Webinar February 25, 2021

rror mod.use_z = False **Building the Confidence to Connect** with Zero Trust Edge Security 10 1 0 0

"Selected" + str(modifie bpy ontext celected of ta.objects one.nate].0 nt("please select exact

mirror object to mirror fror_mod.mirror_object

eration == "MIRROR_X"; Arror mod.use_x = True irror_mod.use_y = False
irror_mod.use_z = False
operation == "MIRROR_Y"

rror mod.use x = False rror_mod.use_y =

ZEDEDA accenturesecurity Lanner

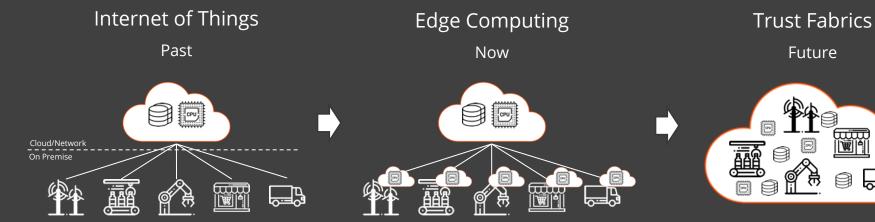
0

Today's Speakers

Lanner

Ahmed Khalil

Americas Business Development Lead, IoT Solutions



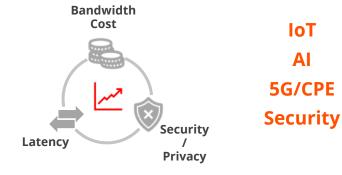
Chris Shaunfield

Principal Director

Evolution in a Connected World

- "Connect" Era
- Trusted Cloud Computing
- Big Data

- "Compute" Era
- Cloud-Native
 - "Everywhere"
- Artificial Intelligence


- "Confidence" Era
- Interconnected Ecosystems
- Ambient Computing

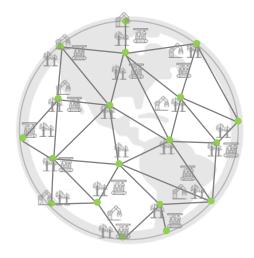
The Edge is the Last Cloud to Build

Source: LF Edge June 2020 taxonomy white paper

The Distributed Edge Solves Myriad Business Problems

The Distributed Edge Has Unique Challenges

• Diversity of hardware, software and skill sets


- New edge infrastructure deployed into legacy environments
- o Lack of autonomous and remote orchestration
- o Mix of skill sets (OT and IT) in the field

New security threat vectors

- o Remote non-trustable networks
- o No physical or cyber security perimeter in the edge
- No centralized pane of glass for visibility & remediation

Unprecedented scale of nodes

- o Geographically-dispersed locations
- High cost for field deployment and maintenance
- DC solutions are resource-intensive and not priced for this scale

The Distributed Edge Needs Orchestration

Securing Industrial IoT and Distributed Edge Computing Solutions

© 2021 ZEDEDA, INC.

Key Priorities

ΟΤ

Priorities

Availability Integrity Confidentiality

Top Concerns Uptime and Safety

At Risk

Immediate loss of production and/or life

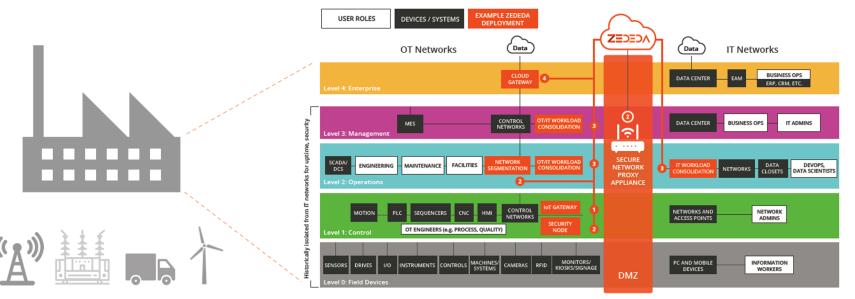
Priorities

Confidentiality Integrity Availability

Top Concerns

Security, Governance and Compliance

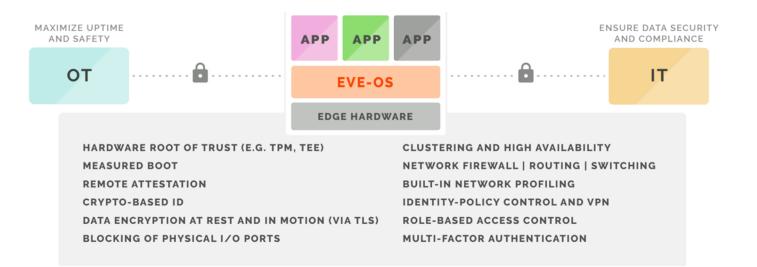
At Risk


Data/IP loss, playing out over long periods of time and at great scale

Common Edge Deployment Patterns

Use Cases:

- 1. IoT Gateways Data ingestion, normalization and analytics
- 2. Security Nodes Root of trust, network segmentation, OT/IT protocol inspection, etc.
- 3. Workload Consolidation Single and clustered for SCADA, HMI, Historian, Edge AI, etc.
- 4. Cloud Edge Gateways e.g. NFV, Firewall, CPE, Private 5G



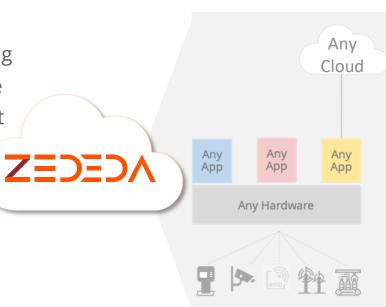
9

Q: Should I secure the data, network or node?

A: All of the above, with defense in depth.

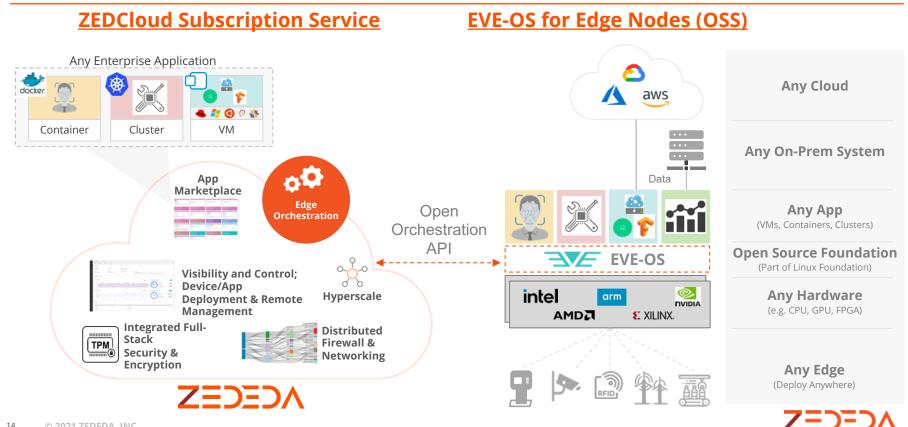
ZEDA

Orchestration for the Distributed Edge

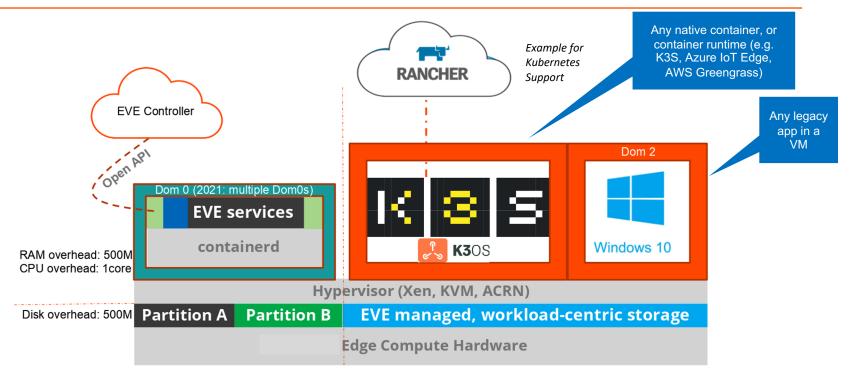

Visibility, Control and Security for the Distributed Edge at Scale

ZEDEDA is a cloud-based orchestration service built from the ground up for the Distributed Edge

- Subscription-based SaaS with option for white labeling
- Full remote orchestration of both apps and hardware
- Built on an open edge foundation (EVE-OS) to prevent lock-in


Customers can seamlessly

- Manage any app on any hardware at scale
- Enable a hybrid private/public cloud strategy
- Secure connected operations



The ZEDEDA Solution

EVE-OS Architecture

Open source, developed within Project EVE in

Growing Project EVE Community Adoption

- Approaching 60 unique contributors from ZEDEDA, Xilinx, Intel, GE Research, Timesys and more
- >50% not affiliated with ZEDEDA

Zero-trust Security Model

People, Process and Technology

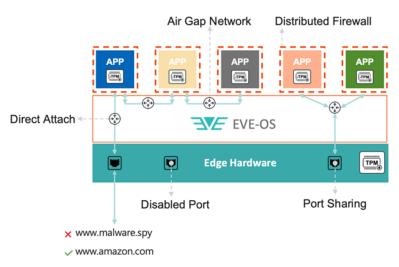
- People
 - Remove need for device usernames/passwords
 - Use cryptographic device identity and APIs for control
 - RBAC and multi-tenancy in cloud controller
- Processes handle 7+ year lifetime at edge
 - Secure, scalable distribution of updates
 - Anomaly detection across edge fleet in controller

- Technologies for the IoT edge
 - Hardware root of trust (e.g., TPM)
 - Measured boot and remote attestation
 - Crypto-based identification (no device username/password)
 - Data encryption at rest and in-flight (TLS)
 - Distributed firewall for every app/node
 - Physical security—port isolation
 - Role-based access control (RBAC)

Simple Provisioning and Risk-Free Updates

Zero Touch Provisioning (ZTP)

- Connect power and network to both with EVE-OS installed
- EVE-IS creates a crypto-based ID based on root of trust (e.g. TPM)
- Node automatically logs into ZEDCloud where onboarding is completed
- All work can then be done remotely


Flexible, Risk-Free Updates

- All components can be managed and updated individually
 - Update EVE-OS
 - Update guest OS
 - Push and update new apps (VMs and/or containers) from ZEDEDA App MArketplace (Public or Private)
- Sandboxing for updates
 - Roll-forward or roll-back images
 - Brick-free and risk-free
 - Group updates (project, location or organization)
- "Eventual consistency" model based on intended state to maximize uptime

Granular Software-defined Controls

- Ability to assign CPU and co-processors (e.g. GPU) to discrete apps
- Distributed Firewall & whitelist connectivity
 - Control east-west & north-south traffic
 - Create air gap & edge mesh networks
- Networking
 - Direct attach (IO Virtualization)
 - Port sharing (Network Virtualization)
 - Disable Ports
- Policy-based WAN control
 - Failover support (e.g. Ethernet, LTE, satellite and Wi-Fi)
 - Load balancing, policy control, policing and shaping
 - Traffic prioritization

Setting Policies and Visualizing Network Flows

Lanner

Intelligent Edge Computing IoT Solutions

Company Overview

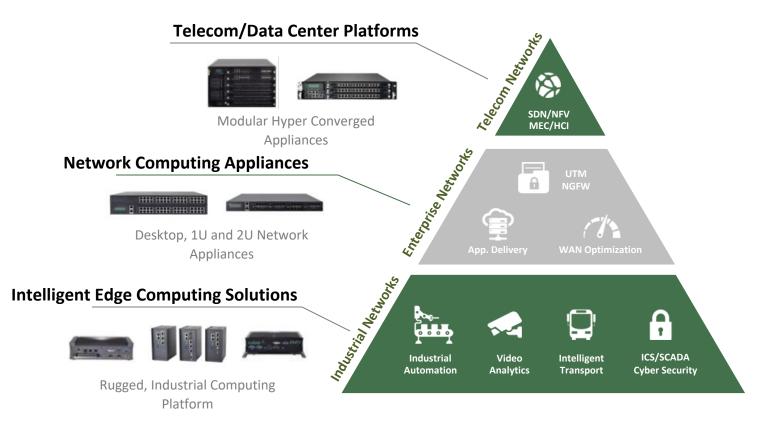
Highlights

- Founded 1986. Corporate office in Taipei, Taiwan
- 35 years experience manufacturing network & computing appliances
- Wide range of highly customizable & scalable HW platforms

• ISO 9001 (Quality)

- ISO 14001 (Environment)
- OHSAS 18001 (Health and Safety)
- IECQ QC 080000 (RoHS)
- ISO 28000 (Supply Chain Security)
- AEO (Authorized Economic Operators)
- TL9000 (Telecom Quality Management)
- ISO 27001 (Information Security) NEW!

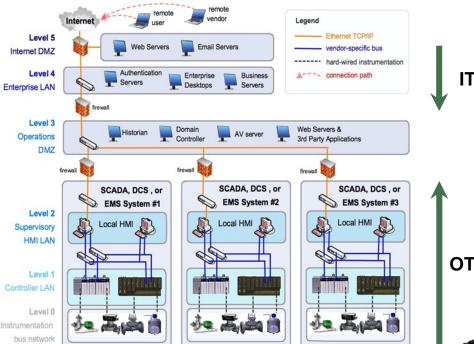
RoHS


202

TWAED

Mode in TAIWAN

FL9000


Domain Expertise

Market-Focused Edge Deployment Solutions

Industrial Edge Security

Common Best Practices

Silicon Root of Trust – baseline defense Encryption – resting or traveling Segmentation – limit data security breaches Access Control – principle of least privilege Visibility & Monitoring – IDS & IPS

Security -Driven Industrial-grade Systems

Security Gateway – controllers, PLC, RTU, etc. Plant Firewall – SCADA, HMI, historian, DCS, etc. OT Firewall - MES, logistics, supply chain, etc. Enterprise Firewall – corporate office, HQ data center, etc.

Secured, Validated Hardware Platforms

Enable Faster Time-to-Value!

Pre-configured and ready to ship HW models (Fast Availability – no MOQ!) Security features based on our vast experience servicing global firewall and security leaders

TPM - Hardware Root of Trust

ISO 28000 & 27001 audited & certified manufacturing & delivery processes Feature rich to meet specific application needs (LTE, Wi-Fi, PoE, accelerator cards, etc.) End to end Life Cycle Management (design, manufacturing and end-of-life) Loaner Program to support pilot projects - demo units available in Lanner online store Local support network – HUBs, engineering, project management & customer service

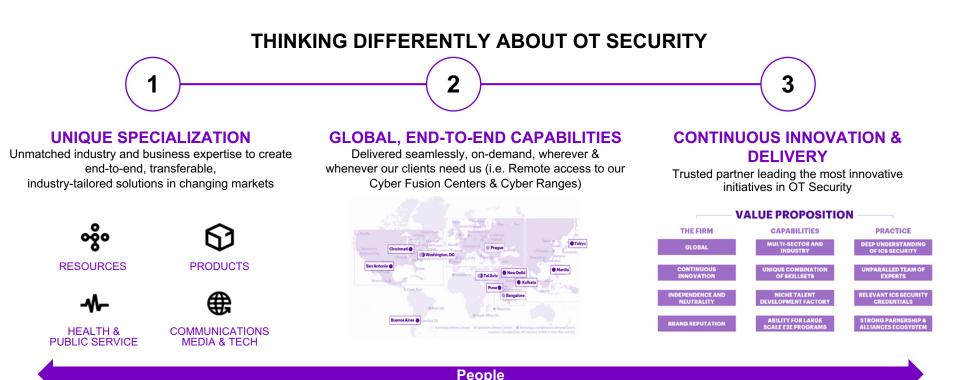
accenturesecurity

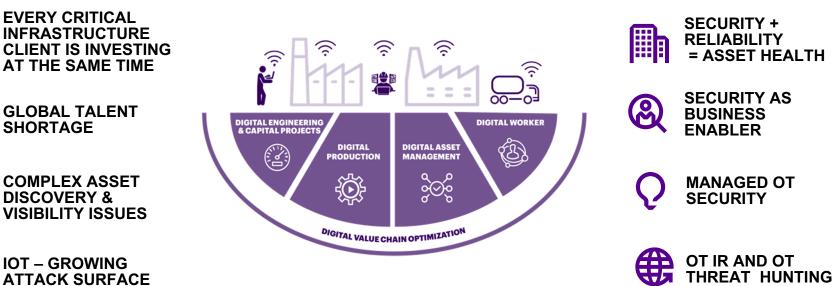
PRACTICE OVERVIEW

ACCENTURE OT SECURITY

OUR CURRENT OT SECURITY PRACTICE

趋 7500+ SECURITY PROFESSIONALS 1000 +PLANT OPERATIONS PROFESSIONALS 200+ **DEDICATED OT SECURITY** PROFESSIONALS **Other Groups with OT Security Capabilities**


- Digital
 - Industry X
- Operations
 - MSS Teams
 - Telecom/Network Teams


OUR VISION

Global OT leader, with deep and unique specialization, end-to-end capabilities and real-time innovation in the field

OT SECURITY CLIENT PERSPECTIVES

CHALLENGES

TRENDS

HOUSTON OT CYBER FUSION CENTER

Panoramic photo of the Houston OT CFC Open Lab Layout

Copyright © 2021 Accenture Security. All rights reserved.

OT CYBER FUSION CENTER

Advancing Security for Industrial Control Systems

- > a risk-free setting to *innovate, stage and test* the security solutions that protect industrial control systems (ICS) and related assets from cyber attacks
- > one-stop shop for the creation and testing of effective security for people and operations.
- > Combines advanced OT engineering, vulnerability and malware analysis with threat intelligence and security operations

OT Cyber Range

Test, learn and assess equipment in a safe, realistic, battle-proven setting.

OT Operator Console
View and control O&G processes from the field.

OT Security Operations Center

Centrally supervise, detect and mitigate attacks.

ICS / OT Staging Lab

Ideal for enhancing and testing OT capabilities.

OT Incident Response Equipment

Specialized tools used by OT experts for response, remediation and recovery.

iDefense OT Threat Intelligence

Access to actionable OT security intelligence (e.g. Siemens, Rockwell) through the IntelGraph platform.

OT Design-Thinking Lab

A safe environment to develop OT cybersecurity strategies and plans.

OT IIoT Edge Sensor to Cloud

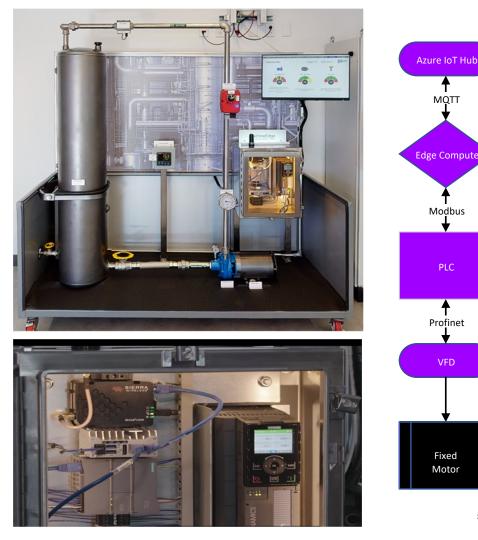
Al-Driven Energy and Reliability Optimization of Fixed Speed Motors. Experience Device onboarding, management, integrations, and security.

IIOT EDGE SOLUTION

Sensor to cloud Al-driven optimization and automation for fixed speed motors:

- Advances pump system reliability
- Reduces energy consumption ~50%
- Drives down CO2 emissions

250 MachineEdge units (50 hp consumed)


One plant. Every year. \$3,250,000 36,000 tons

Energy Cost Savings (USD)

Reduction in CO2 Emissions

IIoT Edge Experience ~2 hours

- Device onboarding
- Device management
- Azure IoT HUB Integrations
- Zero Trust Security

31

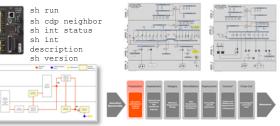
OT SECURITY CYBER RANGE EVOLUTION

WHAT WE OFFER FOR OT SECURITY

In combining our cybersecurity expertise with OT best practices, we are able to provide the following set of services to protect the availability, integrity and confidentiality of an organization's critical systems

🖹 DEFINE

- OT Security Program Development
- OT Security Governance & Strategy
- OT Cyber Security Capability Maturity Diagnostic
- OT Security Technology Evaluation
- OT Security Risk Assessments
- IIoT Edge Architectures and Ecosystems
- CORE & CISO Academy for OT


Proven OT Security Practice

confidentiality of an organi

- OT Security Controls Design & Implementation
- OT Security Anomaly Detection and Asset Management Technology Deployment
- OT Network Security Re-architecture
- Remote Assistant via Augmented Reality (RealWear) for Site Visits
- IIoT Edge Solutions and Security

OT Architecture Design & Deployment Playbooks

🕸 SUSTAIN

- OT SOC Transformation & Automation
- OT Managed Security Services
- OT Threat Intelligence & Vulnerability Research
- OT Incident Response
- Secure IOT Cloud Capabilities
- OT IAM Capabilities

OT Cyber Labs for Rapid Security Testing

EDGE/IOT TIER – SECURITY REFERENCE ARCHITECTURE

Physical	
Perimeter Protection	Device Tracking
Physical Intrusion Detection	Tamper Prevention & Detection
Network & Endpoint	
Firewall Protection	Secure Execution Environment
Firmware/Memory Attestation	Host NGFW/HIDS
Cryptographic Engine	
Secure Boot	
Application	
Signed App Software	Secure M2M Service
Secure FOTA	Sandboxing
Secure Development Tools	API Security
	AFTSecurity
SDLC Security	
Digital Identity	
Digital Identity	
Unique Device Identifier	Edge Identity Management
Edge Identity Integration	
Data Privacy & Protection	
Secure Storage	Data In Transit protection
Data Encryption at Rest	Certificates and Key Management
Cyber	
Logging	Security Management
Security Monitoring	ŭ

Ultra constrained devices are limited to only supporting basic security capabilities. Ultra constrained devices often rely on high end devices to communicate and enhance security.

Edge constrained devices have more computational power and implicitly optimized security capabilities than ultra constrained ones. This level of embedded security usually implies that manufacturers include dedicated security processor in the architecture of their MCUs/MPUs.

High end devices do not suffer from resources constraints. These type of devices contain advanced security capabilities and/or support to enable add-on security mechanisms via specialized platforms deployed in the Edge Tier. Devices in this category (e.g. IoT gateway) are often times used to enable or enhance security for resource-constrained devices.

₋egend	
Basic Security Capabilities	
Optimized Security Capabilities	
Advanced Security Capabilities	

SUMMARY

ZEDEDA

It Takes a Village

Examples of additional ecosystem partnerships to round out our robust security offering

OT Network Threat Detection

Virtual Firewall

Summary

- Solutions must balance OT and IT needs, practice defense in depth and prioritize usability
- Together we provide an industry-leading, comprehensive solution for IoT/IIoT/ICS security
- Built on a modular architecture to provide choice in hardware and software
- Open foundation increases transparency and prevents lock-in

ZEDEDA accenturesecurity Lanner

entext): ext.active_object is not