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A B S T R A C T   

Background: Early myelodysplastic syndrome (MDS) diagnosis can allow physicians to provide early treatment, 
which may delay advancement of MDS and improve quality of life. However, MDS often goes unrecognized and 
is difficult to distinguish from other disorders. We developed a machine learning algorithm for the prediction of 
MDS one year prior to clinical diagnosis of the disease. 
Methods: Retrospective analysis was performed on 790,470 patients over the age of 45 seen in the United States 
between 2007 and 2020. A gradient boosted decision tree model (XGB) was built to predict MDS diagnosis using 
vital signs, lab results, and demographics from the prior two years of patient data. The XGB model was compared 
to logistic regression (LR) and artificial neural network (ANN) models. The models did not use blast percentage 
and cytogenetics information as inputs. Predictions were made one year prior to MDS diagnosis as determined by 
International Classification of Diseases (ICD) codes, 9th and 10th revisions. Performance was assessed with re
gard to area under the receiver operating characteristic curve (AUROC). 
Results: On a hold-out test set, the XGB model achieved an AUROC value of 0.87 for prediction of MDS one year 
prior to diagnosis, with a sensitivity of 0.79 and specificity of 0.80. The XGB model was compared against LR and 
ANN models, which achieved an AUROC of 0.838 and 0.832, respectively. 
Conclusions: Machine learning may allow for early MDS diagnosis MDS and more appropriate treatment 
administration.   

1. Introduction 

Myelodysplastic syndrome (MDS), a heterogeneous disease that oc
curs due to mutations in hematopoietic stem cells, manifests itself as 
diverse forms of cytopenia [1]. It is considered to be a “preleukemic” 
condition that evolves into acute myeloid leukemia (AML), which is 
highly aggressive and fatal, in approximately one-third of the patients 
[2]. MDS patients are also vulnerable to various other complications, 
such as increased risk of infections, bleeding, and cardiovascular disease 
[3,4]. Survival time for patients diagnosed with MDS ranges from less 
than 1 year to approximately 9 years, with mortality rates tied to factors 
such as age, gender, and bone marrow blast percentages [5]. MDS has an 
incidence rate of 20–50 cases per 100,000 persons-year for populations 
over 60 years of age, and mainly occurs in older male adults [6]. 
However, incidence statistics are much contested due to evolving 
diagnostic criteria and reporting and it is believed that MDS is 

underdiagnosed and underreported in databases [7]. 
Underdiagnosis of MDS may be attributable to multiple factors. 

Typically, clinical suspicion of MDS is raised when an older adult pre
sents with symptoms of cytopenia, such as bleeding or recurrent in
fections. MDS diagnosis is confirmed by conducting a blood smear, a 
bone marrow biopsy, and a cytogenetic study [1]. A blood smear visu
ally analyzes the degree of dysplasia in blood cells, while a bone marrow 
biopsy is used to measure blast percentages, the latter of which is critical 
for determining severity of the disease [8]. Cytogenetic data collected 
via karyotyping of bone marrow aspirate is used to identify chromo
somal abnormalities and helps to subcategorize MDS patients, which is 
useful in determining treatment course [1,8]. However, MDS is often 
unrecognized by primary care physicians and is difficult to distinguish 
from other causes of bone marrow failures [9], cytopenias, and other 
clonal stem cell disorders [8,10]. These complexities often lead to 
delayed MDS diagnosis, at which point the condition is more advanced. 
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As a result, patients diagnosed with MDS suffer from poor quality of life 
as symptoms advance and the opportunity to benefit from earlier 
treatment is missed. 

Treatments for MDS vary based on a patient’s risk level and can 
include supportive care for MDS complications, therapeutics, chemo
therapy, and stem cell transplants [11]. When MDS diagnosis occurs 
early in the disease onset, it affords clinicians the ability to monitor 
patients and provide early treatment, which yields better results for 
delaying advancement of MDS and improving quality of life in many 
patient populations [12–14]. For example, Cogle et al. have shown that 
early initiation of treatment for those with low risk MDS is more likely to 
result in higher successful blood transfusion treatments as well as earlier 
independence from these treatments, in turn reducing morbidity and 
mortality [15]. Thus, earlier recognition of MDS is imperative for 
improving patient outcomes. 

Given the obstacles in diagnosing MDS, there is a clinical need for 
new technologies that may detect the onset of MDS. Utilization of 
automated hematology analyzers [16], next generation sequencing 
technologies [17], and novel methods in flow cytometry [18] may help 
detect MDS early in the disease state. However, these tools are not 
commonly available for standard tests. Additionally, because such tests 
are only ordered after clinical suspicion of MDS exists, they are unlikely 
to address issues related to underdiagnosis and detection of MDS. To 
address this need, we developed a machine learning algorithm (MLA) 
using two years of patient data available in the electronic health record 
(EHR) to predict MDS one year in advance of MDS diagnosis. These 
predictions are made without a reliance upon bone marrow biopsy and 
cytogenetic tests, and provide information that a patient is at high risk of 
receiving an MDS diagnosis in one year. This provides clinicians the 
opportunity to better serve patients who might be at risk of MDS and 
increase surveillance for MDS onset. 

2. Methods 

2.1. Data processing 

Retrospective analysis was performed on 790,470 patients using 
EHR data drawn from over 700 healthcare sites across the United States 
between 2007 and 2020. We extracted information on patient de
mographics, vital signs, lab results, and diagnoses. Patient data was de- 
identified in compliance with the Health Insurance Portability and 
Accountability Act (HIPAA). 

2.2. Cohort definition 

Patients were included in the study sample if they had not previously 
been diagnosed with MDS or AML, were over the age of 45 at their 
retrospective algorithm time, and had at least one documented vital sign 
or laboratory measurement feature value in the 2 year window prior to 
their retrospective algorithm runtime. At least one vital sign or labora
tory measure was required to generate algorithm predictions; patients 
for whom predictions could not be generated were therefore excluded. 
All model features used as input are presented in Table 1. Positive class 
patients are defined as those who were diagnosed with MDS. As in prior 
studies, MDS diagnoses was determined by the presence of International 
Classification of Diseases (ICD-9 and ICD-10) codes (Supplementary 
Table 1) [19–21]. Patients who were not diagnosed with MDS or AML 
during a two year follow-up period were included in the negative class. 
Patients who died during the study period were excluded. A patient 
inclusion flowchart is presented in Supplementary Fig. 1. 

Patient characteristics were compared between the positive and 
negative class for both the training and test sets. Two-proportion z-test 
were used to compare binary data, and Mann-Whitney U tests were used 
to compare median lab values across classes. 

2.3. Algorithm runtime 

The algorithm was designed to utilize 2 years of a patient’s medical 
data as input and make predictions one year prior to the MDS diagnosis. 
For patients in the positive class, the retrospective algorithm runtime 
was one year prior to their MDS diagnosis, defined by the date and time 
of MDS ICD code, which was used as a proxy for MDS diagnosis date and 
time. For patients in the negative class, the retrospective algorithm 
runtime was defined differently. First, a two-year follow-up window 
after the algorithm runtime was defined. This follow-up window was 
then divided into two portions: a one year lookahead period (similar to 
the positive class) followed-by a one year outcome washout window. 
The purpose of the outcome washout window was to ensure that patients 
did not develop MDS soon after the lookahead period to avoid 
misclassification of patients with early stage MDS. The time windows 
with respect to algorithm runtime for positive and negative class pa
tients are shown in Fig. 1. 

2.4. Machine learning model development 

The machine learning model, XGB, was built using gradient boosted 
decision trees using XGBoost [22] in Python. Gradient boosting allows 
the results of multiple decision trees to be iteratively combined to 
generate risk prediction scores. Each decision tree divides the patient 
population based on the values of their model features. At each branch, 
patients are divided into two groups based on whether their value of a 
given feature is above or below a certain value; for example, one branch 
might split patients based on whether their respiratory rate is above or 
below 20 breaths per minute. The branching process results in a set of 
“leaves,” where all patients grouped within the same leaf are given the 
same risk score by the model. The features and values by which patients 
are divided during the branching process are those that minimize loss 
during the model training process. The XGB training process is designed 
to be able to handle missing data in the feature set through the identi
fication of a default branch down which to proceed. The default branch 

Table 1 
Input data used in all three models (XGBoost, Logistic regression, and artificial 
neural network) for prediction of MDS is presented. The average (mean) of 2- 
year data measurements across each feature for each patient was used as the 
model’s inputs.  

Demographics 

Age 
Sex  

Vital Signs 

Diastolic blood pressure 
Heart rate 
Respiratory rate 
Systolic blood pressure 
Temperature 
Peripheral oxygen saturation (SpO2)  

Laboratory Measurements 

Albumin 
Blood urea nitrogen (BUN) 
Calcium 
Chloride 
Creatinine 
Glucose 
Hematocrit 
Hemoglobin 
Absolute neutrophil count 
Neutrophil percentage 
Platelet count 
Potassium 
Red blood cell (RBC) count 
Sodium 
White blood cell (WBC) count  
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is determined by calculating the branch down the tree which maximizes 
performance for the instances of data where the feature value is present. 
Due to this ability to handle this missing data, no feature imputation was 
performed during the training or testing of this algorithm. The algorithm 
required at least one vital sign or laboratory measure to be present in the 
patient chart during the two year data collection window. 

To train the model, data were randomly divided in a 70:30 split, 
where 70% of the data was used to train the model and 30% was 
retained as a hold-out test set. Model hyperparameters were tuned using 
5-fold cross validation on the training portion of the data. Final hyper
parameters were a maximum tree depth of 8, L1 regularization (lambda) 
of 300, L2 regularization (alpha) of 0, scale positive weight of 1 and 100 
estimators (boosting rounds). 

The XGB model was compared to two other models generated using 
different machine learning techniques, logistic regression (LR) and 
artificial neural networks (ANN). These two models were provided with 
the same inputs as the XGB model. All three models used the mean value 
across each feature’s measurements over the 2-year data window for 
each patient as the model’s inputs. A 70:30 train-test split was also 
applied. Before training the LR and the ANN models, two data pro
cessing steps were applied. First, feature standardization was carried out 
by converting the raw feature value into its respective z-score (found by 
subtracting the feature’s mean from the patient’s feature value and then 
dividing by the feature’s standard deviation). Feature standardization 
and related feature scaling methods are typically implemented to speed 
up backpropagation in ANN training and help LR models converge 
faster. Second, missing values in the dataset were handled using impu
tation. If a patient was missing a measurement for a feature, that value 
was imputed using the median measurement of that feature amongst the 
entire training portion of the data. The logistic regression model 
hyperparameters were also trained using 5-fold cross validation and L2 
regularization was applied to help prevent the model from overfitting to 
the training portion of the data. There was only one optimized hyper
parameter, which was a regularization strength of 1 × 104. The ANN was 
trained for 200 epochs using the Nesterov-accelerated Adam (NAdam) 
optimizer [23] with a learning rate of 5 × 10− 4. 

2.5. Statistical analysis 

Model performance was evaluated on a hold-out test set not seen 
during the model training process. The model was assessed in terms of 
area under the receiver operating characteristic curve (AUROC), sensi
tivity, specificity, positive and negative likelihood ratios (+/-LR), and 
diagnostic odds ratio (DOR). In addition to measuring predictive per
formance, we assessed feature importance for the XGB model using 
SHapley Additive exPlanations (SHAP) values to identify those features 
that made the biggest contribution to accurate model predictions [24, 

25]. This statistical analysis assesses the value of each feature for each 
patient in the training dataset, and generates a plot that evaluates how 
differing values for the features affect the model’s prediction making 
capability. The SHAP plot ranks the features by importance and lists the 
most important features first. 

3. Results 

This study included a total of 790,470 patients, of which 1428 were 
eventually diagnosed with MDS and 789,042 had no recorded MDS 
diagnosis. Among patients in the test set, the patients who developed 
MDS had a median age of 77, which was higher than the median age of 
61 for patients without MDS. Other notable observations were that 
~33% of the test set positive class had a previous cancer diagnosis while 
only ~21% of the test set negative class had a previous cancer diagnosis. 
Additionally, 5% of the positive class had a history of receiving 
chemotherapy treatment, while only 1% of the negative class had such a 
treatment history (Table 2). Demographic and medical characteristics 
were similar between the test set and the training set (Supplementary 
Table 2). 

3.1. Model results and feature importance 

Three distinct models were trained on 23 features and then evaluated 
on the hold-out test set. Of the models evaluated, the XGB model per
formed the best with an AUROC of 0.872, with a sensitivity of 0.785 and 
a specificity of 0.804. The LR model had an AUROC of 0.838, with 
sensitivity and specificity values of 0.743, and 0.786, respectively. The 
ANN model had an AUROC of 0.832, with a sensitivity and specificity 
value of 0.731 and 0.794, respectively. The AUROC plots for all three 
models are depicted in Fig. 2 and the model performance is summarized 
in Table 3. Confusion matrices and precision recall curves for all models 
are presented as Supplementary Table 3 and Supplementary Fig. 2, 
respectively. 

A feature importance plot was generated for the XGB model using a 
SHAP analysis. The patient’s age at the algorithm runtime, hematocrit, 
red blood cell count and platelet count were the most important features 
for the XGB model. Other lab measurements including white blood cell 
count and neutrophil percentage were also important for the XGB model 
(Fig. 3). 

4. Discussion 

Diagnosing MDS continues to be a challenge in healthcare, as is 
evident by underdiagnosis of the disease [26,27]. Despite this, the ma
jority of active research in this field focuses on progression of the disease 
and predicting outcomes following MDS diagnosis [28–33]. Limited 

Fig. 1. Algorithm design describing patient data analysis time periods for positive and negative classes.  
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research related to MDS diagnosis revolves around confirmation and 
subcategorization of MDS using novel tools and technologies, such as 
next generation sequencing to look for genetic mutations [33–36] and 
automated hematology [16], that are not readily available, and would 
require MDS diagnosis to be already under consideration. However, 
diagnostic barriers to MDS are far more dependent upon lack of recog
nition by clinicians [26,37] and difficulties in distinguishing MDS from 
other disorders [9]. To our knowledge, little research has been done to 
develop clinical decision support (CDS) tools to improve early MDS 
diagnosis. 

In this longitudinal retrospective study, we analyzed data for patients 
over the age of 45, from over 700 healthcare sites across the United 
States between the years 2007 and 2020. The aim of this study was to 
investigate the use of machine learning for early prediction of MDS 
diagnosis using only EHR data. To this end, we examined three separate 
models: XGB, LR, and ANN. All three models yielded AUROC values 
above 0.83 (Table 3), demonstrating high accuracy in MDS prediction 
one year prior to patient MDS diagnosis. Best performance was achieved 
by the XGB model, with an AUROC of 0.872, and sensitivity and spec
ificity of 0.785, and 0.804, respectively. An assessment of feature 
importance for the XGB model revealed that the model utilized several 
known risk factors for MDS when generating MDS risk predictions. For 
example, the algorithm identified increased age as predictive of MDS, in 
agreement with epidemiologic research showing that MDS prevalence 
increases with age [5,6]. Similarly, the model found sex to be predictive 
of MDS, again in accord with epidemiologic research finding differential 
prevalence of MDS across sex [5]. Additionally, several important fea
tures were related to hematopoietic cell lineages (e.g. platelet count, red 
blood cell count, hemoglobin, hematocrit, and white blood cell count). 
As MDS is characterized by abnormalities in hematopoietic cells, the 
importance of these features may indicate that the algorithm is identi
fying trends within and values these features to predict MDS. Finally, it 

Table 2 
Demographics and clinical characteristics of the hold-out test set.   

Characteristic 

MDS 
Patients 
(%) 

Non-MDS 
Patients 
(%) 

p- 
value n = 428 n =

236,713 

Age Median (IQR) 
MDS: 77 (68− 82) 
non-MDS: 61 
(53− 71) 

45− 49 
5 (1.17 
%) 

32,915 
(13.91 %) <.001 

50− 54 16 (3.74 
%) 

35,069 
(14.81 %) 

<.001 

55− 59 18 (4.21 
%) 

37,913 
(16.02 %) 

<.001 

60− 64 
42 (9.81 
%) 

35,532 
(15.01 %) .003 

65− 69 
44 (10.28 
%) 

29,016 
(12.26 %) .21 

70− 74 48 (11.21 
%) 

23,444 
(9.9 %) 

.36 

75− 79 100 
(23.36 %) 

16,899 
(7.14 %) 

<.001 

80− 84 
113 (26.4 
%) 

11,860 
(5.01 %) <.001 

85+
42 (9.81 
%) 

14,065 
(5.94 %) <.001  

Sex 
Male 

239 
(55.84 %) 

105,089 
(44.4 %) <.001 

Female 189 
(44.16 %) 

131,624 
(55.6 %) 

<.001  

Ethnicity 

Hispanic 7 (1.64 
%) 

11,078 
(4.68 %) 

.003 

Not Hispanic 388 
(90.65 %) 

200,881 
(84.86 %) 

<.001 

Unknown 
33 (7.71 
%) 

24,754 
(10.46 %) .06  

Race 

Caucasian 
381 
(89.02 %) 

186,407 
(78.75 %) <.001 

African American 
26 (6.07 
%) 

22,680 
(9.58 %) .014 

Asian 4 (0.93 
%) 

4919 (2.08 
%) 

.1 

Other/Unknown 17 (3.97 
%) 

22,707 
(9.59 %) 

<.001  

Comorbidities 

Arrhythmia 138 
(32.24 %) 

40,881 
(17.27 %) 

<.001 

Heart Valve Disease 
68 (15.89 
%) 

21,880 
(9.24 %) <.001 

Prior Myocardial 
Infarction 

46 (10.75 
%) 

10,792 
(4.56 %) <.001 

Chronic Heart 
Failure 

65 (15.19 
%) 

12,800 
(5.41 %) 

<.001 

Hypertension 257 
(60.05 %) 

109,207 
(46.13 %) 

<.001 

Vascular Disease 
99 (23.13 
%) 

26,879 
(11.36 %) <.001 

Cerebrovascular 
Disease 

77 (17.99 
%) 

17,988 
(7.6 %) 

<.001 

Hepatic Cirrhosis 7 (1.64 
%) 

1835 (0.78 
%) 

.04 

Chronic Kidney 
Disease 

90 (21.03 
%) 

17,168 
(7.25 %) 

<.001 

Renal Failure 
55 (12.85 
%) 

10,714 
(4.53 %) <.001 

COPD 
82 (19.16 
%) 

30,141 
(12.73 %) 

<.001 

Cancer 143 
(33.41 %) 

49,600 
(20.95 %) 

<.001 

Diabetes 
104 (24.3 
%) 

42,204 
(17.83 %) <.001 

Obesity 
67 (15.65 
%) 

43,897 
(18.54 %) .12  

Clinical Measures Hematocrit (%) 35.50 41.05 <.001  

Table 2 (continued )  

Characteristic 

MDS 
Patients 
(%) 

Non-MDS 
Patients 
(%) p- 

value n = 428 n =
236,713 

Red blood cell count 
(x10^6/μL) 

3.76 4.54 <.001 

Platelet count 
(x10^3/μL) 

194.61 229.50 <.001 

Peripheral oxygen 
saturation (SpO2) 
(%) 

96.65 97.04 <.001 

Diastolic Blood 
Pressure (mm Hg) 

69.58 76.00 <.001 

Temperature (℃) 36.64 36.68 .02 
White blood cell 
count (x10^3/μL) 

6.35 7.10 <.001 

Systolic Blood 
Pressure (mm Hg) 

128.56 128.06 .02 

Albumin (g/dL) 3.9 4.1 <.001 
Neutrophil 
percentage (%) 

62.66 62.40 <.001 

Heart Rate (bpm) 73.73 75.33 .63 
Respiratory Rate 
(breaths/min) 

17.44 17.00 .002 

Blood urea nitrogen 
(mg/dL) 

19.78 15.60 .004 

Absolute neutrophil 
count (x10^3/μL) 

4.06 4.40 <.001 

Glucose (mg/dL) 107.34 102.00 <.001 
Chloride (mEq/L) 103.95 103.00 <.001  

Procedures 
Radiation Therapy 11 (2.57 

%) 
2043 (0.86 
%) 

<.001 

Chemotherapy 21 (4.91 
%) 

2508 (1.06 
%) 

<.001  
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has been noted that MDS patients are at risk of infection due to neu
tropenia [3,38]. Neutrophil count and percentage may be important 
model features due to the correlation between MDS and neutropenia. 

Several factors may have contributed to the XGB model out
performing LR and ANN models [39]. Firstly, compared to XGB, LR is a 
structurally simpler model, where decisions are based on a set of co
efficients that determines a complex boundary to separate the dataset by 
class. Second, neural networks are typically geared towards classifica
tion tasks on unstructured data, such as images or texts. In these cases, 
neural networks may outperform XGB, since the former evaluates how 
different features may be related (i.e. relationship between pixels in an 
image, words in a sentence, etc) and the latter evaluates features inde
pendent of one another. Since this study is based on structured data 
extracted from the EHR, which in this case is not a continuous set of 
data, XGB may perform better due to its ability to examine features 
independently as opposed to looking at the feature set as a whole. Third, 
XGB resembles a rule-based decision process since it follows a 

deterministic method that attempts to maximize information gain. In a 
clinical setting, a hematopathologist follows a decision tree-like process 
when diagnosing MDS, i.e. values of WBC, platelet, etc. above or below a 
certain count. Since the XGB model makes decisions in a similar pattern, 
it may contribute to improved performance of XGB over the ANN model. 
Finally, XGB is able to handle missing or null values, while ANN and LR 
require imputation techniques to be implemented. Depending on how 
much data is missing, imputation of missing values could decrease ANN 
or LR performance, or reduce precision. 

MDS diagnosis requires evidence of cytopenias, morphologic or 
immunophenotypic evidence of dysplasia, and cytogenetic abnormal
ities [1,8,40]. According to current standard of care, these characteris
tics are established by conducting 1) physical examination, 2) complete 
blood count (CBC), 3) blood smear to visualize dysplasia, 4) bone 
marrow biopsy to determine blast percentages, and 5) karyotyping or 
molecular cytogenetic tests to look for chromosomal abnormalities, such 
as fluorescent in situ hybridization (FISH), or comparative genomic 
hybridization (CGH) [1]. Although some of these tests are performed 
routinely, such as CBC and physical examinations, a bone marrow bi
opsy for blast percentage measurements and cytogenetic examinations 
may not be conducted until MDS diagnosis is suspected. Therefore, we 
designed an MLA to predict MDS accurately without using blast per
centages, cytogenetic tests or specialized lab results, to ensure that it is 
capable of providing early MDS warning in patients not yet clinically 
suspected of having the condition. AUROC values > 0.83 across all our 
models demonstrated that without this data, we are able to predict MDS 
prior to diagnosis, using only information from the patient EHR. Our 
feature importance analysis, as shown by the SHAP plot in Fig. 3, 
determined the patient’s age, hematocrit, red blood cell and platelet 
count as the most important features for our XGB model. 

Machine learning has emerged as a supplementary tool to aid clinical 
care in many areas of medicine. Radakovich et al. details the various 
uses of machine learning for cancers of the blood and hematological 
systems, where such tools typically assess risk, disease progression, and 

Fig. 2. The area under the receiver operating characteristic curve (AUROC) plots for XGB, LR and ANN models.  

Table 3 
Summary of performance for XGB, LR and ANN models on hold-out test set. Area 
under the receiver operating characteristic curve (AUROC) value, sensitivity, 
specificity, positive and negative likelihood ratios (+/-LR), and diagnostic odds 
ratio (DOR) demonstrate better performance from XGB model compared to LR 
and ANN models.   

XGB LR ANN 

AUROC (95 % 
CI) 

0.872 
(0.853− 0.89) 

0.838 
(0.819− 0.855) 

0.832 
(0.811− 0.851) 

Sensitivity (95 % 
CI) 

0.785 
(0.743− 0.822) 

0.743 
(0.702− 0.784) 

0.731 
(0.69− 0.772) 

Specificity (95 % 
CI) 

0.804 
(0.802− 0.805) 

0.786 
(0.785− 0.788) 

0.794 
(0.793− 0.796) 

LR+ 6.456 3.479 3.558 
LR- 0.377 0.327 0.338 
DOR 17.104 10.645 10.522  
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response to therapeutics and treatment [41]. However, to our knowl
edge, no approach, including machine learning or other predictive 
methods, exist to ascertain an individual’s likelihood of developing MDS 
using only EHR data. 

Though machine learning has yet to be applied as an early diagnostic 
tool for MDS using EHR data, some studies have examined the ability of 
these methodologies to predict cancer types that are similar to MDS, 
such as AML [42]. Warnat-Herresthal et al. tested the ability of nine 
machine learning models to discriminate between AML and non-AML 
patients, as well as to predict various types of leukemic cancers [43]. 
Though accuracy was high, the study required data derived from DNA 
sequencing. Ohno-Machado et al. notes that this type of data is not 
consistently available within the EHR and is not typically included in a 
manner that makes the data readily interpretable [44]. Our present 
study builds upon this literature and demonstrates the potential of ma
chine learning for early hematological cancer detection. 

4.1. Limitations 

The retrospective nature of the study makes it difficult to determine 
if this MLA would ultimately impact patient outcomes. Although early 
identification can help many MDS patients, there are a high number of 
patients who do not qualify for any curative treatment, such as bone 
marrow transplantation, due to advanced age or other comorbidities 
[45]. Another limitation of this study is that we maintained a 2-year 
observation period from the time of algorithm MDS diagnosis predic
tion to ensure that patients did not develop MDS during this time. 

However, that does not imply that they would not develop MDS past this 
2-year period. Lastly, the data from which these scores were derived was 
comprised heavily of non-Hispanic whites. This lack of diverse repre
sentation in the dataset may mean that this MLA cannot be accurately 
used in broad populations. 

5. Conclusions 

While there is significant ongoing active research on MDS, there is a 
lack of MDS CDS tools being investigated or developed for early and 
accurate prediction of MDS. Machine learning can make a meaningful 
impact in this area. We have developed methods to accurately predict 
MDS prior to clinical diagnosis. Our algorithm relies on a limited 
number of inputs readily available in EHR data, without utilizing blast 
percentages or cytogenetics. In clinical practice, use of such a tool may 
enable earlier diagnosis of MDS and supportive treatment 
administration. 

Declaration of Competing Interest 

All authors who have affiliations listed with Dascena (Houston, 
Texas, U.S.A) are employees or contractors of Dascena. 

Acknowledgements 

We would like to thank Dr. Matt Schwede for providing valuable 
medical perspective into management of myelodysplastic syndromes. 

Fig. 3. Feature correlations and distribution of feature importance for the XGB model. Model input variables are ranked in descending order of feature importance. 
Red is indicative of a high feature value and blue is indicative of a low feature value. Points to the right of the line of neutral contribution resulted in a higher score; 
points to the left of this line resulted in a lower score. 
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Supplementary material related to this article can be found, in the 
online version, at doi:https://doi.org/10.1016/j.leukres.2021.106639. 

References 

[1] S. Swerdlow, et al., WHO Classification of Tumours of Haematopoietic and 
Lymphoid Tissues, IARC, 2017. 

[2] Myelodysplastic Syndromes - MDS - Statistics, Cancer.Net, 2012. https://www.ca 
ncer.net/cancer-types/myelodysplastic-syndromes-mds/statistics. 

[3] G. Leone, L. Pagano, Infections in myelodysplastic syndrome in relation to stage 
and therapy, Mediterr. J. Hematol. Infect. Dis. 10 (2018). 

[4] A.M. Brunner, et al., Risk and timing of cardiovascular death among patients with 
myelodysplastic syndromes, Blood Adv. 1 (2017) 2032–2040. 

[5] P.L. Greenberg, et al., Revised international prognostic scoring system for 
myelodysplastic syndromes, Blood 120 (2012) 2454–2465. 

[6] M. Cazzola, L. Malcovati, Myelodysplastic syndromes — coping with ineffective 
hematopoiesis, N. Engl. J. Med. 352 (2005) 536–538. 

[7] A.M. Zeidan, R.M. Shallis, R. Wang, A. Davidoff, X. Ma, Epidemiology of 
myelodysplastic syndromes: why characterizing the beast is a prerequisite to 
taming it, Blood Rev. 34 (2019) 1–15. 

[8] G.A. Hamid, A.W. Al-Nehmi, S. Shukry, Diagnosis and classification of 
myelodysplastic syndrome. Recent Dev. Myelodysplastic Syndr., 2019, https://doi. 
org/10.5772/intechopen.82532. 

[9] A.E. DeZern, M.A. Sekeres, The challenging world of cytopenias: distinguishing 
myelodysplastic syndromes from other disorders of marrow failure, Oncologist 19 
(2014) 735–745. 

[10] D.P. Steensma, Does early diagnosis and treatment of myelodysplastic syndromes 
make a difference? Best Pract. Res. Clin. Haematol. 32 (2019), 101099. 

[11] Myelodysplastic Syndromes Treatment (PDQ®)–Health Professional Version -, 
National Cancer Institute, 2020. https://www.cancer.gov/types/myeloprolifera 
tive/hp/myelodysplastic-treatment-pdq. 

[12] A.M. Zeidan, et al., Deferasirox therapy is associated with reduced mortality risk in 
a medicare population with myelodysplastic syndromes, J. Comp. Eff. Res. 4 
(2015) 327–340. 

[13] M. Delforge, et al., Adequate iron chelation therapy for at least six months 
improves survival in transfusion-dependent patients with lower risk 
myelodysplastic syndromes, Leuk. Res. 38 (2014) 557–563. 

[14] V. Runde, et al., Bone marrow transplantation from HLA-identical siblings as first- 
line treatment in patients with myelodysplastic syndromes: early transplantation is 
associated with improved outcome, Bone Marrow Transplant. 21 (1998) 255–261. 

[15] C.R. Cogle, et al., Early treatment initiation in lower-risk myelodysplastic 
syndromes produces an earlier and higher rate of transfusion independence, Leuk. 
Res. 60 (2017) 123–128. 

[16] Y.L. Carattini, et al., Early detection of myelodysplastic syndromes: maximizing the 
utility of automated hematology, Blood 128 (2016) 5527. 

[17] B.B. Ganguly, N.N. Kadam, Mutations of myelodysplastic syndromes (MDS): an 
update, Mutat. Res. Rev. Mutat. Res. 769 (2016) 47–62. 

[18] C. Duetz, et al., Machine learning-based flow cytometry diagnostics in 
myelodysplastic syndromes: validation in the HOVON89 clinical trial (EudraCT 
2008-002195-10), Blood 136 (2020) 10–12. 

[19] A.M. Zeidan, et al., Lenalidomide performance in the real world, Cancer 119 
(2013) 3870–3878. 

[20] C.R. Cogle, B.M. Craig, D.E. Rollison, A.F. List, Incidence of the myelodysplastic 
syndromes using a novel claims-based algorithm: high number of uncaptured cases 
by cancer registries, Blood 117 (2011) 7121–7125. 

[21] S.L. Goldberg, et al., Economic impact on US Medicare of a new diagnosis of 
myelodysplastic syndromes and the incremental costs associated with blood 
transfusion need, Transfusion (Paris) 52 (2012) 2131–2138. 

[22] T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining 785–794 (Association for Computing Machinery) (2016), https://doi.org/ 
10.1145/2939672.2939785. 

[23] T. Dozat, Incorporating Nesterov Momentum Into Adam, 2016, p. 4. 
[24] S. Lundberg, S.-I.A. Lee, Unified Approach to Interpreting Model Predictions, 

ArXiv170507874 Cs Stat, 2017. 
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