
HOW TO ELIMINATE TECHNICAL DEBT IN SAP
by Vaidya Aiyer, C.E.O. & Founder

TABLE OF CONTENTS

Defining Technical Debt 1

The Impact and Consequences of Creating Technical Debt 2

High Upgrade or Migration Costs 2
Long and Expensive Maintenance Cycles 2
Lack of Innovation 3
Shortage of Bandwidth 3

Top 3 Sources of Technical Debt in SAP Ecosystems 4

Customizations (a.k.a. non-core modifications) 4
Outdated Technology 4
Development Practices 5

How to Discover and Estimate Technical Debt 6

Benefits of eliminating or reducing Technical Debt 8

How to Reduce or Eliminate Technical Debt 10

Best Practices IT Architecture 10
Digital Wrapper 12
Types of Customization 12

When to Start Eliminating Technical Debt 14

Conclusion 15

4

1

Ward Cunningham, a pioneer in software
development, inventor of “the wiki,” and co-author of
the Manifesto for Agile Software Development, once
said, “Some problems with code are like financial
debt. It’s OK to borrow against the future, as long as
you pay it off.”

Technical debt in software development can be
described as the implied cost of future rework
from choosing the wrong solution today or the
compounding costs of building on top of a legacy
technology stack. Sometimes, even the best
software solution can generate technical debt as the
technology stack matures or becomes outdated.

Technical debt discussions generally arise in software
engineering houses or in large IT organizations -
both of which create their own custom, in-house

applications. This conversation also extends to
packaged ERP software providers, such as SAP. The
bottom line is that any technical development done
in-house, or done by consultants, will most likely
contribute to technical debt.

However, similar to financial debt, technical debt is
not always viewed negatively. For instance, technical
debt might be the necessary result of having to meet
a business stakeholder’s requirements or timeline.
But, technical debt still needs to be maintained and
monitored, as it can create bigger problems down the
road. Keeping a core system like SAP as standard as
possible is essential to minimize an organization’s
technical debt.

DEFINING TECHNICAL DEBT

https://agilemanifesto.org/

2

Technical debt can have both positive and negative
consequences. Sometimes, organizations create
technical debt for speed-to-market - especially when
launching a new product or testing a new feature.
Building a little technical debt, as a trade-off for
functions, features or quality, can occasionally be
appropriate. Additionally, quick user validation or
new product revenue can help justify a new release
or help accelerate a product roadmap.

However, the impact and consequences of technical
debt can be immense - costing organizations millions
of dollars. Technical debt can accumulate slowly and
almost without notice, until it suddenly becomes a
huge issue for organizations. There are several ways
that technical debt can impact your organization.

High Upgrade or Migration Costs

Technical debt becomes more apparent when an
organization attempts to upgrade or migrate its

application(s). This is evident via technical analysis,
pre-checks, remediation, and other costs that
all add up to the final upgrade cost. As a result,
organizations tend to delay their upgrade which only
results in the continued accumulation of technical
debt, as business requirements still have to be
met. A recent survey from ASUG notes that SAP
customers, on average, wait 24+ months to upgrade
to S/4HANA - indicating the breadth of planning,
costs, and business justifications required to hit the
go button on an upgrade.

Long and Expensive Maintenance Cycles

Technical debt is not only disruptive during a
major upgrade cycle but also in everyday life
such as patches being applied to keep systems
up-to-date and compliant. For example, applying
EhP (Enhancement Packs) and patches to SAP
applications. It’s well-known that EhP and patch
upgrades become a major project for every

THE IMPACT AND CONSEQUENCES OF
CREATING TECHNICAL DEBT

https://www.asug.com/insights/asug-pulse-of-the-sap-customer-2020-study-results

3

organization, and can take months to apply
requiring an incredible amount of effort and man
power for each upgrade. As a result, organizations
typically delay patch upgrades, which increases
problems, while core applications are vulnerable
and on legacy releases.

Lack of Innovation

Over time, technical debt creates the need for
additional resources, time, and effort for IT
professionals - meaning organizations spend
more on simply keeping the lights on and routine
maintenance, than on innovation. A recent survey
by ASUG found that only 7% of SAP organizations
spend time on innovation vs. day-to-day execution.
Accordingly, 93% of SAP organizations spend their
time, man power, and effort on maintenance and
keeping the lights on. As such, organizations are
using some of their brightest minds and best talent
on maintenance vs driving innovation. SAP experts
within the organization know the business processes
inside out and are generally the best people to
uncover innovative ways to solve real business
problems. Keeping these individuals focused on
maintenance activities will reduce the organization’s
ability to differentiate from their competition and
stifle their most technical resources.

Shortage of Bandwidth

The same ASUG survey found that 68% of
organizations (77% in the public sector) indicated

the single biggest reason for a lack of innovation
within their organization as a “lack of resources
(budget, time and staff).” This is currently the
norm because the people most familiar with an
environment are stuck answering daily support
requests or performing maintenance activities
rather than driving tech innovation across business
lines. Over time, tribal knowledge gets built up
amongst a select group who effectively “own” the
environment and are the only people who can
make changes to the technology (e.g. any and all
custom ABAP programs). In the not too distant
future, these knowledge experts will move on and
it will become increasingly difficult to find and
identify replacement talent. Moreover, when the
institutional knowledge of legacy systems is tied
to a select group, massive challenges will arise as
an organization roles out new digital initiatives or
attempts to innovate legacy processes.

Technical debt also creates recruiting challenges.
It is hard to find the right talent outside the
organization when a system has been built on an
older technology stack. Quality ABAP programmers
are hard to come by and not many people are
sharpening their skills in order to become an expert
ABAP programmer. Furthermore, recent college
grads are not joining technology teams with the
hope of maintaining and troubleshooting legacy
ABAP code.

https://www.asug.com/insights/asug-pulse-of-the-sap-customer-2020-study-results
https://www.asug.com/insights/asug-pulse-of-the-sap-customer-2020-study-results
https://www.asug.com/insights/asug-pulse-of-the-sap-customer-2020-study-results

4

Customizations (a.k.a. non-core
modifications)

SAP is known for its integrated, industry-best
practices for business processes. However, these
out-of-the-box processes generally do not meet
the needs of organizations, so the system needs
to be customized in order to meet unique business
needs. As a result, IT organizations have spent
time, money, and resources to ensure their out-
of-the-box SAP implementation meets their
organizational needs.

A custom line of code is not a problem, however,
as custom lines of code accumulate over time,
organizations lose the ability to track the
customizations within these 100’s and 1000’s of
lines of code. Further, SAP is considered a system
of record, and organizations should not be building
and accumulating unique processes in their
system of record. The most recent major upgrade
across the SAP technology stack in the SAP world
have been moving from SAP R/2 to R/3 in the mid-
90’s, i.e., moving from mainframes to the client-
server technology and, subsequently, moving from
R/3 to ECC / Business Suite in the mid-2000’s.
Many customers have been running SAP since R/3
and that means any customization that customers
have put in place in R/3 have moved to ECC and
will now likely move to S/4HANA. That means
thousands of custom objects, or technical debt,
per SAP instance will need to be remediated and
moved to S/4HANA. These customizations can be
considered technical debt.

Outdated Technology

S/4HANA is the latest product from SAP that
has been built on HANA database. S/4HANA is
built on ABAP (Advanced Business Application
Programming), which was modeled after COBOL
in the 1980’s and introduced in SAP R/2. Since its
introduction, ABAP has been SAP’s core language
of choice for building all of their applications. That
is not necessarily a negative, but issues typically
surface when customers write custom programs for
their own needs in the ABAP language.

ABAP is nearly 40 years old and quickly becoming
the oldest coding language in use. Developer
productivity when building in ABAP has not
changed, even as new development tools have come
to market. Some organizations are evolving and
beginning to adopt new technologies, like low-code
software tools that provide drag-n-drop development
capabilities. However, many other organizations
are stuck in their ways using ABAP, which requires
intensive coding skills from a dwindling pool of
professionals. Unfortunately, legacy programming
languages and ABAP customizations are destroying
IT and business productivity.

SAP is well aware of the problems that ABAP
customization can cause. In fact, SAP introduced
the Java stack in SAP NetWeaver in the early
2000’s. They pushed the Java stack in all of
their applications until Oracle acquired Sun
Microsystems, the owner of Java. As a result, SAP
moved away from Java and has attempted to
modernize ABAP. To SAP’s credit, they have made a
concerted effort, and ABAP programs can now run
in the SAP Cloud platform. That said, this does not

TOP 3 SOURCES OF TECHNICAL DEBT IN
SAP ECOSYSTEMS

5

solve the core issue of ABAP being an out-of-date
language that is not suited for today’s world and
the evolving workforce.

Development Practices

It is critical to define software development
best practices. Unsurprisingly, this is extremely
challenging within SAP because custom lines of
code are created over a number of years by various
contributors, such as in-house staff, consulting
firms, contractors, and offshore developers. As a
result, it is very difficult to design and implement
consistent development standards, such as naming
conventions and documenting the logic and

variables. Given that most SAP installations are
10-20 years old, it’s also likely that programmers
have lost the tribal knowledge required to maintain
custom developments. Some of the customizations
may be so large that they could be considered
stand-alone applications. With so many hands
involved in writing the code, it is highly unlikely
that all of the developers were capable of writing
quality ABAP code. The inefficient and inconsistent
development practices create technical debt. Per
Ward, technical debt, by itself, is not always a
problem – but significant problems will come up
as the complexity and amount becomes unwieldy.
These issues are directly tied to the amount of
custom code.

https://agilemanifesto.org/
https://agilemanifesto.org/

6

Discovery and Visualization

All customizations in SAP start with “Z” or “Y.” In
order to find all technical custom objects, first find
the objects starting with “Z” or “Y”. There are several
custom object types that can be created in the
ABAP dictionary such as Z*Tables, Z*Data elements
and Domains, Z*reports, Z*function groups and
Z*function modules, Z*SAP Scripts and Z*Forms,
Z*TCodes, and many more.

SAP provides various mechanisms to find all the
custom objects in the system. One of the most
common ways to find custom objects in SAP is
using the Database tables that store all of the
metadata for the custom objects. For example:

To find...

• Z*tables: Go to TCode SE11; Run a Query
on table TADIR where PGMID = R3TR and
Object = TABL

• Z*data elements: Goto TCode SE11; Run a
Query on table TADIR where PGMID = R3TR
and Object = DTEL

• Z*domains: Goto TCode SE11; Run a Query
on table TADIR where PGMID = R3TR and
Object = DTEL

• Z*Reports: Goto TCode SE11; Run a
Query on table TRDIR where SUBC = 1 (for
executable programs)

• Z*Module pool programs: Goto TCode SE11;
Run a Query on table TRDIR where SUBC =
M (for module pool programs)

• Z*Function Modules: Goto TCode SE11; Run
a Query on table TFDIR and select the field
FUNCNAME

• Z*Function Groups: Goto TCode SE11; Run a
Query on table TADIR where PGMID = R3TR
and Object = SSFO

• Z*SAP Scripts: Goto TCode SE11; Run a
Query on table TADIR where PGMID = R3TR
and Object = FORM

NOTE: This is not an exhaustive list to find all the
custom objects in SAP and more information can be
found in SAP’s help site.

In essence, all of the SAP custom objects can be
found in the SAP data dictionary. However, it is
not easy to identify these objects and it takes a
specialized skill-set, i.e., ABAP knowledge. Also, the
system does not provide easily digestible reporting
and more importantly it does not include all of the
necessary information.

From SAP ECC EhP7 onward, SAP provides a new
tool called ATC (ABAP Test Cockpit). The ATC is a
code management and analyzer tool that can be
used to retrieve the custom objects’ information.
It was released to run static check and ABAP unit
tests for ABAP programs. The ATC is compatible
with SAP’s Code Inspector, which can be used to
check SAP repository objects. More information on
SAP’s ATC can be found here.

Although SAP’s ATC has made it a little easier to
collect all of the information, it’s still a technical
undertaking to run the T-code, collect the
information, and create a report that business
stake-holders can understand.

3rd party tools, like Pillir’s NANCI, can discover all of
the custom objects and visualize all of the custom
objects within a SAP environment.

HOW TO DISCOVER AND ESTIMATE
TECHNICAL DEBT

7

Total Cost with the Technical Debt Index (TDI)

In order to reduce technical debt, it’s imperative
to understand and document the total cost that it
adds to the IT budget. By identifying the total cost
of technical debt and applying a unit of measure,
organizations are able to compare and measure
progress on the path to elimination. The unit of
measure should be easily understood by both non-
technical and business team members.

There are many Unit-of-Measures (UoM) to
help translate technical debt. They cover various
aspects, such as program complexity, lines of code,
maintainability index, and depth of inheritance.
Given the intricacies and complexities of SAP, the
most applicable measurement is the Technical Debt
Index (TDI).

TDI can be simply defined with the following
equation:

TDI for (Y) years = [Remediation Cost + (Debt
Maintenance Cost x Y years)] / [Development Cost +
(New Maintenance Cost x Y years)] x 100%

Wherein:

• TDI = Technical Debt Index
• Y = Number of Years
• Remediation Cost = Total Cost to Fix or

Revise the Code
• Debt Maintenance Cost = Total Cost to

Maintain the Technical Debt per Year
• Development Cost = Total Cost to Redevelop

the Code Again in the Latest Technology
Stack

• New Maintenance Cost = Total Cost to
Maintain the New Development per Year

For example, to calculate the TDI for 5 years:

• Remediation cost = $10,000
• Debt Maintenance cost = $2,000
• Development cost = $190,000
• New Maintenance cost = $2,000

The calculation would be: [10,000 + ($2000
x 5 Years)] / [$190,000 + ($2,000 x 5 Years)],
equaling 10%

A TDI averaging 10% over a period of five years
is actually a positive debt ratio - similar to a
financial debt ratio. However, using that example,
if remediation costs increase to $100,000.00 and
debt maintenance increases to $4,000.00 per year
then the TDI becomes:

TDI = [$100,000 + ($4,000 x 5 years)] / [$190,000 +
($2,000 x 5 years)], equaling 60% for 5 years

Similar to a Financial Debt Index (FDI), a TDI of 60%
is a very high ratio. If an organization’s TDI is this
high, IT department professionals should seriously
consider opportunities to reduce the debt.

Organizations can actively reduce maintenance
costs by adopting modern development platforms
and more productive development frameworks.
When the remediation cost and debt maintenance
cost remain the same, but the new development
cost drops to $25,000 with a $1,000 per year
maintenance, here is what the TDI amounts to:

TDI = [$10,000 + ($2,000 x 5 years)] / [$25,000 +
($1,000 x 5 years] = 67% for 5 years

In this scenario, new technologies, such as cloud
and low-code development platforms, have actually
increased the TDI for ABAP customizations, despite
having lower development costs.

This formula not only considers the total cost to
maintain ABAP customizations but also considers
the impact of adopting new technologies. This
formula provides a uniform ratio so IT and Business
leaders can easily understand the Total Cost of
Ownership (TCO) of custom and legacy code.

8

After establishing the Technical Debt Index (TDI),
organizations should establish a path towards
reducing their technical debt with a goal of reducing
it altogether.

There are many benefits associated with reducing
technical debt within mission critical business
applications like SAP, including:

• Drive innovation: custom code forces the
organization, and most technical talent,
to focus on maintaining the status quo
vs creating innovative solutions to solve
business problems.

• Increase productivity: Eliminating or reducing
technical debt increases productivity for all
of your SAP personnel, both technical and
functional team members. They are often
some of the most knowledgeable personnel
about business operations and can be highly
productive in solving business problems.

• Repurpose or Reduce headcount: Reducing
non-core customizations will reduce the
need for expensive ABAP developers (in-
house or consulting partners). Additionally,
these highly technical and business savvy
ABAP’ers can move on to new products
and solutions in SAP or focus on other
technologies across the organization.

• Improve projects: Fewer customizations
means lower costs and quicker timelines to
implement new features in SAP. This also
means less testing and better maintenance.

• Lower cost to upgrade: Fewer customizations
means quicker turnaround time and lower
costs to remediate custom objects.

• Enhance Change management: When
upgrading to newer SAP versions, custom
code creates roadblocks and friction at the
business level. By reducing custom code,
personnel and unique business processes
are less likely to be impacted by version
upgrades and new systems.

• Reduce training: during upgrades,
customizations need to be modified
according to the new SAP version. This
usually requires additional training.
Accordingly, reducing or eliminating non-
core customizations will decrease specialized
training needs.

• Reduce change requests backlog: Custom
development often perpetuates custom
development. whereby business users
require more changes as the business grows,
leading to a backlog of change requests.
Eliminating technical debt reduces the
change request backlog.

• Simplify M&A and Divesture effort: During an
M&A event or Divestiture, systems are either
combined or split across companies. The more
custom code in SAP, the more difficult these
processes are on everyone involved.

BENEFITS OF ELIMINATING OR REDUCING
TECHNICAL DEBT

9

• Improve Working Capital: A lot of non-core
customization usually requires a large
support team, be it in-house or outsourced,
consuming a large portion of the IT budget
meaning there is less working capital for the
rest of the business.

• Adapt to market changes: Custom ABAP
code in SAP makes it more challenging for
businesses to be nimble and responsive.
Configuring a standard SAP system is hard
and customizations add more time and effort
when a business needs to rapidly respond to
changing market demands.

10

Many organizations assume that there is no way
to reduce technical debt, so they feel obligated
to remediate and migrate to a new system, such
as S/4HANA. What’s worse is that organizations
will use ABAP as their development platform to
remediate and customize their SAP system creating
additional technical debt.

Best Practices IT Architecture

When migrating to a new technology architecture,
such as S/4HANA, a company should consider
their technical debt and begin to think about how
to reduce it. Creating an architecture framework
based on IT best practices is a great place to
start and is applicable to any organization. For
example, organize IT applications into something
like a Pace Layer approach for applications as
defined by Gartner.

Gartner defines three application categories, or
“layers,” that distinguish application types and helps
organizations develop more appropriate strategies for:

• Systems of Record (SOR) — Established
packaged applications or legacy
homegrown systems that support core
transaction processing and manage an
organization’s critical master data. The rate
of change is low, because the processes
are well-established and common to most
organizations and often are subject to
regulatory requirements.

• Systems of Differentiation (SOD) —
Applications that enable unique company
processes or industry-specific capabilities. They
have a medium life cycle and a differentiator or
a competitive edge to the company.

• Systems of Innovation (SOI) — New
applications that are built on an ad hoc basis
to address new business requirements
or opportunities. These are typically
experimental and start with a Proof-of-
Concept or a Pilot that is tested by the
organization.

HOW TO REDUCE OR ELIMINATE
TECHNICAL DEBT

https://www.gartner.com/en/documents/3739017/what-is-gartner-s-pace-layered-application-strategy-and-
https://en.wikipedia.org/wiki/System_of_record

11

An SAP ERP system and other core business
applications would fall under SOR. Differentiation
applications and processes such as customer
service, Product Lifecycle Management (PLM),
and pricing configuration would fall under SOD.
Innovative applications, like ML/AI, Blockchain, and
other new technologies, would fall under SOI. The
pace of change also differs on the three layers as
shown above.

The SOR needs to be the most stable as it runs the
core business applications and has the slowest
pace of change, while SOI needs to be the most
nimble and responsive as it requires the most rapid
pace of change.

Unfortunately, most SAP customers have collapsed
their SOR and SOD into one big block by using
ABAP to build highly complex customizations in
SAP. This approach diminishes an organization’s
ability to move quickly.

When organizations move to S/4HANA it
makes the most sense to build the SOD and SOI
layer separately from the SOR, in order to help
organizations move at a faster pace. This begins
with pulling customizations apart and out of SAP.

12

Digital Wrapper

By creating a digital wrapper around the digital
core, organizations are able to pull customizations
outside of SAP and allow them to work seamlessly
with the existing SAP core. All customizations
would be able to operate seamlessly with the SAP
core and require no additional effort.

For example, a digital wrapper that needs ODATA
service for every RFC and BAPI, defeats the purpose
of the solution, as ABAP effort is simply replaced
with ODATA effort. A digital wrapper needs to have
native integrations within an SAP core such that
it can integrate seamlessly with SAP’s standard

function modules, tables, and objects (such as a
Z-TCode written inside of SAP). Ideally, a digital
wrapper solution would use the EII (Enterprise
Information Integration) model as opposed to EAI or
ETL integration models. The digital wrapper would
form the System of Differentiation (SOD) around
your digital core, or the System of Record (SOR).

The goal of a digital wrapper solution is to keep
the SOD, like SAP, clean and pristine with limited
customizations. All non-core customizations can be
done in the SOD.

Types of Customization

All ABAP customizations in SAP can be classified
into three categories:

• Reports (Z-Reports)
• Self-contained applications (Z-Tcodes)
• Embedded customizations (User-exits,

BADI, etc...)

Not all customizations will be the right fit to migrate
out of SAP into a SOD. Each one needs to be carefully
categorized and assessed to either be moved out of
SAP (but still tightly integrated) or kept inside of SAP.

https://en.wikipedia.org/wiki/Enterprise_application_integration
https://en.wikipedia.org/wiki/Extract,_transform,_load

13

Z-Reports

The advantage of shifting reports to a SOD is
the ability to modernize without losing any
significant advantages of it running within SAP.
Modernizing reports could provide the following
benefits to an organization:

• Run it as a Web-App in modern browsers or
even in mobile devices.

• Make quick enhancements and changes
as required, without going through the
traditional development cycle in ABAP.

• Feed data from multiple sources to the
report to generate comprehensive reports.

A report is a stand-alone, custom development in
SAP that can be executed separately, as long as it
can access the data and maintain the processing
power of SAP (i.e., the ability to process data within
the SAP application itself).

Z T-Codes

Stand-alone applications, or Z T-codes, are the
easiest candidates to move into a SOD. They would
need access to master data and all transactional
data within SAP; however, standalone applications
would be considered the primary target to be
moved outside of SAP in order to reduce technical
debt. Some of the benefits, in addition to those
mentioned above for reports, are:

• Easily complete application process
enhancements.

• Ability to make it a composite application in
order to get data from multiple data sources.

Embedded Customizations

Customizations that are done within SAP and are
also part of the overall business process may be
more challenging for candidates to remove from
SAP, specifically any customizations that are BADI
/user-exits. Certain customizations should be kept
within the SOR for optimal performance.

Most businesses require multiple Systems of
Differentiation and there are a few solutions
available today that are also great alternatives to
creating ABAP customizations, such as SAP Cloud
Platform and Pillir’s EdgeReady Cloud.

https://www.pillir.io/

14

Similar to financial debt, it’s best not to have any
debt, but unfortunately that is nearly impossible.
So, the next best alternative to having no technical
debt is to actively work to reduce the amount and
its implications. The quicker an organization can
move to reduce their technical debt, the better.

Technical debt reduction can begin at any stage of
an SAP journey. Whether an organization is in SAP
ECC or Business Suite, ready to move to S/4HANA
and beginning a migration project, or already in
the process of moving or have moved to S/4HANA,
technical debt reduction can start at any time.

Technical Debt Index (TDI) is the leading indicator
that can be used by organizations to determine
when to start the debt reduction process. TDI can be
evaluated at the application level, (i.e., the average
TDI of all objects in an application or at each non-

core modification or customization). TDI can be
calculated for each Z-report or each Z-Tcode and
can be prioritized based on TDI. A TDI above 20%
would be a good candidate for moving to a System
of Differentiation (SOD). Any ABAP customization
under 20% could be considered low priority. If the
average TDI of all the objects in SAP is less than
15% then there is nothing to worry about!

That said, technical debt reduction does not
necessarily need to be a large project. Depending on
the SOD solution, it can be a small project that can
be done in weeks and will most likely pay for itself. It
is recommended to do a thorough evaluation of the
SOD in order to receive maximum benefit.

Once the technical debt is reduced in SAP, the core
will be clean and pristine, and all customizations will
be built in the SOD.

WHEN TO START ELIMINATING
TECHNICAL DEBT

15

Conclusion

Technical debt in SAP is often an overlooked
subject. Most customers simply do not consider all
of the implications associated with technical debt
in their SAP system. Over time, the debt adds up
and leads to an unnecessarily high Total Cost of
Ownership (TCO). Organizations now have the right
tools and resources in order to identify and manage
their technical debt. Investing in these tools and
actively pursuing a clean System of Record pays
for itself immediately and dramatically reduces
overall costs for an organization. A low technical
debt level allows organizations to spend more on
differentiation and innovation instead of spending
on maintenance and keeping the lights on.

To learn more about how Pillir can help you reduce
your technical debt, please schedule a discovery
call with our team here. Once we connect, you
will have free access to our ABAP Discovery Tool,

NANCI - which will discover all of your ABAP
Customizations in under an hour - as well as the
TCO for remediating and migrating and, of course,
maintaining. The tool provides immediate insight in
an easy-to-read format for any and all stakeholders
- including non-technical stakeholders.

16

COPYRIGHT © 2020

	Defining Technical Debt
	The Impact and Consequences of Creating Technical Debt
	High Upgrade or Migration Costs
	Long and Expensive Maintenance Cycles
	Lack of Innovation
	Shortage of Bandwidth

	Top 3 Sources of Technical Debt in
	SAP Ecosystems
	Customizations (a.k.a. non-core modifications)
	Outdated Technology
	Development Practices

	How to Discover and Estimate Technical Debt
	Benefits of eliminating or reducing Technical Debt
	How to Reduce or Eliminate
	Technical Debt
	Best Practices IT Architecture
	Digital Wrapper
	Types of Customization

	When to Start Eliminating
	Technical Debt
	Conclusion

