 and/or machine learning meth-
ods.40-42 Some tools have been limited in the scope - e.g., only
predicting recurrent CDI41 - while other tools have been devel-
oped in specialized patient populations, like post-colectomy
patients.42 A smaller number of these models have utilized EHR
data available early in a hospital admission,25,44 with some still
requiring manual tabulation.25,44 However, none of the experi-
mental risk prediction tools for CDI have yet been adopted in
widespread clinical practice.

Compared to previous literature describing CDI prediction
tools, our study has several strengths. The development dataset
included a large, robust sample of general inpatients from across
the US for training, and a separate hold-out test set for initial vali-
dation. In addition, this study incorporated a separated external
dataset composed of distinct, geographically diverse US health sys-
tems. The maintenance of performance shown by the XGBoost
model, and the largely consistent performance of the neural net-
works (with only minor decreases in predictive performance) sup-
ports the MLA’s generalizability. All MLAs in this study were
designed to automatically incorporate EHR data to generate risk
scores, decreasing barriers to adoption (such as the requirement
for time or resource investment by clinicians) and enhancing the
potential for seamless integration into the clinical workflow. The
best performing MLAs described in our current work offer strong
predictive performance with the capacity to easily tailor operating
points to the clinical needs or preferences of specific healthcare
systems or clinical practice contexts. From a machine learning per-
spective, this study also included a rigorous investigation of the
most appropriate and highest performing MLA architectures and
training techniques. Previous studies exploring MLAs for applica-
tions related to CDI have not shown consistently strong perfor-
mance across multiple architectures. Marra et al. evaluated ten
architectures for the prediction of CDI in symptomatic hospitalized
patients, with logistic regression, random forest and naïve Bayes
models demonstrating the best performance.45 However, no MLA
achieved an AUROC greater than 0.60. Multilayer Perceptron and
Radial Basis Function (RBF) neural networks achieved AUROC of
only 0.575 and 0.583, respectively. Li et al. reported limited dis-
crimination (AUROC of 0.69) with a logistic regression model to
predict CDI severity.46 Oh et al. achieved higher AUROCs (0.75,
0.82) with L2 regularized logistic regression models predicting
daily risk of CDI by tailoring the algorithms to 2 individual institu-
tional datasets. These AUROCs demonstrate the potential value of
site-specific customization of CDI MLA.40
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All architectures evaluated in our study demonstrated excellent
discrimination (AUROC > 0.80) on the hold-out test dataset. In con-
trast to the modest performance of neural networks reported by
Marra et al.,45 the 1D-CNN and D-LSTM models in our study achieved
high discrimination, representing the first report to the authors’
knowledge of such high performance by a neural network for a CDI
prediction task.

This research also has several limitations. Given the retrospective
nature of this study, we were unable to determine the performance of
the MLAs in a prospective clinical setting, or in settings where data
availability and data collection frequency may differ from the hospitals
included in the development and external datasets. Prospective valida-
tion is required to evaluate clinician response to CDI risk predictions,
and whether such predictions may significantly improve metrics of CDI
patient outcomes, hospital infection control and CDI-associated cost
burden. Such evaluation may be complemented by concurrent studies
on factors motivating or inhibiting clinician acceptance of MLAs to pre-
dict CDI, the feasibility of using MLA design elements, and educational
initiatives to enhance the acceptability and adoptability of these tools.
The gold standard does not distinguish between community-acquired
and hospital-associated CDI, which may be a relevant distinction for
future iterations of CDI MLAs, given the greater severity and higher
mortality associated with hospital-associated CDI relative to commu-
nity-acquired CDI.47 Lastly, our gold standard included all diagnostic
tests currently recommended by IDSA, including nucleic acid amplifica-
tion tests and toxin enzyme immunoassays. These tests alone cannot
discriminate between symptomatic CDI and asymptomatic coloniza-
tion.13 However, the use of a clinical gold standard as the training gold
standard represents a strength of this study, which may be used as the
foundation for future research incorporating additional symptom data
to further enhance the precision of the prediction outcome.
CONCLUSIONS

We have demonstrated that MLAs using just the first 6 hours of
hospitalization data can predict CDI with high discrimination. We
have also shown that XGBoost can achieve comparable predictive
performance to the more complex neural networks, and that differ-
ent training techniques to account for the low prevalence of CDI in
training data are optimal for different MLA architectures. Future
research may build upon this work by validating MLA-based CDI pre-
diction tools on prospectively collected, live data, and soliciting feed-
back from clinician target end users to optimize the usefulness and
acceptability of MLA alerts of CDI risk.
SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found
in the online version at https://doi.org/10.1016/j.ajic.2021.11.012.
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