
Lua Workshop
By Paul Le



22

Overview
1. Introduction

2. Error Handling in Lua

3. Logging in Lua

4. Preventing memory leaks in Lua

5. Walk-through

6. Q & A



33

What to Expect
1. What is it

2. Why is it important

3. Real world application



Introduction



55

● Integration company with a 20+ 
year history of excellence

● We develop the Iguana 
middleware integration engine

Who Are We



66

What We Do

● Work with healthcare providers 
and software vendors

● We provide rapid, reliable, and 
scalable interoperability 
solutions

● Move data from point A to B



77

The Iguana 
Translator

● Patented development 
environment

● Provides a Lua scripting 
environment

● Perform customizable filtering 
and message transformation



Error Handling in 
Lua



99

Error Handling in 
Lua

● Lua script errors will cause a 
channel to stop

● Errors should be accounted for 
and gracefully handled

● Behaviour should not be 
unexpected



1
0
1
0

Error Handling in 
Lua

● Lua script errors will cause a 
channel to stop

● Errors should be accounted for 
and gracefully handled

● Behaviour should not be 
unexpected



Gracefully Capture 
Errors



1
2
1
2

iguana.stopOnError

● Enables/disables stopping the 
channel when errors occur

● Generally not recommended
● Sometimes stopping a channel 

on error is desired



1
3
1
3

pcall

● Protected call
● Catches errors and returns a 

status code
● Allows for complete control on 

error handling



Retrying 
Intermittent Issues



1
5
1
5

retry.lua

● Retry operations that are prone 
to periodic failure

● Specify timeout time, pause time, 
retry count

● Module includes pcall embedded 
inside



Logging in Lua



1
7
1
7

Logging in Lua

● Not limited to default logging 
provided by a channel

● Able to add custom logging in 
Lua script

● Four types of logging available



1
8
1
8

iguana.logInfo

● Trigger a regular log message
● Great for auditing or 

informational purposes



1
9
1
9

iguana.logInfo Best 
Practices

● Useful things to log:
○ API responses
○ Data read from files
○ All file operations



2
0
2
0

iguana.logError

● Trigger an error log message 
without stopping channel

● This will increase error log count 
on the Dashboard

● Great for alerting



2
1
2
1

iguana.logError

● Trigger an error log message 
without stopping channel

● This will increase error log count 
on the Dashboard

● Great for alerting



2
2
2
2

iguana.logError

● Trigger an error log message 
without stopping channel

● This will increase error log count 
on the Dashboard

● Great for alerting



2
3
2
3

iguana.logError Best 
Practices

● Useful things to log:
○ Issues with external systems



2
4
2
4

iguana.logWarning

● Trigger a warning log message
● Great for warning



2
5
2
5

iguana.logWarning 
Best Practices

● Useful things to log:
○ Skipped messages
○ Intermittent issues



2
6
2
6

iguana.logDebug

● Used for debugging when 
needed

● Does not bloat the logs when not 
needed

● Great for testing and debugging



2
7
2
7

iguana.logDebug

● Used for debugging when 
needed

● Does not bloat the logs when not 
needed

● Great for testing and debugging



2
8
2
8

iguana.logDebug 
Best Practices

● Useful things to log:
○ SQL statements
○ Responses from databases
○ Memory usage
○ Function calls and 

responses



Troubleshooting 
with Logging



3
0
3
0

Troubleshooting 
Production Issues

● All log messages associated 
with a message are related

● Need to balance between 
extra log messages and 
better visibility

● Use iguana.logDebug for 
troubleshooting



3
1
3
1



3
2
3
2

Troubleshooting 
Performance Issues

● All Iguana logs are 
timestamped

● Use iguana.logDebug to 
measure execution time



Preventing memory 
leaks in Lua



3
4
3
4

● Lua typically is good at managing memory
● Best practice is to define all variables as local
● Only use global variables if you know what you’re doing

Preventing memory leaks in Lua



3
5
3
5

How to 
troubleshoot 
memory leaks
● Use global.collectgarbage(‘count’) 

to measure memory usage
● Log memory usage to monitor 

memory usage
● Gradually increasing memory 

usage indicates memory leak



Walk-through



3
7
3
7

Walk-through

● Make API call to endpoint to get 
HL7 messages

● Goal is to create channel that is 
able to make API call and handle 
possible errors cases



3
8
3
8

Lua Workshop API 
Endpoint

● Treat as a black box that returns 
a random HL7 message

● Randomly returns errors or bad 
HL7 messages



3
9
3
9

Lua Workshop 
Client

● Update Lua script to handle error 
cases

● Use logging to improve 
supportability

● Goal is to write Lua script that 
can handle all error cases and 
run for at least an hour



Questions



4
1
4
1

● The latest is the one you import from the Retry periodic failure 
channel from the Builtin: Iguana Tools repository

● Has not been changed much in the past few years
● Reference: https://help.interfaceware.com/v6/retry-example

What is the latest/greatest version of the 
retry module?

https://help.interfaceware.com/v6/retry-example


4
2
4
2

● The “Show all entries related to this” button shows up for any log 
entries related to a message: 
https://help.interfaceware.com/v6/using-the-logs#related

● Custom log entries will be related to messages that are passed 
through Filter and To Trans components

● From Trans and From HTTPS channel components only show 
custom log entries in sequential order when viewing logs (i.e. 
custom log entries are not related to messages)

What kind of Channels utilize "Show all 
entries related to this"?

https://help.interfaceware.com/v6/using-the-logs#related


4
3
4
3

● Global Lua variables persist between poll time executions
● Examples of when this is desired:

○ Persistent database connections: 
https://help.interfaceware.com/v6/database-connection

○ Caching lookup values in memory: 
https://help.interfaceware.com/v6/database-query-caching

Do global Lua variables persist between 
poll time executions

https://help.interfaceware.com/v6/database-connection
https://help.interfaceware.com/v6/database-query-caching


4
4
4
4

● No mechanism in Iguana
● Typically something that the database team would be able to 

implement if possible for the database

A mechanism to lock a database while 
Iguana is updating a record?



4
5
4
5

● Query the Iguana logs via the log query API to check for duplicate 
messages: 
https://help.interfaceware.com/v6/http-api-reference#api_query

● For API requests that timeout, use the retry.lua module
● We have a more efficient solution for preventing duplicate 

messages that also uses the log query API: 
https://help.interfaceware.com/v6/duplicate-filter

How to prevent duplicate messages from 
being passed through Iguana?

https://help.interfaceware.com/v6/http-api-reference#api_query
https://help.interfaceware.com/v6/duplicate-filter


4
6
4
6

● We have a module for storing lookup values in memory: 
https://help.interfaceware.com/v6/database-query-caching

Can I store data retrieved from database 
in memory?

https://help.interfaceware.com/v6/database-query-caching


Have More Questions?



4
8
4
8

Email us your questions:

Webinar@Interfaceware.com

Don’t Hesitate to Ask Questions



Thank You!



5
0
5
0

1. https://help.interfaceware.com/api/#iguana_stopOnError
2. https://help.interfaceware.com/api/#global_pcall
3. https://help.interfaceware.com/v6/working-with-pcall
4. https://help.interfaceware.com/v6/trap-errors-pcall
5. https://help.interfaceware.com/v6/retry-lua-module
6. https://help.interfaceware.com/v6/retry-example
7. https://help.interfaceware.com/v6/retrying-unreliable-external-resources
8. https://help.interfaceware.com/v6/retry-database-connection
9. https://help.interfaceware.com/v6/retry-a-web-service

10. https://help.interfaceware.com/v6/log-features#types
11. https://help.interfaceware.com/api/#iguana_logInfo
12. https://help.interfaceware.com/api/#iguana_logError
13. https://help.interfaceware.com/api/#iguana_logWarning
14. https://help.interfaceware.com/api/#iguana_logDebug
15. https://help.interfaceware.com/v6/how-to-troubleshoot-iguana-memory-leak

References

https://help.interfaceware.com/api/#iguana_stopOnError
https://help.interfaceware.com/api/#global_pcall
https://help.interfaceware.com/v6/working-with-pcall
https://help.interfaceware.com/v6/trap-errors-pcall
https://help.interfaceware.com/v6/retry-lua-module
https://help.interfaceware.com/v6/retry-example
https://help.interfaceware.com/v6/retrying-unreliable-external-resources
https://help.interfaceware.com/v6/retry-database-connection
https://help.interfaceware.com/v6/retry-a-web-service
https://help.interfaceware.com/v6/log-features#types
https://help.interfaceware.com/api/#iguana_logInfo
https://help.interfaceware.com/api/#iguana_logError
https://help.interfaceware.com/api/#iguana_logWarning
https://help.interfaceware.com/api/#iguana_logDebug
https://help.interfaceware.com/v6/how-to-troubleshoot-iguana-memory-leak

