Reducing Facilities Chemical Costs By Proper Management of Total Alkalinity (TA) and pH

Richard A. Falk (RichardFalk@comcast.net) World Aquatic Health Conference (WAHC) October 9, 2014

Fallacies

- Carbon Dioxide (CO₂) Injection Raises TA
- Truth: Adding CO₂ Lowers pH With No Change in TA
- Total Alkalinity (TA) Stabilizes pH
- Truth: **TA* is a SOURCE of rising pH**

*Only the carbonate alkalinity has the pH rise; cyanuric acid or borates do not cause rising pH

Acid vs. CO₂ Injection

 Adding acid and bicarbonate is the same as injecting carbon dioxide (CO₂), but is a LOT more expensive!

```
    HCI + NaHCO<sub>3</sub> = CO<sub>2</sub> + H<sub>2</sub>O + NaCI
    -TA +TA
    Acid + Bicarb = Carbon Dioxide + Water + Salt
```

Acid		+	Bicarb =		CO2	
1	gallon	31.45% Hydrochl	oric (HCl)	7.015 lbs.		3.676 lbs.
1	gallon	38.5% Sulfuric	(H ₂ SO ₄)	6.880 lbs.		3.605 lbs.
1	pound 9	3.2% Bisulfate	$(NaHSO_{4})$	0.6521 lbs.		0.3417 lbs.

Use CO₂ Instead of Acid+Bicarb

- Only use acid to counter base (excess lye in chlorinating liquid) to maintain TA (i.e. to lower it); no need for bicarbonate
- Use CO₂ injection to counter CO₂ outgassing to maintain pH (i.e. to lower it)
 - Important to use a booster pump with a properly sized efficient gas transfer Venturi injector into a slip-stream joining the main return stream

Net pH of Chlorine Sources

- Hypochlorite chlorine sources are *net* pH neutral except for
 - excess lye added for stability
 - chlorine outgassing (minimal when CYA is used and water temps not hot)
 - filtered/removed combined chlorine (minimal)
- Net pH neutral because chlorine usage/consumption is acidic

```
31.45% HCl Acid% Lye pH*per Gallon ChlorineComments0.00% 10.6no acid needednot stable so not sold0.25% 12.50.75 fluid ounceshigh quality0.79% 13.02.4 fluid ounceslow quality
```

*pH for 12.5% Chlorinating Liquid

What is Total Alkalinity (TA)?

- Mostly bicarbonate ion (HCO₃-)
 - In equilibrium with aqueous carbon dioxide
 - TA is not the same as total carbonates (incl. CO₂)
- Pools and spas are open systems
 - Carbon dioxide (CO₂) slowly exchanges between water and air
- TA* is a SOURCE of rising pH

*Only the carbonate alkalinity has the pH rise; cyanuric acid or borates do not cause rising pH

Pools/Spas are Over-Carbonated

- TA 80 ppm, pH 7.5 has over 7 times the CO_2 in water compared to balance with air
- Why are pools and spas over-carbonated?
 - To provide a pH buffer to reduce swings in pH from *external* sources
 - To saturate the water with calcium carbonate to protect plaster surfaces

Carbon Dioxide Outgassing

 Carbon dioxide outgassing raises pH with no change in TA

$$CO_{2(aqueous)} \rightarrow CO_{2(gas)}$$

By removing both bicarbonate and acid
 +TA -TA
 HCO₃⁻ + H⁺ → CO_{2(aqueous)} + H₂O
 Bicarbonate + Acid → Carbon Dioxide + Water

Factors Affecting Rise in pH

- Outgassing is faster with:
 - Higher TA
 - More bicarbonate and CO_{2(aq)}
 - Lower pH
 - More CO_{2(aq)}
 CO₃²⁻ + H⁺ → HCO₃⁻ + H⁺ → H₂CO₃ → H₂O + CO_{2(aq)} → CO_{2(g)}↑
 Carbonate Ion → Bicarbonate Ion → Carbonic Acid → Carbon Dioxide
 - Greater aeration (waterfalls, spillovers, fountains, splashing, longer pump runtime)
 - Greater surface area for water/gas transfer and faster mixing (less slow diffusion)

Degree of Over-Carbonation

1.0 = CO_2 balance; 2.0 = twice as much CO_2 in water than in balance with air

	<			pH			>	
TA*	7.0	7.2	7.4	7.5	7.6	7.8	8.0	$\mathtt{pH}_{\mathtt{EQ}}$
20	5.8	3.6	2.3	1.8	1.4	0.9	0.6	7.75
40	11.5	7.3	4.6	3.6	2.9	1.8	1.1	8.04
60	17.3	10.9	6.9	5.4	4.3	2.7	1.7	8.21
80	23.1	14.6	9.1	7.2	5.7	3.6	2.2	8.33
100	28.9	18.2	11.4	9.1	7.2	4.5	2.8	8.42
120	34.6	21.8	13.7	10.9	8.6	5.4	3.3	8.49

*Adjusted TA (carbonate alkalinity) excluding cyanuric acid or borates

Lowering TA and Raising pH

- Reduce CO₂ outgassing and therefore lower pH/TA chemical usage
 - By at least* 35% lowering TA** from 120 to 80 or at least 25% lowering TA from 80 to 60
 - By over 50% raising pH from 7.3 to 7.6

*Outgassing rates vary as the square of the TA level and are not reflected in the over-carbonation table **Adjusted TA (carbonate alkalinity) excluding cyanuric acid and borates

Putting It All Together

- Annual usage and costs for sum of multiple pools total over 400,000 gallons (Eastern U.S. waterpark with **high** bather-load and **high** aeration including wave pool)
- Using 12.5% Sodium Hypochlorite and 38.5% Sulfuric Acid
- TA 80-120 ppm, pH 7.4 (except last example)

Bleach	Acid	Bicar	b	CO_2		Total Cost	:
\$1.79/gal	\$3.79/ga.	1 \$0.34/	'lb	\$0.25/1	lb		
18,000 gal	32 , 700 ga	al 225,700	lb	0	lb	\$232 , 900	
18,000 gal	11 , 300 ga	al 78,400	lb	77 , 600	lb	\$121,100	Actual
18,000 gal	800 ga	al* O	lb	118,700	lb	\$62 , 300	
18,000 gal	800 ga	al* 0	lb	40,000	lb	\$42,200	ТА↓ рН↑
(annual \$32,	220 for 1	5 ppm FC usa	ge per	day)			

*would only be 108 gal assuming use of high-quality chlorinating liquid (345 gal from low-quality chlorinating liquid) and no outgassing of chlorine, no filtration/removal of combined chlorine, no plaster curing or degradation, no water dilution/exchange

Saturation Index to Protect Plaster

- Increase CH if lower TA results in negative saturation index
- Higher pH target loses more chlorine from UV in sunlight
 - More than 50% higher rate of loss at pH 7.6 vs. 7.3 (with CYA present; about 30% with no CYA)
 - But most chlorine usage in high bather-load pools is oxidizing bather waste, not loss from sunlight

Takeaways

- Adding CO₂ lowers pH with no change in TA
- Reduce chemical costs: Use carbon dioxide instead of acid and bicarbonate to control pH
- Use acid only to control TA rise from hypochlorite
- TA is a source of rising pH
- Reduce chemical costs: Lower TA and raise pH target

Questions/Comments? RichardFalk@comcast.net