

STOREFRONT EXCITE

Architectural documentation

This document is a high-level architectural description of Storefront Excite. The
blueprint presented here is made up from components and systems that are modular,
parts can be switched out as needed to support a best of breed approach to your
specific system landscape.

2

3

1 LANGUAGES, FRAMEWORKS AND CLOUD
SERVICES

Each section below goes into more detail about the different services and how they
are used. A general list of programming languages, frameworks and services used are:

- TypeScript / Node.js / React.js

- C# / ASP.NET Core / Serilog / Polly

- Azure Cosmos DB / Azure Postgres / Azure Storage / Azure Application Insights

2 EXCITE SERVICES

The storefront Excite solution is composed of multiple services. In its simplest form it
is five different services that each can be deployed and scaled individually.

Services hosted in Azure are deployed to Azure VM Scale Sets by default and runs on
Linux. By using Scale Sets, Azure will automatically scale out the number of instances
needed for each service. Each service is scaled individually.

4

 INCLUDED SERVICES

2.1.1 Webapp
The Webapp service is a Node.js service and its primary purpose is to do server side
rendering of the frontend TypeScript code. The webapp responds to all requests that
expects HTML as the response type, which is typically the first page load of a session,
or if the user refreshes the page.

The only external service that the Webapp talks directly to is the Content API.

2.1.2 Content API
The Content API is a ASP.NET Core service and its primary purpose is to serve the
webapp and other touchpoints with content data in JSON format.

All requests where the path starts with "/api/" is automatically routed to the Content
API.

The Content API responds both to API calls such as adding a product to the cart as well
as routing for content such as CMS pages, category pages, product pages etc.

Routing to content is done by querying a key-value-store where the full url is the key
and the value is a small object containing route data. The route data object contains
identifiers that can be used to efficiently query other systems. In the case of pages in
Contentful it's the entity id and in the case of a commercetools it's typically the product
or category key. More data can be added to the route data object if needed.

The building of routing is processed in an event driven manner in the
backend/integration hub service described below.

Each type of route data is mapped to a content controller which is an ASP.NET
Controller. The typical scenario is that the controller gets the route data object passed
in from the framework. It then queries an external system such as Contentful or Apptus
eSales, transforms that data into a JSON structure and sends it out to the client.

The Content API serves the Webapp with content but is built to be able to serve other
touch points as well such as a mobile app or an in-store display. Customer
authentication is done using JWT which can either be sent as a cookie or in an HTTP
header.

2.1.3 Integration Hub
The integration hub (also called "backend") is a service that handles integrations with
external systems such as commercetools, Contentful, ERP, WMS, CRM, Apptus eSales,
etc.

This service also performs as much data processing as possible to minimize the amount
of work that the Webapp and Content API needs to perform. Doing this in the backend
service offloads work from the other services which means that they are easier to scale
and has better response times.

An example of such computation is building full, hierarchical urls for each entity in the
system. Neither commercetools nor Contentful has full urls as a concept. To build full

5

urls, all parent entities need to be loaded and their "slugs" needs to be concatenated
into a full url. Since this requires multiple API calls to these systems full urls are built
in the backend and cached in a way that the content API can use them with very little
computation.

The integration hub listens to events in the underlying systems, such as webhooks from
Contentful and Azure Service Bus messages from commercetools.

Such events are often placed in internal queues to be picked up by processing jobs.
Processing jobs can either be scheduled using a cron schedule or scheduled to run
when new entries are placed in a queue.

Internal queues are needed instead of always processing the event directly when the
external system calls Excite is because some computation needs synchronization. An
entity in Contentful might be changed at the same time as an entity in commercetools
and if the computation is performed in the event listeners the same work will be
performed twice if those entries are dependent on each other.

Depending on the needs of the Content API the backend will perform content
processing which is a core concept in Excite. Both Contentful and commercetools are
represented as content providers and the system has one or more content processing
jobs which takes data from the providers, processes it and sends it to another system
such as Apptus eSales. The content processing infrastructure automatically handles
dependencies between entities in different providers. If a category in commercetools
has a dependency on an entity in Contentful the content processing for the
commercetools category will start whenever the entity in Contentful changes. The
infrastructure will also start incremental processing by loading all changed entities and
their dependencies in as few API calls as possible to make content processing fast.

2.1.4 Frontdoor
The Frontdoor is a service that runs on a CDNs edge servers. The default is to use
Cloudflare Workers but any CDN that allows running code on edge servers can be used.
It's possible to use Excite without a CDN that allows this, but the effect is that less data
can be cached in the CDN and more traffic will reach the Webapp and Content API.

The Frontdoor service is not hosted in Azure but is deployed directly to the CDN. It will
do caching of HTML and JSON responses based on the origins cache-control headers.
But instead of just caching based on the url other factors are included in the cache key
such as language, country and type of device. What's included in the cache key can be
even more granular than that as the Frontdoor service has access to cookies etc on the
request.

In the case of Cloudflare the Frontdoor service implements Stale While Revalidate
(https://web.dev/stale-while-revalidate/) and Stale If Error which means that the
cache is kept up to date by sending requests to the origin servers in the background.
This improves latency for the requests that comes in after a cached entry has expired
and allows you to have fast expirations (30 seconds or less) on content and still have a
high cache hit ratio.

https://web.dev/stale-while-revalidate/

6

2.1.5 commercetools Merchant Center app
The Merchant Center in commercetools can be extended with custom apps. Excite
contains an extendable app for displaying status of running background jobs in the
integration hub, the status of internal queues but also extensions for order and
customer management with features currently missing in the Merchant Center.

The Merchant Center from commercetools will never contain everything you need.
commercetools instead focuses on expanding their API and have building blocks to
extend the backoffice functionality. Excite helps you in doing so by making it easier to
build such apps.

A Merchant Center app is a React.js based webapp that can be hosted on any static file
server and by default Azure Static website in an Azure Storage account is used. The app
can talk directly to the commercetools API or any of the Excite APIs.

 ADDING MORE SERVICES
It's expected that more services might be needed depending on the requirements in a
project. Having a single service that deals with all integrations might not be feasible if
the number of integrations is too high. Another example is having another API service
used to serve internal systems that have different needs than public facing traffic.

Adding a new service is very simple in Excite as the process of building and deploying
it is already automated.

If the number of services grow it might be time to look at something like Kubernetes
for orchestration but Excite does not require Kubernetes by default.

7

3 SINGLE PAGE APPLICATION
The website is a Single Page Application built using React.js with careful consideration
taken to the amount of JavaScript code that each client needs to download. Using the
Single Page Application architecture for an e-commerce website is a double-edged
sword since it's easy to end up in a situation where too much JavaScript code needs to
be downloaded which slows down the application startup in the browser, giving a
worse experience for the customer. At the same time the Single Page Application
architecture makes it much easier to build highly interactive and app like experiences
which makes browsing around much more pleasant.

Excite is built to serve both needs. The build process will perform code splitting and
lazy loading to ensure that as little code as possible is downloaded and executed during
startup.

The styling uses "CSS in JavaScript" which lets frontend developers co-locate the logic
for styling together with their React components, instead of having the styling in a
separate file. To mitigate the extra runtime cost of applying styling in JavaScript Excite
contains an optimizing compiler that executes the styling code during build time and
extracts rules that can be statically evaluated to a separate css file.

 PERCIEVED PERFORMANCE
The use of Single Page Application architecture means that Excite can decouple the
user experience from how fast a customers network is. Even if the Content API has fast
response times the customer might be on a slow network. To ensure a good user
experience regardless of the state of the network the frontend uses granular caching of
data.

An example is the navigation between a category page and a product page. The
customer might not know exactly what she or he is interested in and will many times
go back and forth between products and browse around. To make that experience fast
Excite will reuse the product data from the category page to instantly display as much
as possible on the product page while loading more data in the background. The
customer can quickly go back to the category page without having to wait and will
instantly see the category page again as that data is also cached in the browser. This
data is cached per customer in memory to avoid cache invalidation problems and is
also revalidated as needed.

8

 TYPESCRIPT
A challenge with consuming a JSON API in JavaScript is that it is hard to make changes
and hard for developers to know what the data structures that the API responds with
looks like. It is also hard to make changes in those data structures because you don't
know which parts of the frontend code uses them.

Excite mitigates that by automatically generating TypeScript definitions for all data
structures that the APIs involved will use. This helps frontend developers explore the
data they get from the API using their editor, but most importantly it will fail the build
if a data structure is changed and the frontend code has not been updated. This does
not remove the need for testing, but it helps catch a lot of simple bugs and reduce the
time required for testing.

Excite also makes use of the TypeScript compiler API to do various compile time
optimizations to improve performance. An example is that the build will automatically
find all React components that are responsible for rendering different pages such as
the start page, the category page, etc. and ensure that the code is split into multiple,
optimized bundles.

9

4 SCALABILITY
Excite achieves excellent scalability by having a layered architecture and a focus on
performance in all parts of the architecture. Performance is important because high
performance often means doing less computation which is easier to scale.

A big challenge with scalability is to handle large spikes in traffic that comes
unexpectedly. For planned events scaling out can be done beforehand to meet the
expected new traffic but all spikes are not planned.

The first layer is at the CDN, where as much caching as possible is done of HTML and
JSON content as well as static files such as images. By using the CDN cache efficiently
a big part of a traffic spike is handled there which gives the origin servers more time
to scale up.

The next layer is ensuring that new instances can be started very quickly and that the
startup time for a new instance is minimal. By making Webapp and Content API
instances as stateless as possible it is very quick to start new instances, and by relying
on fast underlying services rather than memory-based caches the risk of bringing in
cold instances that needs lengthy warmup is minimized.

A traditional website does full page loads when the customer navigates around the
site. Which means that a lot of data that does not change between pageviews are sent
with every pageview. A pageview such as navigating to a product page in Excite is not
a full page load but instead an API call which only fetches the data needed for that
specific product. It does not need to fetch the cart, the main menu, etc for every
pageview. This also increases scalability since it minimizes the amount of data needs
to be fetched for each pageview.

 MULTIPLE DATA CENTERS
While commercetools doesn't allow a single project to exist in multiple regions it's
still possible to host Excite in multiple data centers at the same time. Since the
Webapp and Content API services are stateless, instances of those can be brought up
in different regions and the Frontdoor service can be used to route to different data
centers depending on where the user is geographically.

The Content API is less dependant on the commercetools API which means that
latency between the API and commercetools only affect a few parts of the site such as
adding something to the cart.

This approach scales well with the services that the Content API is often dependant
on such as Contentful and Apptus eSales. Contentful has a global CDN and it is
possible to host multiple Apptus eSales instances in different regions.

10

5 REFERENCES
Azure Scale Sets:
https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview

React.js:
https://reactjs.org/

Node.js:
https://nodejs.org/

TypeScript:
https://www.typescriptlang.org/

Cloudflare Workers:
https://workers.cloudflare.com/

Single Page Application architecture:
https://en.wikipedia.org/wiki/Single-page_application

.NET:
https://dotnet.microsoft.com/

CSS in JS:
https://en.wikipedia.org/wiki/CSS-in-JS

commercetools Merchant Center:
https://docs.commercetools.com/merchant-center/

https://docs.microsoft.com/en-us/azure/virtual-machine-scale-sets/overview
https://reactjs.org/
https://nodejs.org/
https://www.typescriptlang.org/
https://workers.cloudflare.com/
https://en.wikipedia.org/wiki/Single-page_application
https://dotnet.microsoft.com/
https://en.wikipedia.org/wiki/CSS-in-JS
https://docs.commercetools.com/merchant-center/

