Simon Papillon-Cavanagh, PhD Sr. Research Investigator Predictive Sciences, Bristol Myers Squibb

Don't forget to submit your questions using the Q&A feature at the bottom of the screen.

flatiron Research *X*

STK11 and KEAP1 mutations as prognostic biomarkers in an observational real-world lung adenocarcinoma cohort

October 2020

Simon Papillon-Cavanagh, Parul Doshi, Radu Dobrin, Joseph Szustakowski, Alice M Walsh

Study Summary

Context:

- Previous high-profile reports of STK11 / KEAP1 as ICB-specific negative biomarkers
- Most of those studies don't include non-ICB arms

<u>Challenge:</u>

- With a ~20% mutation prevalence and modest effect size (HR), assessing the treatment-specific effect requires a large cohort
- Challenging to do using clinical trial data
- Flatiron/FMI CGDB data allow us to compare associations in ICB and non-ICB

Key Questions:

- Are STK11 and/or KEAP1 mutations associated with poor outcomes across all 1L treatment paradigms?
- Is there a synergistic effect of STK11 + KEAP1 mutations on outcomes?

Recent reports focus on STK11 and checkpoint inhibitors Fail to demonstrate whether association is specific to ICB

Paper/abstract	Sample size	Treatments	Results	Notes
Biton et al. 2018, Clinical Cancer Research	 32 adv-stage LUAD 31 from Ritzi et al.	• nivolumab	TP53mut/EGFR-STK11-WT have better outcomes than TP53-EGFR-STK11-WT or EGFRorSTK11-mut groups	 No comparator arm Small n
Skoulidis et al. 2018, <i>Cancer</i> <i>Discovery</i> (BMS)	 174 LUAD SU2C (KRAS-mut) 44 CM057 (KRAS-mut) 	 PD-1 inh. mono (165/174, 95%) or PD-1 & CTLA-4 blockade (9/174, 5%) Nivolumab (24) or docetaxel (20) 	KRAS/STK11-mut have worse outcomes than KRAS-mut/STK11-WT tumors. "Given the relatively small numbers within subgroups, it cannot be determined whether STK11/LKB1 mutation is prognostic or predictive of treatment outcomes in the CM-057 dataset"	 No comparator arm for SU2C cohort Small sample size for docetaxel treated (20)
Jure-Kunkel et al., ASCO abstract 2018 (AstraZeneca)	 119 CP1108 63 ATLANTIC 120 D4190C00006 	DurvalumabDurvalumabDurv & Trem	"reduced ORR and shorter survival were observed in Non-SQ NSCLC pts harboring STK11 non-synonymous mutant tumors compared to pts harboring STK11 wild type (wt) tumors "	No non-10 comparison
Ross et al., ESMO 2017 (Flatiron/Foundation Medicine)	 37 in FMI cohort?? In FH-FMI	Checkpoint inhibitorsnivolumab	"preliminary analyses suggest correlation with negative ICPI treatment outcome"	No non-10 comparison
Murugesan et al., ESMO 2018 (Flatiron/Foundation Medicine)	• 1310 NSCLC	Checkpoint inhibitors	"Patients with STK11 loss had reduced mPFS (wt 3.1 mo vs mut 2.5 mo, P = 0.01)"	No non-10 comparison

ASCO 2020 - the debate continues!!

Modulating tumor immune microenvironment by the *STK11*/LKB1 *signaling* in breast cancer.

HP Hsu, CY Wang, YL Kuo, KT Lee, PS Chen... - 2020 - ascopubs.org

... Modulating tumor immune microenvironment by the **STK11**/LKB1 signaling in breast cancer ... Liver kinase B1 (LKB1) protein (**STK11** gene) is the upstream of AMP activated Protein Kinase (AMPK)/mammalian Target of Rapamycin Complex 1 (mTORC1) signaling pathway ...

☆ 99

Clinically aggressive malignancies associated with **STK11** germline mutations (STK11GCa): A comprehensive genomic profiling (CGP) study.

E Sokol, N Danziger, D Pavlick, JA Elvin, JA Vergilio... - 2020 - ascopubs.org

... DOI: 10.1200/LCO.2020.38.15_suppl.3558 Journal of Clinical Oncology - published online before print May 25, 2020. Clinically aggressive malignancies associated with STK11 germline mutations (STK11GCa): A comprehensive genomic profiling (CGP) study ...

☆ 55

Outcomes of patients with stage III non-small cell lung cancer (NSCLC) that harbor a **STK11** mutation.

J An, M Yan, N Yu, A Chennamadhavuni, M Furqan... - 2020 - ascopubs.org

... Outcomes of patients with stage III non-small cell lung cancer (NSCLC) that harbor a STK11 mutation ... 9033. Background: STK11 mutation (STK11 m) in patients with stage IV NSCLC is associated with inferior survival and poor response to immune check point inhibitors (ICI) ...

Alterations in **STK11** to limit response to immune checkpoint inhibitors in lung cancer.

J Fricke, I Mambetsariev, R Pharaon, AR Baroz, D Zhao... - 2020 - ascopubs.org

... Alterations in STK11 to limit response to immune checkpoint inhibitors in lung cancer ... STK11 mutated patients represent a subgroup of lung cancer patients with diminished outcomes when given ICIs, with some of these patients developing hyperprogressive disease (HPD) ... $\Rightarrow 99$

Association of a **STK11**/KEAP1-mutation gene expression signature in lung adenocarcinoma with immune desertion in squamous cell carcinomas and mediation by ...

DT Rieke, KF Klinghammer, <u>B Obermayer</u>, E Blanc... - 2020 - ascopubs.org

... May 25, 2020. Association of a **STK11**/KEAP1-mutation gene expression signature in lung adenocarcinoma with immune desertion in squamous cell carcinomas and mediation by NFE2L2 deregulation. Damian Tobias Rieke ...

л пп

The association between **STK11**/LKB1 and/or KEAP1 mutations and respc PD-1/PD-L1 inhibitors in patients with advanced non-small cell lung cancer (NSCLC) ...

ME Miller, M Patel, SK Althouse, NH Hanna... - 2020 - ascopubs.org

... lung cancer (NSCLC) patients with tumors harboring STK11/LKB1 or KEAP1 mutations have inferior treatment outcomes when treated with PD-1/PD-L1 blockade, regardless of KRAS status, PD-L1 score, or TMB score (Skoulidis et al, Cancer Discovery 2018, ASCO abstract 102 ... $\frac{1}{37}$ $\frac{99}{39}$

STK11/LKB1 revisited: A prognostic rather than predictive biomarker for im checkpoint inhibitor in EGFR/ALK^{WT} nonsquamous non-small cell lung car

H Zhao, N Qi, D Chen, D Li, Y Fu, Y Xu, G Wang, Y Bai... - 2020 - ascopubs.org ... online before print May 25, 2020. **STK11**/LKB1 revisited: A prognostic rather than predictive biomarker for immune checkpoint inhibitor in EGFR/ALK WT nonsquamous non-small cell lung cancer (NSCLC). Hui Zhao x Hui Zhao ...

\$ 99

Impact of **STK11** and KRAS co-mutations on outcomes with immunotherapy in non-small cell lung cancer.

F Basher, D Saravia, D Fanfan, JA Cotta, G Lopes - 2020 - ascopubs.org

... No companion articles. ARTICLE CITATION. DOI: 10.1200/JCO.2020.38.15_suppl.e15135 Journal of Clinical Oncology - published online before print May 25, 2020. Impact of STK11 and KRAS co-mutations on outcomes with immunotherapy in non-small cell lung cancer ...

Effect of **STK11** mutations on efficacy of PD-1 inhibition in non-small cell lung cancer (NSCLC) and dependence on KRAS mutation status.

B Ricciuti, KC Arbour, JJ Lin, N Vokes... - 2020 - ascopubs.org

... Effect of **STK11** mutations on efficacy of PD-1 inhibition in non-small cell lung cancer (NSCLC) and dependence on KRAS mutation status ... e15113. Background: **STK11** mutations (STK11m) have been associated with resistance to ICI in KRAS-mutant (KRASm) NSCLC ... $\frac{1}{32}$ 99

Serine/threonine kinase 11 (STK11) mutations and immunotherapy resistance in patients with non-small cell lung cancer.

R Uba, LE Raez, K Dumais, F Gentile, HW Powery ... - 2020 - ascopubs.org

... Serine/threonine kinase 11 (STK11) mutations and immunotherapy resistance in patients with non-small cell lung cancer ... We investigated the role of STK11 and KRAS mut as markers of poor response to CPI in patients (pts) with non-small cell lung cancer (NSCLC) ...

☆ 99

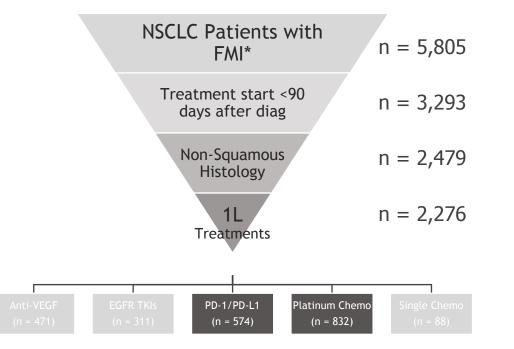
... (NGS) in advanced non-small cell lung cancer (aNSCLC) patients (pts) treated with immune checkpoint inhibitors (ICIs): Impact of **STK11** and TP53 mutations on ...

A Pavan, E Zulato, L Calvetti, A Ferro, G Nardo... - 2020 - ascopubs.org

... 25, 2020. Plasma next-generation sequencing (NGS) in advanced non-small cell lung cancer (aNSCLC) patients (pts) treated with immune checkpoint inhibitors (ICIs): Impact of **STK11** and TP53 mutations on outcome. Alberto ... 소 99

0 N E GM 1

Therapeutic impact of mutation subtypes and concomitant **STK11** mutations in *KRAS*—mutated non-small cell lung cancer (NSCLC): A result of nationwide genomic ...

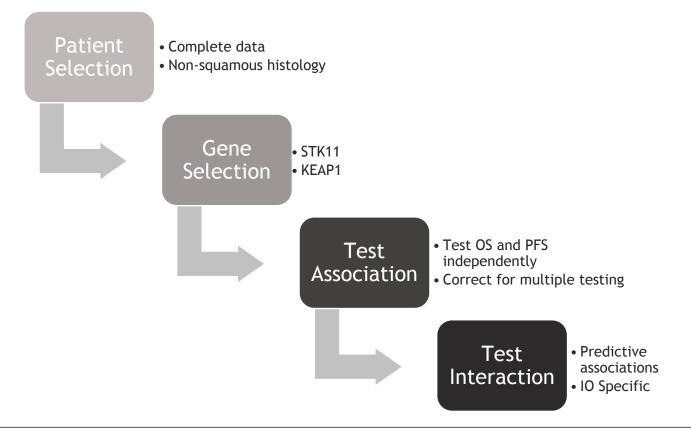

Y Tamiya, Y Zenke, S Matsumoto, N Furuya... - 2020 - ascopubs.org

... 25, 2020. Therapeutic impact of mutation subtypes and concomitant **STK11** mutations in KRAS–mutated non-small cell lung cancer (NSCLC): A result of nationwide genomic screening project (LC-SCRUM-Japan). Yutaro Tamiya ...

\$ 99

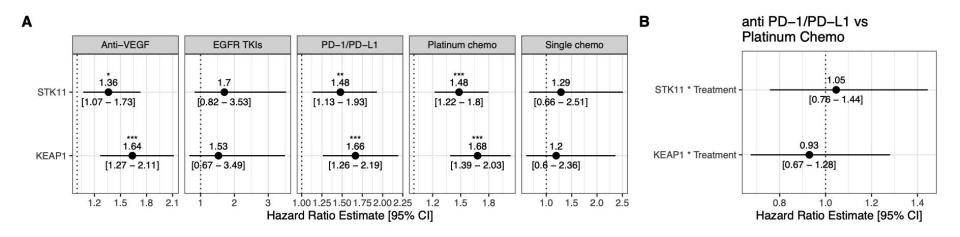
Cohort & Approach

Flatiron/FMI NSCLC Cohort Description

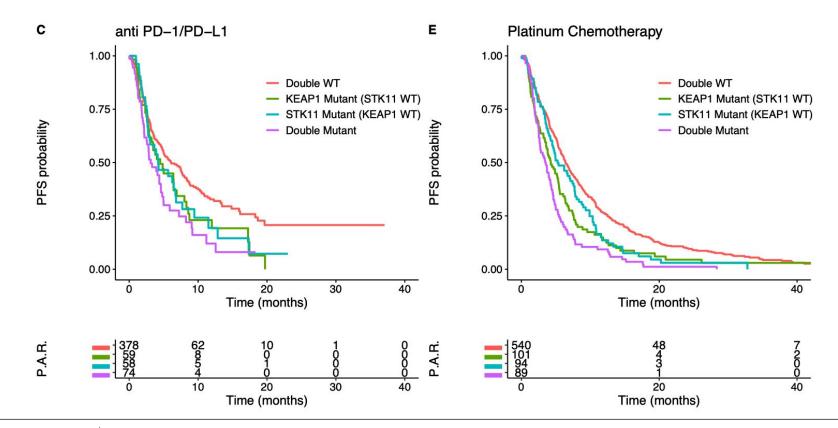

* Tumor FMI genetic testing

Cohort Description

- STK11-KEAP1 mutated patients are:
- Enriched in Male patients
- Younger
- More likely to be smokers
- High TMB
- Not treated with EGFR TKIs
 - EGFR and STK11-KEAP1 mutations are mutually exclusive
 - If we exclude *EGFR*-mutated patients, this enrichment disappears
- Have lower PD-L1 staining

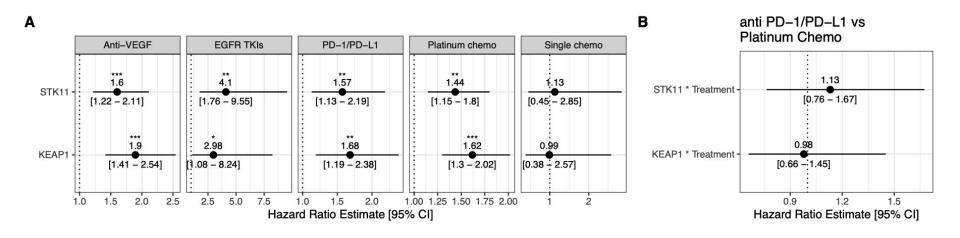

Characteristic	Mutant (n=674)	Wild-type (n=1602)	P value
Gender, N (%)			< 0.001
Female	314 (46.6)	925 (57.7)	
Male	360 (53.4)	677 (42.3)	
Age at advanced diagnosis, median (SD), years	64.9 (9.89)	66.9 (10.5)	<0.001
Smoking, N (%)			<0.001
History of smoking	647 (96.0)	1175 (73.3)	
No history of smoking	26 (3.86)	420 (26.2)	
Unknown/not documented	1 (0.15)	7 (0.44)	
TMB score (SD)	13.1 (11.1)	7.94 (9.69)	< 0.001
First-line treatment, N (%)			< 0.001
Anti-VEGF-based therapies	154 (22.8)	317 (19.8)	
EGFR TKIs	15 (2.23)	296 (18.5)	
PD-1/PD-L1-based therapies	192 (28.5)	382 (23.8)	
Platinum-based chemotherapy combinations	288 (42.7)	544 (34.0)	
Single-agent chemotherapies	25 (3.71)	63 (3.93)	
PD-L1 status, N (%)			< 0.001
Negative	150 (75.8)	279 (60.8)	
Positive	48 (24.2)	180 (39.2)	

Analysis Flow

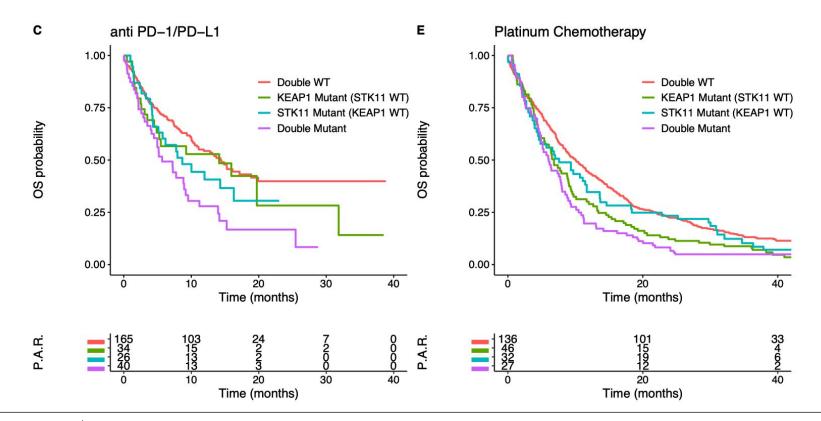


Effect of STK11-KEAP1 mutations on PFS (rwPFS)

STK11-KEAP1 Mutations are Deleterious Across all Treatments (PFS)



STK11-KEAP1 Mutations Effects are Additive (PFS)



Effect of STK11-KEAP1 mutations on OS

STK11-KEAP1 Mutations are Deleterious Across all Treatments (OS)

STK11-KEAP1 Mutations Effects are Additive (OS)

Conclusions

- *STK11* and *KEAP1* mutations are negatively associated with outcomes across all treatment paradigms
- Those results provide evidence against previous reports suggesting that *STK11-KEAP1* mutations are predictive biomarkers for anti-PD-1/PD-L1 therapy
- Our results suggest *STK11/KEAP1* mutation status should not be used as patient selection markers for ICB